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Abstract. A multiway blind source separation (MBSS) method is developed to decompose large-scale tensor (multiway array) data. Benefit-

ting from all kinds of well-established constrained low-rank matrix factorization methods, MBSS is quite flexible and able to extract unique

and interpretable components with physical meaning. The multilinear structure of Tucker and the essential uniqueness of BSS methods allow

MBSS to estimate each component matrix separately from an unfolding matrix in each mode. Consequently, alternating least squares (ALS)

iterations, which are considered as the workhorse for tensor decompositions, can be avoided and various robust and efficient dimensionality

reduction methods can be easily incorporated to pre-process the data, which makes MBSS extremely fast, especially for large-scale prob-

lems. Identification and uniqueness conditions are also discussed. Two practical issues dimensionality reduction and estimation of number

of components are also addressed based on sparse and random fibers sampling. Extensive simulations confirmed the validity, flexibility,

and high efficiency of the proposed method. We also demonstrated by simulations that the MBSS approach can successfully extract desired

components while most existing algorithms may fail for ill-conditioned and large-scale problems.

Key words: Multiway Blind Source Separation (MBSS), Multilinear Independent Component Analysis (MICA), Constrained tensor decom-

positions, Tucker models, Nonnegative Tucker Decomposition (NTD).

1. Introduction and problem statement

How to find informative and sparse/compact representations

of massive experimental or measured multidimensional large-

scale tensor data is a fundamental and challenging problem

in data mining and data analysis. Although the basic mod-

els for tensor (i.e., multiway array) decompositions such as

Canonical Polyadic (CP) and Tucker decomposition models

were proposed a long time ago [1–4], they have only recently

emerged as promising tools for exploratory analysis of multi-

dimensional data in diverse applications, especially in dimen-

sionality reduction, feature extraction, Independent Compo-

nent Analysis (ICA), classification, prediction, multiway clus-

tering, and data mining [4, 5]. By virtue of their multiway

nature, tensors provide powerful tools for analysis and fu-

sion of large-scale, multi-modal, massive data together with a

mathematical backbone for the discovery of underlying hidden

complex data structures [4, 7–9]. From the data analysis point

of view, tensor decompositions are very attractive because

they take into account spatial, temporal and spectral informa-

tion, and provide links among the various extracted factors

or latent variables with physical or physiological meanings

and interpretations [5, 8, 10]. For example, tensor represen-

tations and decompositions allow us to investigate temporal,

spatial and spectral independent components and links among

them. Moreover, tensor decompositions are emerging tech-

niques for data fusion, pattern recognition, object detection,

classification, multiway clustering, Blind Source Separation

(BSS), sparse representation and coding [11–17], etc.

Most of the existing tensor decomposition methods are

focused on the minimum fitting error to the data. Howev-

er, quite different from the matrix case, the optimal low-rank

approximation may not exist at all [18] or, if it exists, may

not be unique for high-order tensors [7, 19, 20]. Particularly,

for Tucker decompositions the results are always non-unique

due to rotational freedom. As a result the extracted factors

often lack of physical meaning and are hard to interpret. To

overcome this drawback, constrained tensor decompositions

have received increasing interest in recent years. In this re-

gard, several authors have proposed applying ICA to the CP

and Tucker models, i.e., impose statistical independence in

at least one mode [21–24]. For example, in the methods pro-

posed in [21] and [22] ICA was combined with the CP model.

However, the CP model and its associated algorithms are of-

ten too restrictive as the number of components in each mode

is the same and there are no mutual interactions between com-

ponents in different modes. Very recently Unkel et al. (2011)

proposed a two-step method based on the Tucker-3 model in

which ordinary Tucker decomposition is performed first and

then statistical independence is imposed to refine the compo-

nents in only one mode by exploiting the rotational freedom

of the Tucker model [24]. Furthermore, Vasilescu and Ter-

zopoulos (2005) proposed a multilinear ICA method which is

also a two-step method but independence can be imposed on

either all the temporal components or the mixing matrix (spa-

tial components) [23]. However, this approach has not been

investigated deeply and only ICA is considered.
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On the other hand, in the (2D) matrix case, very ef-

ficient low-rank constrained matrix factorization techniques

(also called penalized matrix factorizations) have been de-

veloped, such as principal component analysis (PCA), ICA

[25–28], sparse component analysis (SCA) [29, 30], smooth

component analysis (SmoCA) [5] and nonnegative matrix fac-

torization (NMF) [5, 31], just to name a few. These matrix

factorization techniques have their own bias, advantages, and

are widely applied to blind source separation (BSS), dimen-

sionality reduction, data compression and feature extraction,

by exploiting various assumptions and a priori knowledge. We

do not intend to duplicate these works which have been done

for matrices. Instead, we would like to show that such well-

established matrix factorization methods (especially, NMF,

SCA and ICA) can be extended to tensor scenarios directly

and uniformly. Motivated by efficiency and high level of flex-

ibility of BSS and various Component Analysis methods, we

investigate in this paper a multiway BSS (MBSS) approach to

perform constrained tensor decompositions with various con-

straints and diversities1, in order to provide more interpretable,

essentially unique2 components with physical meanings. To

the best of our knowledge, till now there was no available

systematic investigation of the validity and performance of

this approach which could incorporate any powerful and flex-

ible BSS techniques (beyond ICA3) to tensor decompositions.

Finally, the MBSS method can be viewed as a generaliza-

tion and extension of the wide variety of BSS techniques and

algorithms to multiway data.

The remainder of the paper is organized as follows. In

Sec. 2 basic models and concepts for Tucker decomposi-

tion are briefly introduced. In Sec. 3 the flexible and general

scheme of Multiway BSS is developed, as well as the discus-

sion on identifiability and uniqueness conditions are provided.

In Sec. 4 a method for dimensionality reduction and estima-

tion of the number of components is addressed. Finally, some

simulation results are presented in Sec. 5 and conclusions are

made in Sec. 6.

