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L
1-impulses method as an alternative method of harmonic

components in the power theory of discrete time systems

M. SIWCZYŃSKI, A. DRWAL∗, and S. ŻABA

Department of Eletrical and Computer Engineering, Cracow University of Technology, 24 Warszawska St., 31-425 Cracow, Poland

Abstract. The article presents the basic mathematical theory of the operational calculus of the L
1-impulses in the discrete time domain. It

presents the isomorphism between the rational function set of complex variable and the exponential L
1 impulses set of positive and negative

time domain. The paper shows how for any factorization of the rational function consisting of casual and noncasual parts can be directly
obtained the N – periodic version of the original signal using for the individual components of the L

1 impulses N – copy formula. It is done
by the distribution of the convolution – the type admitance operator Y of electrical circuit to the two commutative convolution operators
and on this basis is obtained the distribution of electrical circuit current to two components: the active current and the reactive current in
the discrete time domain using the cyclic convolutions. The distribution of current in the time domain for signals significantly different from
the sinusoidal is much more favorable than the distribution in the frequency domain.

Key words: L
1 impulses, time-discrete L

1 impulses operational method, time domain.

1. L
1-impulses and operators

The time-continous L
1-impulse is an absolutely summable

signal (an element of L
1 space)

x :

+∞∫

−∞

|x(t)| dt <∞ t ∈ R,

and the time-discrete L
1-impulse is a signal {xn}, such that

∞∑

n=−∞

|xn| <∞, (1)

where n ∈ Z (Integers).
The inner product of the L

1-impulses is defined as follows

(x, y) =

∞∑

m=−∞

hn−mxm, m ∈ Z (2)

and the convolution operator is defined as follows,

[h ∗ n]n =

∞∑

m=−∞

hn−mxm, m ∈ Z, (3)

maps the L
∞ space in itself (is the stable operator), only if

h ∈ L
1 ( L

∞-space of bounded signals).
The sequence of two stable convolution operators acts as

L
∞ into L

∞ mapping, which means at the same time that
h ∗ g ∈ L

1 when h ∈ L
1, g ∈ L

1.
Thus the convolution of the L

1-impulses also produces
the L

1-impulse.
The H∗ operator is the adjoint operator for the linear op-

erator H which meets the condition

(Hx, y) = (x, H∗y) (4)

for any x, y belonging to the L
1-impulses.

For the convolution operator (3) the adjoint ratio for its
characterizing function (the impulse function) has the form [1]

h∗
n = h−n (5)

N – periodical extensions of the L
1-impulse x is called N –

periodic signal:

x̃n =

∞∑

n=−∞

xn+pN , (6)

where N ∈ {0, 1, 2, 3, . . .} = Z+, p ∈ Z .
For purposes of the signal theory, the concept of one-

sided L
1-impulses is introduced. The right-hand L

1-impulse
(casual) is called the signal which meets the condition:

L̃
1

N
=

{
x̃ : xn =

∞∑

p=−∞

xn+pN , x ∈ L
1

}

and the left-hand L
1-impulse (noncasual) is called the signal

which meets the condition:

xn = 0 for n > 0.

The special case are the functions

1n =

{
0 for n < 0

1 for n ≥ 0

and

1−n =

{
0 for

1 for

n > 0

n ≤ 0
.
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2. The time-discrete L
1 impulses operational

calculus. The L̃
1

N
space

The very important issue is discussed in this section – the
isomorphism between the rational function set of complex
variable and the exponential L

1 impulse set of positive and
negative time domain, and their N – periodical extensions
sets.

The following relation defines the isomorphism between
right-hand (casual) exponential L

1 impulse and the partial
fraction of complex variable

1

1− σ−1z
←→ σ−n

1n for |σ| > 1. (7)

The relation (7) describes a simple causal recursive digital
filter, whose impulse response {hn} ∈ L

1 meets the recursive
equation:

hn =

{
0 for n < 0

δn + σ−1hn−1 for n ≥ 0
(8)

where

δn =

{
0 for n 6= 0

1 for n = 0
– the Kronecker delta.

