
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 60, No. 2, 2012
DOI: 10.2478/v10175-012-0040-7

DEDICATED PAPERS

On constrained stochastic controllability of dynamical systems

with multiple delays in control
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Abstract. Linear, continuous stochastic dynamical systems with multiple delays in control are studied in the paper. Their relative stochastic

controllability with constrained control is discussed. The definitions of various type of constrained relative and absolute stochastic control-

lability for linear systems with delays in control are introduced. Criteria of relative and absolute stochastic controllability with constrained

control are established. Constraints on control values are considered. Mutual implications between constrained relative stochastic controllabil-

ity of systems with and without delays are studied as well as implications between constrained relative and absolute stochastic controllability

of systems with delay in control.
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1. Introduction

Roughly speaking, controllability generally means, that it is

possible to steer a dynamical control system from an arbitrary

initial state to an arbitrary final state using the set of admis-

sible controls. It should be mentioned, that in the literature

there are many different definitions of controllability, which

strongly depend, on one hand, on a class of dynamical con-

trol systems and on the other hand, on the form of admissible

controls.

Control theory is an interdisciplinary branch of engineer-

ing and mathematics that deals with influence behavior of

dynamical systems. Controllability is one of the fundamental

concepts in mathematical control theory. This is a qualitative

property of dynamical control systems and is of particular im-

portance in control theory. Systematic study of controllability

was started at the beginning of sixties in the last century, when

the theory of controllability based on the description in the

form of state space for both time-invariant and time-varying

linear control systems was worked out.

In recent years various controllability problems for differ-

ent types of linear semilinear and nonlinear dynamical sys-

tems have been considered in many publications and mono-

graphs [1]. However, it should be stressed, that the most liter-

ature in this direction has been mainly concerned with dif-

ferent controllability problems for dynamical systems with

unconstrained controls and without delays in the state vari-

ables or in the controls. Moreover, it should be mentioned,

that only a few papers [2, 3] have been devoted to a system-

atic study of relative or complete controllability problems for

stochastic dynamical systems with different types of delays in

controls.

As was stated above controllability of dynamical systems

is one of the main elements in their analysis. For the sake of

the abundance of mathematical models of dynamical systems

with delays, the controllability problem for such systems is es-

pecially important. Controllability problems for various types

of linear dynamical systems have been considered in may

publications (see the survey [4]). Controllability of both de-

terministic [1, 5] and stochastic ([6, 7] linear systems with de-

lays, and stochastic systems without delays [8–11] are studied.

However, most literature in this field has been concerned with

unconstrained controls. Some criteria for constrained control-

lability of linear dynamical systems with delays in control are

presented in [12] and [13].

Stochastic observability is the concept dual to stochastic

controllability. Stochastic observability has been considered,

among others, in [14–16].

Linear stochastic ordinary differential equations contain-

ing the Wiener process have application, among others, in

economic processes modeling [17, 18].

In the present paper, linear stochastic dynamical systems

with multiple, time-dependent delays in control are studied.

Constraints on control values are considered. The aim of the

paper is to formulate criteria of stochastic relative controlla-

bility with constrained control.

2. Mathematical model

In the paper we use the following standard notation introduced

by Zabczyk in [8]. Let (Ω, F, P ) be a complete probability

space with the probability measure P defined on a set of

events Ω and a filtration {Ft : t ∈ 〈0, T 〉} generated by an

n-dimensional Wiener process {w(s) : 0 ≤ s ≤ t} defined on

(Ω, F, P ). Let L2(Ω, Ft,R
n) denote the Hilbert space of all

Ft-measurable square integrable random variables with val-

ues in R
n and let L2

F (〈0, T 〉,Rn) denote the Hilbert space of

all square integrable and Ft-measurable processes with val-
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ues in R
n. We consider linear, continuous, finite-dimensional

dynamical systems with time-dependent multiple delays in

control described by the following ordinary differential state

equation

dx(t) =
(
A(t)x(t) +

M∑

i=0

Bi(t)u(vi(t))
)
dt

+σ(t)dw(t), t ∈ 〈0, T 〉,

(1)