Basic notations. Tensors are denoted by underlined cap-

ital boldface letters, e.g., Y ∈ R
I1×I2×···×IN . The order of

a tensor is the number of modes, also known as ways or di-

mensions (e.g., space, time, frequency, subjects, trials, classes,

groups, and conditions). In contrast, matrices (two-way ten-

sors) are denoted by boldface capital letters, e.g., Y; vectors

(one-way tensors) are denoted by boldface lowercase letters,

e.g., the columns of a matrix A are denoted by aj , and scalars

are denoted by lowercase letters, e.g., aij .

The mode-n product Y = G ×n A of a tensor G ∈
R

J1×J2×···×JN and a matrix A = [ai,jn
] ∈ R

I×Jn is

a tensor Y ∈ R
J1×···×Jn−1×I×Jn+1×···×JN , with elements

yj1,j2,...,jn−1,i,jn+1,...,jN
=

∑Jn

jn=1(gj1,j2,...,jN
)(ai,jn

). The

symbol ⊗ denotes the Kronecker product, i.e., A ⊗ B =
[aijB], and the symbol ⊙ denotes the Khatri-Rao prod-

uct or column-wise Kronecker product, i.e., A ⊙ B =
[a1 ⊗ b1 · · ·aJ ⊗ bJ ]. Unfolding (matricization, flattening)

of a tensor Y ∈ R
I1×I2×···×IN in mode-n is denoted as

Y(n) ∈ R
In×Πp 6=nIp , which consists of arranging all possible

mode-n tubes (vectors) as the columns of the unfolded matrix

[4]. For simplicity, we define Ĭn = Πp6=nIp, J̆n = Πp6=nJp,⊗
p6=n

A(p) = A(N) ⊗ · · ·A(n+1) ⊗ A(n−1) · · · ⊗ A(1) and

⊙
p6=n

A(p) = A(N)⊙· · ·A(n+1)⊙A(n−1) · · ·⊙A(1). Readers

are referred to [4, 5] for more details about the notations and

tensor operations.

2. Tucker decomposition models

Tucker decomposition has been received intensive study in

recent years as one of the most important and flexible tensor

decomposition models. In Tucker decompositions, the data

are decomposed as the product of a core tensor with N mode

component matrices [2] (see Fig. 1), i.e., a given data tensor

Y ∈ R
I1×I2×···×IN is decomposed as

Y = G×1 A(1) ×2 A(2) · · · ×N A(N) + E = Ŷ + E

=

J1∑

j1=1

· · ·

JN∑

jN =1

gj1j2···jN

(
a

(1)
j1
◦ a

(2)
j2
· · · ◦ a

(N)
jN

)
+ E,

(1)

where G ∈ R
J1×J2×···×JN is the core tensor, A(n) =

[a
(n)
1 ,a

(n)
2 , . . . ,a

(n)
Jn

] ∈ R
In×Jn is the mode-n compo-

nent matrix for n = 1, 2, · · · , N , and the tensor E ∈
R

I1×I2×···×IN represents errors or noise. We may al-

so use a shorter notation for (1) in the form Ŷ =
JG;A(1),A(2), . . . ,A(N)K for simplicity [4].

To extract the latent factors A(n) from Y, a Tucker-1

model is often useful

Y ≈G(−n) ×n A(n), (2)

where
G(−n) = G×1 A(1) · · · ×n−1 A(n−1)

×n+1A
(n+1) · · · ×N A(N),

or by using unfolding operations and matrix representation

Y(n) ≈ A(n)G
(−n)
(n) = A(n)[B(n)]T , (3)

where

G
(−n)
(n) = G(n)




⊗

p6=n

A(p)




T

def
= [B(n)]T . (4)

In other words, A(n) and G(n) are solutions to the following

least-square problem4:

min
∥∥∥Y(n) −A(n)B(n)T

∥∥∥
2

F
, (n = 1, 2, . . . , N). (5)

1By diversity, we mean different characteristics, features or morphology of source signals or hidden latent variables [27].
2By essentially unique, we understand a unique decomposition with arbitrary scaling and permutation of components.
3By “beyond ICA”, we understand that any BSS method can be applied, e.g., PCA/SVD, NMF, SCA.
4Alternatively, we can solve the least-square problem min ‖Y

(−n)
(n)

− A
(n)

G(n)‖
2
F instead, where Y

(−n)
(n)

is the mode-n unfolding of tensor

Y
(−n) = Y ×1 [A(1)†] · · · ×n−1 [A(n−1)†] ×n+1 [A(n+1)†] · · · ×N [A(N)†].
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Y G 
E 

Fig. 1. Illustration of a 3-way tensor decomposition using the Tucker-3 model. The objective is to estimate the components a
(n)
jn

, i.e., columns

of the component matrices A
(n) = [a

(n)
1 ,a

(n)
2 , . . . ,a

(n)
Jn

] ∈ R
In×Jn , with desired diversities or statistical properties, and a possibly sparse

core tensor G ∈ R
J1×J2×J3 , typically with Jn ≪ In, (n = 1, 2, 3). Instead of applying the standard Alternating Least Squares (ALS)

algorithms to the Tucker-3 model, we can apply the unfolding of the data tensor according to the Tucker-1 models and then perform

constrained matrix factorizations for the unfolded matrices (multiway BSS) by imposing desired constraints (e.g., nonnegativity, sparseness,

statistical independence, smoothness or decorrelation, etc)

Hence, A(n) and G can be updated sequentially by freezing

all set of matrices except one

A(n) ← Y(n)[B
(n)]†, (n = 1, 2, . . . , N),

G← Y ×1 A(1)† ×2 A(2)† · · · ×N A(N)†,
(6)

where † denotes the Moore-Penrose pseudo inverse of ma-

trices. To achieve the optimal fitting error, the above steps

are repeated till convergence. These update rules are often

referred to as alternating least-square (ALS) method.

From the above analysis, standard ALS methods in-

volve frequently unfolding operations and matrix-matrix

Kronecker/Khatri-Rao products. For example, the matrix

B(n) ∈ R
In×Ĭn having a Kronecker structure in (4) is huge

for large-scale problems. This makes the ALS methods quite

time and memory consuming, and therefore not suitable for

large-scale data.