For the partial fraction with the pole σ : |σ| < 1 the iso-
morphism is given as follows

1

1− σz−1
←→ σ−n

1−n for |σ| < 1. (9)

The relation (9) describes a simple noncausal recursive
digital filter, whose impulse response {hn} ∈ L

1 meets the
recursive equation:

hn =

{
δn + σhn+1 for n ≤ 0

0 for n > 0
(10)

In the relations (7) and (9) the complex variable z repre-
sents the unit delay operator, i.e.

(z x)n + xn−1.

For any factorization of a rational function, its original
consisting of casual and noncasual parts is given as follows

H(z) =
∑

|σ|>1

a(σ)

1− σ−1 z
−

∑

|σ|<1

a(σ)

1− σ z−1
↔

hn =
∑

|σ|>1

a(σ) σ−n
1n −

∑

|σ|<1

a(σ) σ−n
1−n,

(11)

where the residuals coefficients are given by the formula:

a(σ) = ⌊H(z)(1− σ−1z)⌋z→σ

= −
[
H)(z)(1− σz−1)

]
z→σ

= −
L(σ)

σ

[
dM

dz

]

z→σ

,
(12)

where: L(z), M(z) – the polynomials of numerator and de-
nominator rational function H(z).

The factorization (11) can directly obtain the N – periodic
version of the original signal using N – copy formula for the
individual components of the L

1 impulse

1

1− σ−1 z
→ σ−n

1n →

∞∑

p=−∞

σ−(n+pN)
1n+pN

= σ−n

∞∑

p=0

(
σ−N

)p
=

σ−n

1− σ−N

for n ∈ {0, 1, 2, ..., N − 1} , |σ| > 1

(13)

and

1

1− σ z−1
→ σ−n

1−n →

∞∑

p=−∞

σ−(n+pN)
1−n−pN

= σ−n

∞∑

p=1

(
σN

)p
=

σN−n

1− σN

for n ∈ {1, 2, ..., N − 1} , |σ| < 1

1

1− σ z−1
→

∞∑

p=0

(
σN

)p
=

1

1− σN

for n = 0, |σ| < 1

(14)

Thus N – periodic time – discrete original of the Z –
transform of factorization (11) takes the following form:

h̃o =
∑

|σ|>1

a(σ)
1

1− σ−N
−

∑

|σ|<1

a(σ)
1

1− σN
,

h̃n =
∑

|σ|>1

a(σ)
σ−n

1− σ−N
−

∑

|σ|<1

a(σ)
σN−n

1− σN

for n ∈ {1, 2, ..., N − 1}.

(15)

Following the same pattern as when deriving the relation
(13) and (14), a more general forms can be obtained

zM

1− σ−1z

L
1

−−→ σ−(n−M)
1n−m

eL1
N−−→





σ−n+M−N

1− σ−N
; n ∈ {0, 1, . . . , M − 1} |σ| > 1

σ−n+M

1− σ−N
; n ∈ {M, M + 1, . . . , N − 1} |σ| > 1

(16)

zM

1− σ z−1

L
1

−−→ σ−(n−M)
1−(n−m)

eL1
N−−→






σ−n+M

1− σN
; n ∈ {0, 1, . . . , M} |σ| < 1

σ−n+M+N

1− σN
; n ∈ {M + 1, M + 2, ..., N − 1} |σ| < 1

(17)
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The N – periodic extensions space of L
1 impulses is in-

dicated L̃
1

N
, i.e.

L̃
1

N
=

{
x̃ : xn =

∞∑

p=−∞

xn+pN , x ∈ L
1

}
(18)

The convolution operator in the L̃
1

N
– space is defined as

follows
[
h̃ ∗ x̃

]

n
=

N−1∑

m=0

h̃n⊖mx̃m, (19)

where n ⊖ m is subtraction modulo N of two indices, i.e.

n, m ∈ {0, 1 . . . , N − 1} : n ⊖ m

=

{
n−m for n−m ∈ {0, 1, . . . , N − 1}

n−m + N for n−m /∈ {0, 1, . . . , N − 1}
.

The inner product in the L̃
1

N
– space is defined as follows

(
h̃, x̃

)
=

1

N

N−1∑

n=0

x̃nỹn.