where x(t) ∈ R
n – the instantaneous state n-vector, u ∈

L2
loc(〈0, T 〉,Rm) – the control, A(t) – n × n dimensional

matrix with elements, akj ∈ L1
loc(〈0, T 〉,R), k, j = 1, . . . , n,

Bi(t)(i = 0, 1, . . . , M) – n×m dimensional matrices with el-

ements, bikj ∈ L2
loc(〈0, T 〉,R), k = 1, . . . , n, j = 1, . . . , m,

vi : 〈0, T 〉 → R, i = 0, 1, . . . , M – absolutely continuous,

strictly increasing functions, satisfying vM (t) < vM−1 <

. . . < vk(t) < . . . < v1(t) < v0(t) = t, t ∈ 〈0, T 〉, where

vi(t) = t − hi(t) and hi(t) ≥ 0, i = 0, 1, . . . , M are time

dependent delays in control, σ(t) – n×n dimensional matrix

with continuous elements σkj , k, j = 1, . . . , n, w(t)(t ≥ 0) –

n-dimensional Wiener process, i.e. a stochastic, process char-

acterized by three properties: w(0) = 0 almost surely, w(t)
has independent increment with w(t) − w(s) ∼ N (0, t − s)
for 0 ≤ s ≤ t, the function t 7→ w(t) is almost surely contin-

uous.

Let U ⊂ R
m be any non-empty set. The set Uad =

L2
F (〈0, T 〉, U) of square integrable functions in 〈0, T 〉 with

values in U is the set of admissible controls for the dynami-

cal system (1). The initial condition z(0) = {x0, u0} ∈ R
n×

L2
F (〈vM (0), 0〉, U), where x0 = x(0) ∈ R

n, and u0 is the

given initial function in 〈vM (0), 0〉, is called the initial com-

plete state of the dynamical system (1). For the given initial

condition z(0) and an admissible control u ∈ L2
F (〈0, T 〉, U),

for every t ∈ 〈0, T 〉 there exists a unique, absolutely con-

tinuous solution x(t, z(0), u) ∈ L2(Ω, Ft,R
n) of the linear

stochastic differential state equation (1). This solution has the

form
x(t, z(0), u) = Φ(t, 0)x0

+

t∫

0

Φ(t, s)
M∑

i=0

Bi(s)u(vi(s))ds

+

t∫

0

Φ(t, s)σ(s)dw(s),

(2)

where Φ(t, s) is n × n dimensional transition matrix of the

linear system

dx(t) = A(t)x(t)dt.

In the case of a dynamical system with delays, only a com-

plete state

z(t) = (x(t), ut(τ)),

where ut(τ) = u(τ) for τ ∈ 〈vM (t), t), fully describes the

behavior of the dynamical system at time t.

A special case of the system (1) is the linear, stationary,

finite-dimensional dynamical systems with constant multiple

delays in control described by the following ordinary differ-

ential state equation

dx(t) =

(
Ax(t) +

M∑

i=0

Bi u(t − hi)

)
dt + σdw(t),

t ∈ 〈0, T 〉,

(3)

where A – n × n dimensional matrix with elements, akj ∈
R, k, j = 1, 2, ..., n, Bi(i = 0, 1, ..., M) – (n × m) dimen-

sional matrices with elements, bikj ∈ R, k = 1, 2, ..., n,

j = 1, 2, ..., m, σ – n × n dimensional matrix with constant

elements, hi ∈ R
m, i = 0, 1, 2, ..., M – constant delays in

control satisfying the following inequalities:

0 = h0 < h1 < . . . < hi < . . . < hM−1 < hM .

In the paper, constraints put directly on control values will

be consider. Let S ⊂ R
n be any non-empty set.

3. Stochastic relative controllability

3.1. Basic definitions. In this section we define various types

of stochastic relative controllability with constrained values

of control for the dynamical system (1) in the time interval

〈0, T 〉.

Definition 1. The dynamical system (1) is said to be stochasti-

cally relatively U -controllable in the time interval 〈0, T 〉 from

the complete state z(0) ∈ R
n × L2(〈vM (0), 0〉, U) into the

set S ⊂ R
n if for every vector x̃ ∈ S, there exist an admis-

sible control ũ ∈ L2
F (〈0, T 〉, U) such that the corresponding

trajectory x(t, z(0), ũ) of the dynamical system (1) satisfies

x(T, z(0), ũ) = x̃.