3. Constrained Tucker decomposition

using Multiway BSS

3.1. Motivation. The Tucker decomposition attempts to give

optimal low-rank ({J1, J2, . . . , JN}) approximations of the

original data. However, quite different from the matrix case,

the optimal low-rank approximation may not exist at all or, if

it exists, may not be unique for high-order tensors [7, 18–20].

Particularly, unconstrained Tucker decompositions are always

non-unique since

Y ≈G×1 A(1) ×2 A(2) · · · ×N A(N)

= [G×1 Q(1)† ×2 Q(2)† · · · ×N Q(N)†]

×1(A
(1)Q(1)) · · · ×N (A(N)Q(N)),

(7)

where Q(n) ∈ R
Jn×Jn is any nonsingular matrix. So the com-

ponent matrices in unconstrained Tucker decompositions are

with many degrees of freedom and usually have no specific

physical meaning or interpretation.

Based on these facts, it is reasonable to consider con-

strained tensor decompositions, which achieves not necessar-

ily the best fit but the most meaningful and featured compo-

nents instead. Generally, a constrained Tucker decomposition

problem can be formulated as minimization of the cost func-

tion:

DF

(
Y‖Ŷ

)
=

‖Y −G×1 A(1) ×2 A(2) · · · ×N A(N)‖2F

+
N∑

n=1

αnHn(A(n)),

(8)

where ‖Y‖F = (
∑I1

i1=1 · · ·
∑IN

iN =1 y2
i1···iN

)1/2, αn ≥ 0 are

penalty coefficients and Hn(A(n)) are penalty terms which

are added to achieve specific properties of the components.

For example, if we need to impose mutual independence con-

straints the penalty terms can take the form Hn(A(n)) =∑Jn

j=1

∑
p6=j a

(n)T
p φn(a

(n)
j ), where φn(x) are suitable non-

linear functions.

In principle, model (8) leads to a penalized or constrained

ALS algorithms which allows us to find component matrices

A(n) and the associated core tensor G, as the ALS algorithms

are considered as basic “workhorses” for tensor decompo-

sitions. However, as mentioned above, ALS iteration based

algorithms have high computational complexity, and due to

constraints, they may suffer often from slow convergence. For

example, existing nonnegative Tucker decomposition methods

often converge very slowly. Particularly, even if we optimize

(8) in a global way, the ALS algorithms may stuck in local

minima due to noncovexity of cost functions.

3.2. Multiway BSS. In this section, we investigate a sim-

pler yet much more efficient and flexible approach by ex-

ploiting separately each mode-n unfolding matrix Y(n) of

Bull. Pol. Ac.: Tech. 60(3) 2012 391
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the data tensor Y, according to the Tucker-1 decomposi-

tions (3), which allows us to directly apply suitable con-

strained matrix factorization methods to Tucker decomposi-

tions. Let Y ≈ JG;A(1),A(2), . . . ,A(N)K. We have

Y(n) ≈ A(n)B(n)T , (n = 1, 2, . . . , N), (9)

where the mixing matrices have a special Kronecker structure

B(n) = [G
(−n)
(n) ]T defined by (4).

From (9), we note that the columns of the mode-n ma-

tricization of Y are just linear mixtures of the columns of

A(n), (n = 1, 2, . . . , N ). This suggests that we can use vari-

ous BSS algorithms to directly extract the component matrices

with specific properties and diversities, without consideration

of the special Kronecker structure of the basis matrices B(n)

due to the essential uniqueness of BSS.

Assume that the component matrices of interest can be

separated by a standard BSS algorithm with unavoidable scal-

ing and permutation ambiguities:

Â(n) = Ψn(Y(n)) = Ψn(A(n)B(n)T ) = A(n)PnDn,

(n = 1, 2, . . . , N),
(10)

where Ψn denotes symbolically a specific BSS method, the

subindex n indicates the fact that for each mode different

method and criteria can be employed, and for each mode

we have different scaling Dn and permutation Pn ambigu-

ity. From (10), for each mode different constraints can be

imposed depending on the expected or known physical prop-

erties of the components. This is also one major difference

between MBSS and the existing multilinear ICA algorithms

where only ICA criteria are considered.

We have two basic ways to implement constrained Tucker

decomposition in practice:

Independent Extraction of Factor Matrices. In this case

each component matrix A(n) is estimated from the mode-

n matricization of Y independently and separately by us-

ing (10). Once all desired component matrices A(n) (n =
1, 2, . . . , N ) have been estimated, the core tensor can be com-

puted, for example, from:

Ĝ = Y ×1 A(1)† ×2 A(2)† · · · ×N A(N)†. (11)

Alternatively, we can apply multiplicative update formula pro-

posed in [5, 16], e.g., if we wish to impose nonnegativity

constraints on the components and the core tensor5.

Sometimes only partial pre-specified factors, say A(K),

K < N , can be extracted by using BSS. For the Tucker de-

composition, the remainder component matrices and the core

tensor can be obtained, e.g., by using ordinary ALS iteration

based methods, such as HOOI [7, 32]. In most cases, however,

the remainder component matrices are simply of no interest

because they do not carry any important information, or the

information they carry can be simply absorbed into the core

tensor. This often leads to a partial Tucker decomposition.

Without loss of generality, let us assume that we are interest-

ed in extracting only the first K , with K ≤ N component

matrices. In such a case, we can use a simplified Tucker-K

model described as

Y = Ğ×1 A(1) ×2 A(2) · · · ×K A(K) + E, (12)

where the partial core tensor Ğ ∈ R
J1···×JK×IK+1···×IN

is

expressed as

Ğ = G×K+1 A(K+1) ×K+2 A(K+2) · · · ×N A(N). (13)

Note that the Tucker-K model (12) can be represented equiv-

alently by a set of K different matrix factorizations with three

factors:

Y(k) ≈ A(k) Ğ(k) Z(k), (k = 1, 2, . . . , K), (14)

where Z(k) =
[
A(K) ⊗ · · · ⊗A(k+1) ⊗A(k−1) · · · ⊗A(1)

]T
.