3. The power theory in the time domain.

The distribution of two terminal electrical

receiver operator

The convolution – the type admitance operator Y of elecrical
circuit is distributed to the two commutative convolution op-
erators:

Y = G + B, (20)

where

G∗ = G (self adjoint operator),

B∗ = −B (skew hermite operator).
(21)

The distribution (20) induces distribution current of elec-
trical circuit to two components: the active current iG and the
reactive iB current

i = Gu + Bu = iG + iB. (22)

The distribution (20) is the unique distribution because,
from the following system of equations

G + B = Y,

G−B = Y ∗,

the operators: the active G and the reactive B can be deter-
mined uniquely

G =
1

2
(Y + Y ∗) ,

B =
1

2
(Y − Y ∗) .

(23)

Energy (the average power) of circuit meets the condition:

(u, i) = (Gu, u) + (Bu, u)

but
(Bu, u) = (B∗u, u) = − (Bu, u) .

Therefore, the reactive component iB of the current does not
transfer the energy i.e.

(Bu, u) = 0.

In addition, components iG and iB are orthogonal, which is
due to:

(Gu, Bu) = (GBu, u)

and

(GB)
∗

= B∗G = −GB (skew hermite operator).

In the particular case of the convolution operator char-
acterized by the impulse function {hn} : n ∈ I, or its Z –
transform

H(z) =
∞∑

n=−∞

hnzn

the adjoint relation has the form (see also (5)):

h∗
n → h−n → H∗(z) =

∞∑
n=−∞

h−nzn

=
∞∑

n=−∞
hnz−n = H(z−1).

(24)

Thus the distributions (23) take the form

G (z) =
1

2

(
Y (z) + Y

(
z−1

))
,

B (z) =
1

2

(
Y (z)− Y

(
z−1

))
,

(25)

where Y (z) is the “digital model” of the admittance opera-
tor function of two terminal receiver YA(s). Particularly good
results are obtained from using the bilinear transformation.

Y (z) = YA

(
2

τ

1− z

1 + z

)
,

which is true for the continuous time

GA (s) =
1

2
[Y A (s) + YA (−s)] ,

BA (s) =
1

2
[Y A (s)− YA (−s)] ,

because

2

τ

(
1− z

1 + z

)
z→z−1

−−−−→
2

τ

(
1− z−1

1 + z−1

)
= −

2

τ

(
1− z

1 + z

)
.

Thus, the distribution of current (22) in the Z transform do-
main has the form

I (z) = G (z)U (z) + B (z)U (z) (26)

and in the discrete time domain is expressed through the cyclic
convolutions

ĩn =

N−1∑

m=0

g̃n⊖mũm +

N−1∑

m=0

b̃n⊖mũm, (27)

where {g̃n} and
{
b̃n

}
, n ∈ {0, 1, 2, ..., N − 1}−N – peri-

odic original complex function G(z) and B(z) determined by
the operator ratio (11), (15) and (16) and (17). These functions
can also be determined directly, acting in the time domain,
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from the impulse response {yn} ∈ L
1 of the two terminal

electrical receiver

{yn} ↔ Y (z) ; yn = 0 for n < 0.

Using N - copy formula, the following is obtained:

ỹn =

∞∑

p=−∞

yn+pN

and for n ∈ {0, 1, 2, . . . , N − 1} it is

ỹn =

∞∑

p=0

yn+pN . (28)

For the adjoint signal (see (5))

y∗ = y−n

the following is obtained:

ỹ∗
n =

∞∑

p=−∞

y−(n+pN) =

∞∑

p=−∞

ypN−n =

∞∑

p=−∞

ypN+N−n

and for n ∈ {0, 1, 2, . . . , N} (see (28)) it is

ỹ∗
n =

∞∑

p=0

yN−n+pN =ỹN−n.