Definition 2. The dynamical system (1) is said to be (glob-

ally) stochastically relatively U -controllable in the time inter-

val 〈0, T 〉 into the set S if it is stochastically relatively U -

controllable in 〈0, T 〉 into S for every initial complete state

z(0) ∈ R
n × L2

F (〈vM (0), 0〉, U).

Definition 3. The dynamical system (1) is said to be (global-

ly) stochastically relatively U -controllable into the set S if for

every initial complete state z(0) ∈ R
n × L2

F ([vM (0), 0], U),
there exists T ∈ [0,∞) such that (1) is relatively U -

controllable in [0, T ] into S.

If S = R
n, then we talk about (global) stochastically rela-

tive U -controllability in 〈0, T 〉. When S = {0}, we talk about

stochastically relative null U -controllability in 〈0, T 〉 from the

complete state z(0), and (global) stochastically relative null

U -controllability in 〈0, T 〉.

Assume that S is a linear variety in R
n of the form

S = {x ∈ R
n : Lx = c}, (4)

where L is a known p × n matrix of rank p and c ∈ R
p is a

given vector. If L = In (n×n unit matrix) and c = 0, we get

S = {0}.
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The attainable set from the initial complete state z(0) at

time t ∈ 〈0, T 〉 for the dynamical system (1) has the form

KU (〈0, t〉, z(0)) =

{
x ∈ R

n :

x = Φ(t, 0)x0 +

t∫

0

Φ(t, s)
M∑

i=0

Bi(s)u(vi(s)) ds

+

t∫

0

Φ(t, s)σ(s)dw(s), u ∈ L2
F (〈0, t〉, U)

}
.

(5)

3.2. Constrained controllability criteria. In order to formu-

late criteria of controllability with constrained controls for the

stochastic system (1), with the assumption that the final set

takes the form (4), let us introduce a scalar function

J : Rn×R × R
p → R. The function is related to the attain-

able set KU (〈0, t〉, z(0)) of the system (1) and defined by

J(z(0), t, a) = vT
L


Φ(t, 0)x0 +

t∫

0

Φ(t, s)σ(s)dw(s)




+

t∫

0

sup

{
aT

LΦ(t, s)

M∑

i=0

Bi(s)u(vi(s)) :

u ∈ L2
F (〈0, t〉, U)

}
ds − aT c,

where a ∈ R
p is any vector, is called the supporting function

of the attainable set. Its application for dynamical systems

without delays can be found in [19].

Using the absolute continuity of vi and exploiting their

inverses ri : 〈vi(0), vi(T )〉 → 〈0, T 〉, i = 0, 1, 2, ..., M, we

can write the solution of (1) in the following form:

x(t, z(0), u) = Φ(t, 0)x0 +

t∫

0

Φ(t, s)σ(s)dw(s)

+
M∑

i=0

vi(T )∫

vi(0)

Φ(t, ri(s))Bi(ri(s))ṙi(s)u(s) ds

where

ṙi(s) =
d

ds
ri(s).

Let us fix a final time T > 0. Without loss of generality,

for simplicity of notation, we may assume that vk(T ) = 0 for

some k ≥ M. If such a k does not exist, then we introduce

an additional delay hk with control matrix Bk(t) = 0. Then

the solution (2) of the dynamical system (1) has, at time T,

the form [1, 3]

x(T, z(0), u) = Φ(T, 0)x0 +

T∫

0

Φ(t, s)σ(s)dw(s)

+
k∑

i=0

0∫

vi(0)

Φ(T, ri(s))Bi(ri(s))ṙi(s)u0(s) ds

+

M∑

i=k+1

vi(T )∫

vi(0)

Φ(T, ri(s))Bi(ri(s))ṙi(s)u0(s) ds

+

k∑

i=0

vi(T )∫

0

Φ(T, ri(s))Bi(ri(s))ṙi(s)u(s) ds.