Again, A(k) can be extracted by using proper BSS methods

due to the linearity of (14). Finally,
̂̆
G can be computed from

̂̆
G = Y ×1 A(1)† ×2 A(2)† · · · ×K A(K)† (15)

or some other proper methods. This procedure is illustrated

in the rightmost diagram of Fig. 2.

Sequential extraction and update of factor matrices. In

this case, after A(n) has been estimated by using (10), then

the observation tensor Y can be updated (reduced) as

Y ← Y ×n A(n)†. (16)

After update, the size of new data Y can be significantly

reduced taking into account that Jn ≪ In. For large-scale

problems this can reduce the total computational complexi-

ty. After all component matrices have been estimated, we let

G =Y. This way is often more efficient than the Independent

Extraction approach if the order of data tensor is not very

high. However, we have to carefully chose the BSS methods

in this approach, because, first of all, current poor separation

accuracy may deteriorate the subsequent separation accuracy.

Second, the order of selection of modes should be carefully

considered according to the constraints and the dimensionali-

ty of factor matrices. For example, it is suggested to estimate

first nonnegative components since many standard BSS algo-

rithms may often destroy the nonnegativity. Otherwise, the

mode with the highest dimensionality may be considered first

as it can reduce the data tensor Y most significantly. See

Fig. 2 (middle of the figure) for the diagram illustrating this

approach.

5Since core tensors can be represented in unfolded form via matrix factorizations (see e.g., Eq. 14), we can apply any suitable BSS method to estimate

constrained core tensors (e.g., NMF, SCA, ICA) with a little sacrifice in fit.
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Fig. 2. TuckerBSS versus MBSS. Here, PPn and BSSn denote the pre-processing procedure and the BSS method for mode-n, respectively,

(n = 1, 2, · · · , N ). Theoretically all the three approaches for noiseless data should give the same results but MBSS methods are more

efficient and flexible

The methods described above are referred to as multiway

blind source separation (MBSS) since multiple sets of signals

with specific physical meaning are extracted from different

modes of the data tensor by using BSS methods, based on the

multilinear structures of Tucker model. The name MBSS is

used to emphasize its difference from ordinary unconstrained

Tucker decompositions.

It is worth noticing that there are two possible interpreta-

tions of the results using constrained Tucker decompositions

for the MBSS. In the first approach the columns of compo-

nent matrices A(n) represent the desired components or la-

tent variables, and the core tensor represents a kind of “mix-

ing process”. More precisely, the core tensor shows the links

among the components from different modes, while the data

tensor Y represents a collection of multidimensional mixing

signals. In the second approach, the core tensor represents the

desired but unknown (hidden) N -dimensional signal (e.g., 3D

MRI image or 4D video) and the component matrices repre-

sent specific dictionaries or transformations, e.g., time fre-

quency transformations or wavelets dictionaries (mixing or

filtering processes). In this case the data tensor Y represents

the observed N -dimensional signal, which may be distorted,

transformed, compressed or mixed, depending on the specific

applications. In this paper we only consider the first interpre-

tation or approach.

Remark. The similar approach can be applied for constrained

Candecomp/PARAFAC (CP) model, especially when compo-

nents are highly collinear or problem is very ill conditioned

or sample number in some modes are very small. However,

for the CP model we need only to perform unfolding in a sin-

gle (one) mode and apply a suitable standard BSS (e.g., ICA,

NMF or SCA). On basis of the components in this mode we

can compute uniquely components in all other models using

SVD. Details can be found in our separate paper [33].

3.3. Identifiability conditions and uniqueness of MBSS.

Note that the separability of the MBSS depends on two con-

ditions: full column rank of each mixing matrix B(n) and

suitable assumptions on the component matrices A(n), for

example, assuming that the components in specific modes

are statistically independent, or nonnegative and/or sparse.

These assumptions are generally application-dependent and

are based on some a priori knowledge of expected features of

A(n). Here, we always assume that this a priori knowledge

is available in order to choose suitable BSS algorithms and

criteria6.

For the constrained Tucker decompositions, we have the

following proposition:

Proposition 3. If the elements of A(n) and G are drawn

from independent Gaussian distributions, and min(Ĭn, J̆n) ≥
Jn, then B(n) given by (4) is of full column rank with prob-

ability one.

Proof. First rank(G(n)) = Jn and rank(A(n)) = min(In, Jn),
n = 1, 2, . . . , N , hold with probability one [34]. Thus the ma-

trix G(n) is of full column rank with probability one. More-

over, rank(
⊗

p6=n A(p)) = Πp6=nrank(A(p)). It can be easily

verified that det(B(n)TB(n)) is not identical to zero. The set

satisfying det(B(n)TB(n)) = 0 is therefore Lebesgue mea-

sure zero [35] (Theorem 5 A.2). In other words, B(n) is of

full column rank with probability one. This ends the proof.

6For example, components in the frequency domain are usually nonnegative and smooth, while spatial components are usually sparse and temporal

components are often mutually independent.
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3.4. MBSS versus Tucker BSS. As a matter of fact, many

authors have considered imposing constraints on the factor

matrices to retrieve meaningful factors [21–24, 36]. For ex-

ample, Beckamnn and Smith [21], and De Vos et al. [22]

combined the CP model and ICA. Unkel et al. [24] proposed

adding ICA algorithms to the Tucker-3 model and this method

can be referred to as Tucker-ICA. However, MBSS allows us

imposing various constraints in each mode. There is neither

a theoretical nor experimental basis for the idea that statis-

tical independence (ICA) is the uniquely correct concept to

extract latent hidden components [37, 38]. In real world sce-

narios, latent (hidden) components may have various statisti-

cal properties and features. We often need to apply a fusion

of strategies by employing several suitably chosen criteria and

the associated learning algorithms to extract all desired com-

ponents in specific modes [5, 6, 38]. Therefore, if instead

the ICA alternative BSS algorithms are adopted, this two-

step approach can be referred to as the TuckerBSS method.