Thus, for the distribution in the L
1 – impulse domain

gn =
1

2
(yn + y−n) ,

bn =
1

2
(yn − y−n) ,

there is the distribution in the L̃
1

N
space

g̃n =
1

2
(ỹn + ỹN−n) ,

b̃n =
1

2
(ỹn − ỹN−n)

(29)

for n ∈ {0, 1, 2, . . . , N − 1, N}.
The N – periodic distribution in the time domain (29)

corresponds to the distribution in the complex domain (25).
Equation (22) and the fact that iG⊥iB results in:

‖i‖2 = (i, i) =
∥∥iG

∥∥2
+

∥∥iB
∥∥2

but there is
(u, i) = (u, iG) . (30)

Assuming that the inner product (30) is given the value of
energy (the averaged power – the Active Power) consumed by
the receiver, the third component of the current is introduced

iA =
(u, i)

(u, u)
u =

(
u, iG

)

(u, u)
u (31)

and the following distribution of the current is reached

i = iA +
(
iG − iA

)
+ iB. (32)

In the distribution (32) all the components are mutually or-
thogonal:

(
iA, iB

)
=

(
u, iG

)

(u, u)
(u, Bu) = 0,

(
iA, iG − iA

)
=

(
u, iG

)

(u, u)

(
u, iG

)
−

(
u, iG

)2

(u, u)
2 (u, u) = 0,

(
iG − iA, iB

)
= (GBu, u)−

(
u, iG

)

(u, u)
(Bu, u) = 0− 0 = 0.

On the other hand, it can be noted that the receiver does not
affect the current component iA (the energy value (u, iG) is
given the value), so from the equality

‖i‖
2

=
∥∥iA

∥∥2
+

∥∥iG − iA
∥∥2

+
∥∥iB

∥∥2

the following is obtained:

MIN ‖i‖
2

=
∥∥iA

∥∥2
,

(u, i) =
(
u, iG

)
= P

which means that iA is the minimal rms current that transfers
all the given energy P of the two terminal electrical receiver.

Example. The use of the L
1 – impulse method and N -

periodic extension and the cyclic convolution in the discrete
time domain is shown here. The example presents RL circuit
powered with the voltage signal. The diagram and the voltage
waveform are shown in Fig. 1.

Fig. 1. Series RL circuit powered by a periodic unipolar square wave

The circuit admittance is

y (s) =
1

R + sL
=

1

L

1

a + s
,

where a =
R

L
.

Using the unchanging pulse function method, the time-
continuous impulse response figures out to

y (t) =
1

L
e−at

1 (t)

and after sampling with an interval τ

yn =
1

L
e−βn

1n,

where β = aτ .
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With applying the N – copy formula, the admittance ỹn

in the L̃1
N – space is obtained

ỹn =
∞∑

p=0
e−β(n+pN) =

1

L
e−βn

∞∑
p=0

(e−βN)p

=
1

L

e−βn

1− e−βN
=

1

2L

e−β(n−N

2 )

shβ
N

2

and for the adjoint signal is:

ỹ∗
n = ỹN−n =

1

2L

eβ(n−N

2 )

shβ
N

2

.

The components of the admittance assumed in a shape of the
conductance

g̃n =





y0 for n = 0,

1

2
(ỹn + ỹN−n) for n ∈ {1, 2, ..., N − 1},

the susceptance

b̃n =






0 for n = 0,

1

2
(ỹn − ỹN−n) for n ∈ {1, 2, ..., N − 1}.

For the RL circuit the following outcome is obtained:

g̃n =





1

L

1

1− e−βN
=

1

2L

eβ N

2

shβ
N

2

for n = 0,

1

2L

chβ

(
n−

N

2

)

shβ
N

2

for n ∈ {1, 2, ..., N − 1},

b̃n =





0 for n = 0,

−
1

2L

shβ

(
n−

N

2

)

shβ
N

2

for n ∈ {1, 2, ..., N − 1}.

The active and reactive current components can be determined
by cyclic convolutions:

ĩgn =
n∑

m=0

g̃n−mum+
N−1∑

m=n+1

g̃n−m+Num,

ĩbn =

n∑

m=0

b̃n−mum+

N−1∑

m=n+1

b̃n−m+Num.

(33)

The current values for the voltage signal um take the form:

ĩgn =
1

M





y0 +
M−1∑
m=1

g̃N−m for n = 0,

y0 +
n−1∑
m=0

g̃n−m +
M−1∑

m=n+1
g̃n−m+N

for n ∈ {1, 2, ..., M − 2}

y0 +
M−2∑
m=0

g̃M−1−m for n = M − 1,

M−1∑
m=0

g̃n−m for n ∈ {M, ..., N − 1},

ĩbn =
1

M






M−1∑
m=1

b̃N−m for n = 0,

n−1∑
m=0

b̃n−m +
M−1∑

m=n+1
b̃n−m+N

for n ∈ {1, 2, ..., M − 2},

M−2∑
m=0

b̃M−1−m for n = M − 1,

M−1∑
m=0

b̃n−m for n ∈ {M, ..., N − 1}.