The first four terms on the right hand side of the above equa-

tion depend on z(0) and σ(t) in the interval 〈0, T 〉, but not

on u. To simplify the notation we set

q(z(0), σ(t)) = x0 +

T∫

0

Φ(0, s)σ(s)dw(s)

+

k∑

i=0

0∫

vi(0)

Φ(0, ri(s))Bi(ri(s))ṙi(s)u0(s) ds

+

M∑

i=k+1

vi(T )∫

vi(0)

Φ(0, ri(s))Bi(ri(s))ṙi(s)ut0(s) ds

(6)

and for t ∈ 〈vi+1(T ), vi(T )), i = 0, 1, 2, ..., k − 1,

BT (t) =

i∑

j=0

Φ(0, rj(t))Bj(rj(t))ṙj(t). (7)

Let us notice that the integral

T∫

0

Φ(0, s)σ(s)dw(s)

can be defined pathwise (separately for each ω ∈ Ω) as

the Riemann-Stieltjes integral if the paths have finite vari-

ation [20]. This is secured by our assumptions.

Resuming the above transformations and introduced nota-

tions we can formulate the following theorem, basing on the

result presented in [1].

Lemma 1. Let

ẏ(t) = A(t)y(t) + BT (t)u(t), t ∈ 〈0, T 〉, (8)

be a linear, time-dependent dynamical system without delays

in control. Then

x(t, z(0), u) = y(t, q(z(0), σ(t)), u), t ∈ 〈0, T 〉.

By Lemma 1, the stochastic relative controllability in

〈0, T 〉 of the dynamical system (1) and the controllability in

〈0, T 〉 of the dynamical system without delays in control (8)

are equivalent.
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For the system (8) the supporting function J, at t = T ,

takes the form

J(q(z(0), σ(t)), T, a) = aT
LΦ(T, 0)q(z(0), σ(t))

+

T∫

0

sup{aT
LΦ(T, s)BT (s)u(s) :

u ∈ L2
F (〈0, T 〉, U)} ds − aT c.

(9)

Here BT (t) is an matrix of square integrable functions

in 〈0, T 〉, so the integral in the above formula is properly

defined.

Now we can formulate new criteria of stochastic relative

controllability for the system (1).

Theorem 1. Let U be a compact set and E ⊂ R
p be

any set containing 0 as an interior point. Then the dy-

namical system (1) with delays in control is stochastical-

ly relatively U -controllable from the complete state z(0) ∈
R

n × L2
F (〈vM (0), 0〉, U) into the set S of the form (4) if and

only if for some T ∈ [0,∞),

min{J(q(z(0), σ(t)), T, a) : a ∈ E} = 0

or, equivalently,

J(q(z(0), σ(t)), T, a) ≥ 0 for every a ∈ E,

where J(q(z(0), σ(t)), T, a) is defined by (9).

Proof: The idea of the proof is similar to that for linear contin-

uous systems with time-dependent multiple delays in control

presented in [13]. By Lemma 1 the attainable set KU for (8)

takes the form

KU ([0, T ], q(z(0), σ(t)))

=
{
x ∈ R

n : x = Φ(T, t)q(z(0), σ(t))

+

T∫

0

Φ(T, s)BT (s)u(s) ds, u ∈ L2
F (〈0, T 〉, U)

}
.

We shall show that this set is convex and compact.

To prove its compactness, we will show that every

sequence of points x1(T ), x2(T ), . . . , xk(T ), . . . from

KU (〈0, T 〉, q(z(0), σ(t))) has a subsequence convergent to

some x(T ) ∈ KU (〈0, T 〉, q(z(0), σ(t))). Since the set

L2
F (〈0, T 〉, U) of admissible controls is weakly compact in

L2
F (〈0, T 〉,Rm) (see [21]), there exists a subsequence of con-

trols uki
∈ L2

F (〈0, T 〉, U) weakly convergent to some control

u such that

lim
ki→∞

T∫

0

Φ(T, s)BT (s)uki
(s) ds =

T∫

0

Φ(T, s)BT (s)u(s) ds.

Let x(t) be the solution corresponding to u(t). Then in 〈0, T 〉
we have

x(t) = Φ(t, 0)q(z(0), σ(t)))

+

t∫

0

Φ(t, s)BT (s)u(s) ds = lim
ki→∞

xki
(t).

Therefore

lim
ki→∞

xki
(t1) = x(T ) ∈ KU (〈0, T 〉, q(z(0), σ(t))).

The convexity of attainable set is proved in [22] and [23].