Figure 2 depicts the basic scheme of TuckerBSS. TuckerB-

SS looks quite intuitive, simple, and often gives meaningful

results.

In the following we explain why we propose MBSS in

more details. First of all, MBSS theoretically gives the con-

sistent results with TuckerBSS in the ideal noiseless case,

however it is usually more robust for noisy data.

Proposition 4. Suppose that we have two exact Tuck-

er decompositions Y = JG;A(1),A(2), . . . ,A(N)K and

Y = JH;X(1),X(2), . . . ,X(N)K for the same tensor Y, ob-

tained by an arbitrary Tucker decomposition algorithm, and

rank(A(n)) = rank(Y(n)) = Jn. Then there holds that

X(n) = A(n)Q(n), where Q(n) ∈ R
Jn×Jn is an invertible

matrix, (n = 1, 2, . . . , N ).

The proof is straightforward and is omitted here. Propo-

sition 4 means that the Tucker decomposition just gives a

linear mixture (i.e., the range) of A(n). Indeed, any linear

mixture of the columns of A(n) is a solution. To retrieve the

unique component matrices from their linear mixtures, the

two-step TuckerBSS method applies specific BSS algorithms

to the component matrices obtained by unconstrained Tucker

decompositions:

Â(n) = Ψn(X(n)) = Ψn(A(n)Q(n)) = A(n)PnDn,

(n = 1, 2, . . . , N).
(17)

By using the MBSS approach, however, these constrained

component matrices can be extracted directly from the un-

folded matrices Y(n), as Y(n) itself is assumed to be a linear

mixture of the columns of A(n). In other words, the source

separation and the unique Tucker decomposition can be per-

formed simultaneously, see (10) and (17) for a comparison.

Note also that the results are just the same as those obtained

via TuckerBSS, because the separation results of BSS are in-

dependent of the mixing matrix B(n) if it is full rank. In other

words, although both MBSS and TuckerBSS are able to give

unique, meaningful, and essentially consistent components, in

MBSS the additional unconstrained Tucker decomposition is

simply unnecessary.

In the following we summarize the advantages of MBSS

versus TuckerBSS.

1. Considerable flexibility and robustness. In MBSS, any

existing matrix factorization methods can be employed

directly. Furthermore, various pre-processing procedures

such as dimensionality reduction, source number estima-

tion developed for matrices can be easily and straight-

forwardly incorporated, which can significantly improve

the efficiency and performance of MBSS. However, in the

TuckerBSS we have to carefully design different Tucker al-

gorithms to adapt to different situations. Typically, most

existing Tucker decomposition methods have assumed the

noises are drawn from independent Gaussian distributions.

However, if the noises are, e.g., very sparse and of very

high amplitude, they lead to very high approximation er-

ror and thus TuckerBSS will achieve very low separation

accuracy. In the MBSS, however, we can simply use, e.g.,

robust PCA proposed in [39] to remove the sparse noise

and then extract the latent signals. This feature of MBSS

will be illustrated in Simulation 2.

2. High efficiency and simplicity. In ALS based methods

we have to unfold the tensor and perform matrix-matrix

(Kronecker/Khatri-Rao) products frequently. These opera-

tions are often time and memory consuming, which severe-

ly hinders their applicability, especially for large-scale and

noisy data. In the MBSS, we unfold the data tensor in each

mode only once. Moreover, we do not need to consider the

Kronecker/Khatri-Rao structure of B(n) in (4) and (10) ex-

plicitly due to the essential uniqueness of BSS. This will

significantly reduce the computational complexity. More-

over, as we will see later, by incorporating state of the art

dimensionality reduction methods, the efficiency of MBSS

can be further substantially improved. This feature will be

illustrated by extensive simulations in Sec. 5.

Another subtle difference between MBSS and TuckerB-

SS is that in TuckerBSS the minimum fitting error is pur-

sued first and then the feature information of the components

is maximized, whereas in MBSS the feature information is

maximized based on the multilinear structure and the feature

information directs the components to the desired one. As

pure pursuit of minimum fitting error has theoretical limitation

[18], and existing Tucker decomposition methods have implic-

itly or explicitly assumed the noises are Gaussian, MBSS can

be more flexible and practicable for real data analysis.

One may argue that MBSS is simply ordinary BSS. It is

the truth if we only consider one mode7. However, we usually

have to extract several factors from the data in different. These

multiple factors are linked or associated via the core tensor,

see (1), and provide extra information and facilities in da-

ta exploration, interpretation, projection, and transformation,

7Also, if we look only in one mode, tensor decomposition is simply ordinary constrained matrix factorization, by using matricization. The key point is

that in tensor decomposition multiple factors from multiple modes are involved, and links between them are established.
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etc. In summary, in MBSS the high-way data is explained and

interpreted by a Tucker structure but this structure is realized

by using ordinary BSS methods. The MBSS benefits from its

delicate and comprehensive multilinear structures compared

with ordinary BSS. Moreover, it provides more interpretable

components with physical meanings, compared with uncon-

strained tensor decompositions.

4. Dimensionality reduction and estimation

of the number of components

In this section we discuss two important pre-processing proce-

dures, that is, dimensionality reduction and estimation of the

number of components. The matrices Y(n) and B(n) have the

large sizes of In × Ĭ(n) and Ĭ(n) × Jn, respectively, typically

with Ĭn ≫ Jn. Therefore, problems we encounter here are

usually large-scale, highly over-determined and thus could be

challenge in practice. To reduce the computational complexity,

the dimensionality reduction step should be performed first.

Moreover, the adaptive estimation of the number of compo-

nents Jn in each specific mode of interest is another impor-

tant issue. Note that at first, we have assumed that the noises

are Gaussian, which is the standard assumption for most ten-

sor decomposition methods. After that we will briefly discuss

how to deal with the cases when have different non-Gaussian

distributions.