Especially for the RL circuit they take on the particular form
as follows:

ĩbn =

(
shβ

N

2

)−1

−2L

1

M






M−1∑
m=1

shβ

(
N

2
−m

)

for n = 0,

n−1∑
m=0

shβ

(
n−m−

N

2

)

+
M−1∑

m=n+1
shβ

(
n−m +

N

2

)

for n ∈ {1, 2, ..., M − 2},

M−2∑
m=0

shβ

(
M − 1−m−

N

2

)

for n = M − 1,

M−1∑
m=0

shβ

(
n−m−

N

2

)

for n ∈ {M, ..., N − 1}.
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For instance, if the reactive current for M = 4 is desig-
nated as

ĩb0 =

3∑

m=1

shβ

(
N

2
−m

)
,

ĩb1 =

0∑

m=0

shβ

(
1−m−

N

2

)
+

3∑

m=2

shβ

(
1−m +

N

2

)
,

ĩb2 =

1∑

m=0

shβ

(
2−m−

N

2

)
+

3∑

m=3

shβ

(
2−m +

N

2

)

ĩb3 =

2∑

m=0

shβ

(
3−m−

N

2

)

it is demonstrable that the following subordination – (u, ib) =
0 – is fulfilled. When calculating the additional components
of the reactive current

ĩb0 = shβ

[(
N

2
− 1

)
+

(
N

2
− 2

)
+

(
N

2
− 3

)]
,

ĩb1 = shβ

[(
1−

N

2

)
+

(
−1 +

N

2

)
+

(
−2 +

N

2

)]
,

ĩb2 = shβ

[(
2−

N

2

)
+

(
1−

N

2

)
+

(
−1 +

N

2

)]
,

ĩb3 = shβ

[(
3−

N

2

)
+

(
2−

N

2

)
+

(
1−

N

2

)]

the following equation is acquired

ĩb =

3∑

n=0

ibn = 0.

Consequently, it appears to be evident that (u, ib) = 0.
With the increase of M a matrix of the size Mx(M − 1)

is augmented, whose words add up to zero.
The conclusions of this example can be easily extended

to more complex circuits, which transmittance is easily to be
decomposed into the partial fractions with real poles, such as
RL circuits, RC circuits or RLC circuits with a predominance
of attenuation.

The received set of expressions, which are calculated from
the convoluted relationships (33), should be multiplied by a
factor τ , which follows directly from the principle of sam-
pling:

∫
b (t− t′)u(t′)dt′

t=nτ
−−−→

∑
τbn−mum.

The factor τ appears automatically while other methods
of digital modeling such as the rectangle method or the trape-
zoidal method are applied.

The rectangle method. In the expression defining the ad-
mittance of the receiver, the operator s is modeled by s →
1

τ
(1 − z)

Y (s) =
1

L

1

a + s

s→ 1
τ
(1−z)

−−−−−−−→→
1

L

1

a +
1

τ
(1− z)

=

1

L

τ

1 + aτ

1

1− (1 + aτ)
−1

z
.

For the above expression the N – copy formula (13) can be
employed

ỹn =
1

L

τ

1 + aτ

(1 + aτ)−n

1− (1 + aτ)
−N

=
1

L

τ

1 + aτ

[
(1 + aτ)

1
aτ

]−aτn

1−
[
(1 + aτ)

1
aτ

]−aτN

n ∈ {0, 1, ..., N − 1}.

So that the above pulse function could be compared to the
function obtained by the unchanging pulse function method
mentioned below the expression substituted:

[
(1 + aτ)

1
aτ

]aτ

= eβ →

β = aτ ln(1 + aτ)
1

aτ = ln(1 + aτ).

It can be proven that for x→ 0

ln (1 + x) =

[
d ln (1 + x)

dx

]

x=0

x =

[
1

1 + x

]

x=0

x = x.

It results in
β ≈ aτ for τ → 0.