It follows that the set K̃U (〈0, T 〉, q(z(0), σ(t))) of the

form

K̃U (〈0, T 〉, q(z(0), σ(t)))

= {y ∈ R
p : y = Lx, x ∈ KU (〈0, T 〉, q(z(0), σ(t)))}

is also convex and compact. An initial complete state x0 can

be steered to the set S in time T > 0 if and only if the vec-

tor c and the set K̃U (〈0, T 〉, q(z(0), σ(t))) cannot be strictly

separated by a hyperlane, that is, if

aT c ≤ sup{aT x̃ : x̃ ∈ K̃U (〈0, T 〉, q(z(0), σ(t)))}

for all vectors a ∈ R
p. This follows from a theorem about

separating convex sets [24].

The above inequality is equivalent to:

aT
LΦ(T, 0)q(z(0), σ(t))

+ sup

{ T∫

0

aT
LΦ(T, s)BT (s)u(s) ds :

u ∈ L2
F (〈0, T 〉, U)

}
− aT c ≥ 0.

Interchanging integration and taking supremum we con-

clude that c ∈ K̃U (〈0, T 〉, q(z(0), σ(t))) if and only if

J(q(z(0), σ(t)), T, a) ≥ 0 for all a ∈ R
p.

Moreover, we can show that

kJ(q(z(0), σ(t)), T, a) = J(q(z(0), σ(t)), T, ka)

for every k ≥ 0.

Therefore, restricting to vectors a ∈ E, we obtain the asser-

tion of the theorem.

Theorem 2. Let U ⊂ R
m be an compact set and E ⊂ R

n

be any set containing 0 as an interior point. Then the dynam-

ical system (1) is stochastically relatively null U -controllable

from the complete state z(0) ∈ R
n × L2

F (〈vM (0), 0〉, U) if

and only if for some T ∈ 〈0,∞)

min{J(q(z(0), σ(t)), T, a) : a ∈ E} = 0

or, equivalently,

J(q(z(0), σ(t)), T, a) ≥ 0 for every a ∈ E.

Proof. This follows directly from Theorem 1 for S = {0},
i.e. for L = In and c = 0. Then E is a subset of R

n.

Obviously, both the above theorems hold also for the sta-

tionary system (3). For the system (3) the transition matrix

Φ(0, t) equals eAt, and the attainable set from the initial com-

plete state z(0) at time t ∈ 〈0, T 〉 takes the form:
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KU (〈0, t〉, z(0)) =

{
x ∈ R

n : x = eAtx0

+

t∫

0

eA(t−s)
M∑

i=0

Bi(s)u(s − hi)) ds

+

t∫

0

eA(t−s)σdw(s), u ∈ L2
F (〈0, t〉, U)

}
.

(10)

Therefore, the corresponding supporting function J, at t = T ,

is described by the formula

J(q(z(0), σ), T, a) = aT
LeAT q(z(0), σ)

+

T∫

0

sup{aT
LeA(T−s)BT (s)u(s) :

u ∈ L2
F (〈0, T 〉, U)} ds− aT c,

(11)

where

q(z(0), σ) = x0 +

T∫

0

eAsσdw(s)

+

k∑

i=0

0∫

vi(0)

eA(ri(s))Bi(ri(s))ṙi(s)u0(s) ds

+
M∑

i=k+1

vi(T )∫

vi(0)

eA(ri(s))Bi(ri(s))ṙi(s)ut0(s) ds,

(12)

and for t ∈ 〈vi+1(T ), vi(T )), i = 0, 1, 2, ..., k − 1

BT (t) =

i∑

j=0

eA(rj(s))Bj(rj(t))ṙj(t), (13)

for vi(t) = t − hi and ri(t) = v−1
i (t).

4. Conclusions

The linear stochastic dynamical systems with multiple, time-

dependent delays in control and constraints on control values

have been analyzed in the paper. Various types of stochas-

tic relative controllability with constrained values of control

for the dynamical system (1) have been defined. The criteria

of stochastic relative controllability with constrained control

have been established and proved. The results obtained in this

paper extend the results for systems with constrained delays in

control [13] and stochastic systems with delays in control [7].

Further works of the authors will focus on fractional sys-

tems with delays [25] and positive fractional systems [26].
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