In order to perform dimensionality reduction, we can ap-

ply standard PCA (e.g., using truncated SVD) to each un-

folding matrix Y(n). In more detail, we perform eigenvalue

decompositions Y(n)Y
T
(n) = UJn

ΛUT
Jn

first (supposing that

Ĭn > In), where UJn
consists of the first Jn leading eigenvec-

tors. Then, we run BSS on the dimensionality reduced matrix

UT
Jn

directly8. This way involves the eigenvalue decompo-

sition of an In × In matrix, and gives the optimal low-rank

approximation of the observations, in the sense of least square.

Therefore, PCA is preferred for some ordinary BSS tasks if the

scale of the problem is moderate. However, it suffers from a

heavy computation load and huge memory use for large-scale

problems, i.e., both Ĭn and In are very large [40]. Moreover,

PCA/SVD will not preserve nonnegativity constraints, thus

it is not directly suitable for the cases in which nonnegative

components are desired.

Note that each column of Y(n), namely y(n), is exactly

a linear combination of the columns of A(n). Thus, we can

estimate A(n) from a new observation matrix whose columns

are sampled from the columns of Y(n) since BSS is gener-

ally independent of the specific mixing matrix. By thus, the

dimensionality of observations can be significantly reduced,

and the nonnegativity can be preserved. In ideal noise free

case, even only Jn columns would be sufficient to estimate

A(n). In general, we want to use as small as possible num-

ber of columns to approximate the original huge observation

matrix, then run BSS on the significantly reduced observa-

tion matrix. The CUR method presented in [41] confirms that

a huge matrix can be approximated by suitably sampling its

columns and/or rows. Based on this, we can run BSS on the

sampled columns of Y(n) without accessing the whole ten-

sor9. By using this approach the computational efficiency can

be significantly improved and the use of memory can be re-

duced as well.

Another important fact is that the columns of Y(n) are

simply built up from the mode-n fibers10 of Y. Using MAT-

LAB notations, the mode-n fibers of an N -way tensor Y are

denoted as yi1i2···in−1,:,in+1···iN
, or in short, y(n) [32]. In

the MATLAB environment, thanks to the support for multi-

dimensional arrays, we can access and sample the fibers di-

rectly from the tensor, and the sampled fibers form a reduced

observation matrix, say Ỹ(n), without the need to explicitly

construct the full unfolding matrix Y(n) in advance. Conse-

quently, the sampling procedure can be very efficient and it

is very similar to the Fiber Sampling Tensor Decomposition

(FSTD) method [42], which is a generalization of CUR de-

composition for tensors (see Fig. 3). The FSTD is based on

the following theoretical results [42]:

Y ≈ G̃×1 Ỹ(1) ×2 Ỹ(2) · · · ×N Ỹ(N), (18)

where Ỹ(n) ∈ R
In×Jrn are matrices consisting of mode-n

fibers sampled from the data tensor Y directly, In ≫ Jrn
≥

Jn. The value of Jrn
depends on the level of noise and in

practice it is often sufficient that Jrn
≥ 5Jn [5]. It should be

noted that each column of Ỹ(n) is a linear combination of

the columns of A(n). Hence, we can directly apply the FSTD

procedure in the MBSS, i.e., run BSS on Ỹ(n) and retrieve

A(n) from the linear mixtures Ỹ(n), as illustrated in Fig. 3.

However, in our MBSS approach there are some major sim-

plifications and modification with comparison to the original

FSTD:

• The computation of the core tensor G̃ is unnecessary,

since it is not essential for the estimation of A(n), n =
1, 2, . . . , N .

• We do not need to sample all the modes simultaneously.

Instead we sample each mode sequentially and indepen-

dently.

• The numbers of components, i.e., Jn, are usually unknown

in practice. In such case we need to determine the value of

Jn (and thus Jrn
).

8If occasionally In > Ĭn, the eigenvalue decomposition of YT
(n)

Y(n) = VJn
ΣΛT

Jn
should be computed instead. Then we apply a suitable BSS method

for low-rank approximation matrix V
T
Jn

Y
T
(n)

.
9This sampling procedure only reduces the redundant mixed (observed) signals without destroying any property (e.g., temporal property) of source signals.

Therefore, we can run BSS methods on the sampled mixtures to estimate the sources.
10A fiber of a tensor Y is a vector defined by fixing every subscript of Y but one.
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Fig. 3. Illustration of FSTD and MBSS based on fiber sampling of a 3D tensor. Note that on one hand, the columns of eY(n) are sampled

from the fibers of the original data tensor Y; on the other hand, these columns/fibers are the linear combinations of the columns of factors

A
(n). Thus we can run various BSS algorithms (optionally, with PCA) on the sampled fibers directly to extract A

(n)

Now, we will discuss how to determine the number of

fibers to be sampled. Assume that the additive noises are

drawn from independent Gaussian distributions with zero

mean, and a total of Jrn
fibers are sampled and stored in

Ỹ(n). Let ỸT
(n)Ỹ(n) = VΛVT be the eigenvalue decomposi-

tion of ỸT
(n)Ỹ(n) with the eigenvalues λi, i = 1, 2, · · · , Jrn

.

It is well known that λ̂i = λi + σ2
ε for i = 1, 2, · · · , Jn, and

λ̂i = σ2
ε for i > Jn, where λi corresponds to the signal space

and σ2
ε measures the level of noise. Without loss of generality,

assume that [9]

λ̂1 ≥ λ̂2 · · · ≥ λ̂Jn
> λ̂Jn+1 ≈ · · · ≈ λ̂Jrn

≈ σ2
ε . (19)

Intuitively, to estimate the number of components, i.e., Jn,

we only need to locate the GAP (jump) between the eigen-

values corresponding to the signal space (with noise) and the

pure noise space. Based on (19), a so-called Second ORder

sTatistic of the Eigenvalues (SORTE) method is developed to

locate this GAP [9]. Let ▽λ̂i = λ̂i − λ̂i+1 denote the dif-

ference of neighbor eigenvalues and σ̂2
p be the variance of

{▽λ̂i : i = p, p + 1, · · · , Jrn
− 1}. That is,

σ̂2
p = var

[
{▽λ̂i}

Jrn−1
i=p

]

=
1

Jrn
− p

Jrn−1∑

i=p


▽λ̂i −

1

Jrn
− p

Jrn−1∑

i=p

▽λ̂i




2

.