Finally, the form of the admittance ỹn in the L̃1
N – space can

be written as:

ỹn =
1

L

τ

1 + aτ

e−βn

1− e−βN
=

τ

1 + aτ

1

2L

e−β(n−N

2 )

shβ
N

2

and for the adjoint signal is

ỹ∗
n = ỹN−n =

τ

1 + aτ

1

2L

eβ(n−N

2 )

shβ
N

2

.

Because the expression

1 + aτ ≈ 1 for τ → 0

is the obtained from the rectangle method impulse function,
it differs in τ – fold from the impulse function received from
the unchanging impulse function method.

The trapezoidal method. In the expression defining the
admittance of the receiver, the operator s is modeled by

s→
2

τ

1− z

1 + z

Y (s) =
1

L

1

a + s

s→ 2
τ

1−z

1+z

−−−−−−→→
1

L

1

a +
2

τ

1− z

1 + z

=
1

L

τ

2 + aτ

1 + z

1−

(
2 + aτ

2− aτ

)−1

z

.
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Assuming that σ =

(
2 + aτ

2− aτ

)
, it can be written:

Y (z) =
1

L

τ

2 + aτ

1 + z

1− σ−1z
.

The above expression should be converted to a form which
allows to make use of the N – copy formula (13).

For this purpose, the impulse response of the filter de-
scribed by transmittance Y (z) needs to be determined (in the

following expressions a constant factor
1

L

τ

2 + aτ
is omitted).

The filter operational equation takes the form
(
1− σ−1z

)
y = (1 + z)x

and its impulse response meets a recursive equation

hn = δn + δn−1 + σ−1hn−1.

The solution of the above equation is

h0 = 1,

h1 = 1 + σ−1,

h2 = σ−1(1 + σ−1),

h3 = σ−2(1 + σ−1), ...

Generally, it can be written as

hn = σ−(n−1)(1 + σ−1).

Taking the constant factor
1

L

τ

2 + aτ
into account, it is ob-

tained as follows

hn =
1

L

τ

2 + aτ

(
2 + aτ

2− aτ

)−n(n−1) (
1 +

2− aτ

2 + aτ

)

= 4
1

L

τ

(2 + aτ)2

(
2 + aτ

2− aτ

)−(n−1)

=
1

L

4τ

4− (aτ)2

(
2 + aτ

2− aτ

)−n

≈ τ
1

L

(
2 + aτ

2− aτ

)−n

.

The above expression can be simplified for τ → 0 as it can
be made fairly evident that

2 + x

2− x

∣∣∣∣
x→0

=
(2 + x)2

4− x2
=

4 + 4x + x2

4− x2

≈
4 + 4x

4
= 1 + x.

At last, it can be written that

yn = τ
1

L
(1 + aτ)−n ,

where the form of the admittance ỹn in the L̃1
N – space comes

from

ỹn = τ
1

L

(1 + aτ)
−n

1− (1 + aτ)−N
= τ

1

L

e−βn

1− e−βN

= τ
1

2L

e−β(n−N

2 )

shβ
N

2

and for the adjoint signal the result is

ỹ∗
n = ỹN−n = τ

1

2L

eβ(n−N

2 )

shβ
N

2

.

Comparing the results to those received by means of the rec-
tangle method, from the trapezoidal method obtained impulse
functions differ in τ – fold from the impulse functions which
were obtained from the unchanging impulse function method.

4. Summary

In the article the distribution directly in the discrete time do-
main to the active and reactive currents using the original
method proposed by one of the authors – the L

1-impulse
method [1, 2] is presented. This method uses the isomor-
phism between the rational function set of complex variable
and the exponential L

1 impulses set of positive and negative
time domain and their N – periodic extensions set. It is also
shown that for periodic alternating receiver current, the active
and the reactive current can be also separated in the discrete
time domain using the distribution of impulse response of the
receiver admittance to even and odd components (equivalent
to active and reactive components) and N -periodic extension
and then the cyclic convolution.

For signals significantly different from the sinusoidal the
distribution in the time domain is much more favorable than
the distribution in the frequency domain [3–5]. Additional-
ly, taking into account the possibility of using digital signal
processors for direct controlling of the compensators in real-
time, the time domain seems to be much more effective than
the frequency domain.
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