(20)

The SORTE method estimates the number of components,

i.e., Jn, by locating the maximal GAP between the eigenval-

ues of λ̂i as follows:

Jn = arg min
p

GAP(p) = arg min
p

σ̂2
p+1

σ̂2
p

,

p = 1, 2, . . . , Jrn
− 3.

(21)

The SORTE implicitly depends on a reliable and stable es-

timation of the eigenvalues of the covariance matrix, which

means that the number of samples should be sufficiently large.

Therefore, we keep sampling the columns of Y(n) until a

satisfactory estimate of λ̂i, i.e., a stable estimate of Jn, is

reached, as demonstrated by Fig. 4. In Fig. 4 the data (obser-

vation) matrix Y ∈ R
100×1000 with rank 10 is contaminated

by white Gaussian noise with SNR=20dB, r is the rank es-

timated by SORTE from the Jr sampled columns, and ρ is

defined as

ρ =
Errs − Err∗

‖Y‖F
, (22)

where Errs is the best rank-r approximation error by run-

ning PCA on the Jr sampled columns, whereas Err∗ is the

optimal rank-r fitting error achieved by PCA using the matrix

Y. From Fig. 4, with the sampled columns Jr increasing, the

number of components r estimated by SORTE increases and

fluctuates at first. However, after Jr ≥ 20, r does not increase

any more. Moreover, the approximation is gradually closer

to the optimal low-rank approximation. Thus, the number of

components is estimated, and at the same time, the observa-

tion matrix is approximated by a much smaller submatrix Ỹ.

In the next section simulations will show that this sampling

procedure achieves a good tradeoff between efficiency and ac-

curacy. Based on above analysis, a fast Fiber Sampling-based

SORTE (FSSORTE) method is proposed and implemented

to perform estimation of the number of components and di-

mensionality reduction, see Algorithm 4 for details. (In the

algorithm, freq(rn) computes the frequency of occurrence

of rn).
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Fig. 4. Illustration of adaptive low-rank approximation and rank detection by random sampling-based SORTE. The rank r is the rank

estimated from the Jr sampled columns by using SORTE, and ρ is defined by (22)

Algorithm 1: Fiber sampling-based SORTE for dimensional-

ity reduction and rank detection (FSSORTE)

Input: Y(n) ∈ R
In×Ĭn , (n = 1, 2, . . . , N ).

Output: Jn = rn and Ỹ(n) ∈ R
In×Jn (or Ỹ(n) ∈ R

In×t

for NMF).

for t = 1, 2, · · · , do

Ỹ(n)(:, t) = y
(t)
(n), where y

(t)
(n) is a randomly sampled

mode-n fiber and ‖y
(t)
(n)‖ > ε;

if mode(t, p0) = 0 then

λ̂t ← eigenvalues of ỸT
(n)Ỹ(n);

rn = SORTE(λ̂t);
if freq(rn) > γ and t > p× rn then

Output Ỹ(n) if nonnegativity is required; otherwise

output Ỹ(n) = Ỹ(n)Vrn
, where Vrn

is the rn

eigenvectors corresponding to the rn largest eigen-

values of ỸT
(n)Ỹ(n).

break;

end if

end if

end for

In the FSTD method the entries with larger absolute val-

ues dominate the sampling procedure. In our case random

uniform sampling is utilized instead but with the restriction

that ‖y
(t)
(n)‖ > ǫ. In the case where the number of components

is known, we can simply terminate FSSORTE if Jrn
> pJk,

and p ≥ 5 is an empirically-based choice [5]. FSSORTE out-

puts the optimal number of components rn = Jk and the

significantly reduced matrix Ỹ(n). Compared with standard

PCA, Algorithm 1 performs eigenvalue decomposition of a

series of Jrn
× Jrn

matrices. Considering that the number

of latent sources of the high dimensional data is relatively

small with Jn ≤ Jrn
≪ In, Algorithm 1 is more efficient

than standard PCA. Note that the projection Ỹ(n)Vrn
actual-

ly gives a random approximation of PCA and it can be used

for ordinary BSS algorithms. However, if the original tensor

is nonnegative and we want to run NMF to estimate the com-

ponent matrices, we generally use the sampled fibers Ỹ(n)

directly without projection.

It is worth noticing that in the above analysis the nois-

es have been assumed to be Gaussian. Under this consump-

tion, some methods to estimate the number of components

has been proposed for three way tensors, see, e.g., [43, 44].

On the other hand, some alternative methods have been pro-

posed to estimate the latent components in the matrix case

[45]. Apparently, the proposed approach enables us to em-

ploy all these methods freely and avoid extensively repeating

these work which has been done for matrices.

If the noise is not Gaussian, we need to apply anoth-

er suitable low-rank approximation methods. For example, if

the additive noise is very sparse, we can use the robust PCA

(RPCA) proposed in [39] to perform dimensionality reduction

and filter out noise. From this point of view, MBSS is actually

quite flexible because any well-established matrix factoriza-

tion methods can be easily incorporated for specific purposes

and analysis, instead of re-designing all kinds of new methods

for tensors.

5. Simulations

In this section the validity and efficiency of the MBSS is in-

vestigated by simulations of synthetic and real data. We use

two performance indices (PI) to evaluate the performance.

The first one is the signal-to-interference ratio (SIR) which is

defined by

SIR(a, â) = 10 log10

∑
t a2

t∑
t(at − ât)2

, (23)

where a, â are normalized with zero mean and unit variance,

and â is an estimate of a. The value of SIR reflects how well
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the estimated component (source) matches the true original

one. The second PI measures the fit of the estimated tensor

to the original raw data tensor and is defined as

fit(Y, Ŷ) = 1−
‖Y − Ŷ‖F
‖Y‖F

, (24)

where Ŷ is an estimate of Y. For synthetic data Y denotes

the noiseless tensor whereas it denotes the observation data

for real data because in this case the latent noiseless data are

unknown. Obviously, fit(Y, Ŷ) = 1 if and only if Ŷ = Y.

All the simulations were done in MATLAB 2008a on a com-

puter with Intel 7i 3.33GHz CPU and 24GB memory running

Windows 7.

Simulation 1. In this simulation different constraints were

imposed on the components in different modes, that is, tem-

poral (second-order statistics) decorrelation in mode-2 and

mode-3 (they were chosen as acsin10d, which is included in

the benchmark of ICALAB [46]), and the higher-order statisti-

cal independence in mode-1. The elements of A(1) ∈ R
500×4

and the core tensor G ∈ R
4×5×5 were drawn from inde-

pendent uniform distributions. Finally, very heavy Gaussian

noise with SNR=0dB was added. We used EFICA [47] to

extract the first component matrix and the SOBI [48] to ex-

tract the two others, respectively. The MBSS approach was

compared with the higher-order orthogonal iteration (HOOI)

algorithm presented in [32] and the standard ALS, i.e., Tuck-

erALS implemented in the N -way toolbox [49]. Because the

ordinary Tucker decompositions are always non-unique, we

used EFICA and SOBI to refine the component matrices ob-

tained by HOOI and TuckerALS, which can be viewed as

two-step implementations of TuckerBSS, and were denoted

as HOOI+BSS and TuckerALS+BSS, respectively. The maxi-

mum iteration number was set 100 for HOOI and TuckerALS.

The results are shown in Table 1. It can be seen that if all

the fibers were employed, MBSS achieved the same separa-

tion accuracy as the other two methods. However, MBSS was

about two times faster. When 500Jn fibers were sampled (de-

noted by 500x), MBSS was about five times faster than the

other methods and achieved satisfactory separation accuracy.

This feature makes MBSS very competitive for large-scale

problems.

Table 1

Comparison of performances of the MBSS, HOOI+BSS and

TuckerALS+BSS for the decomposition of a large tensor with mixed

constraints. Very heavy Gaussian noise with SNR=0dB was added. MBSS

[500x] used 500Jn randomly sampled fibers whereas MBSS [100%] used

all the fibers

Algorithm mSIR1 mSIR2 mSIR3 Runtime(s) Fit

MBSS [500x] 41 17 25 1.9 0.96

MBSS [100%] 41 18 25 4.1 0.99

HOOI 41 18 24 9.3 0.99

TuckerALS 47 18 25 11 0.99

In some applications the noise may not be Gaussian. For

example, in electroencephalography (EEG) signal processing,

eye blink artifacts typically are sparse yet have very large am-

plitude. To simulate this kind of situations, we added sparse

noise to the observation tensor Y as follows. We randomly

selected 1000 entries from Y and added huge bipolar sparse

noise (outliers drawn from Gaussian distribution) with the

SNR = −20 dB.

For this corrupted by spiky noise tensor, both HOOI+BSS

and TuckerALS+BSS failed to retrieve the latent components,

see Fig. 5c and d. In fact they also achieved very low fit to

the original tensor, as shown in Table 2. In MBSS, we ran-

domly sampled only 100Jn fibers first. Then, we applied the

Robust PCA (RPCA) proposed in [39] on the sampled fibers

to filter out the sparse outliers noise. Finally, we apply ordi-

nary PCA, SOBI and FastICA algorithms to retrieve hidden

factors. The recovered waveforms were plotted in Fig. 5b. It

can be seen that the recovered signals match the true sources

very well. The mean SIRs, runtime, and fit are detailed in

Table 2. In fact, only MBSS was able to extract the desired

components with a high accuracy in the presence of outliers.

From the simulation results, MBSS is more flexible and ver-

satile as any off-the-shelf matrix factorization methods can

be easily incorporated11. Figure 6 plots the mean SIRs of

A(1) obtained by MBSS with different configurations over 50

independent runs. The blue crosses mark the results obtained

by MBSS [500x] when 0 dB Gaussian noise was involved

and the red asterisks denote the MBSS incorporating RPCA

when −20 dB sparse noise was involved, which shows that

Mode 2Mode 1

Mode 3

(a) The sources

Mode 2Mode 1

Mode 3

(b) MBSS

Mode 2Mode 1

Mode 3

(c) HOOI+BSS

Mode 2Mode 1

Mode 3

(d) TuckerALS+BSS

Fig. 5. Comparison of performances of the MBSS, HOOI+BSS and TuckerALS+BSS in the decomposition of a tensor with mixed constraints.

Very sparse noise with SNR=-20dB was added to the observations tensor. In MBSS we used 100Jn randomly sampled fibers and then we

preprocessed them by employing RPCA

11In this case the improved performance was achieved via suitable preprocessing which was relatively easy to incorporate into the MBSS approach. The

implementation of such preprocessing, however, is not so straightforward for other existing methods.
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the separation accuracy was quite stable although MBSS only

used randomly sampled fibers. By fibers sampling, MBSS can

make a good trade-off between the separation accuracy and

efficiency. This feature is quite promising for large-scale data

analysis. To justify that the favorable performance achieved

by the MBSS with the RPCA was not due to the sampled

fibers (which occasionally noise-free, since the noises were

very sparse), the MBSS procedure was repeated but without

the RPCA preprocessing procedure and results are presented

in the same figure with the cyan circles marks). From the

figure, it is evident that the RPCA played a key role to im-

prove the performance of the MBSS for data with outliers.

In summary, compared with ordinary Tucker decomposition,

carefully designed MBSS is more flexible and robust and it

is able to tackle some very challenging problems in practical

applications.

Table 2

Comparison of performances of the MBSS, HOOI+BSS and

TuckerALS+BSS in the decomposition of a tensor with mixed constraints.

Very large sparse noise with SNR = −20 dB was added. The MBSS used

the RPCA to preprocess the sampled fibers

Algorithm mSIR1 mSIR2 mSIR3 Runtime (s) Fit

MBSS 47 18 21 2.4 1.0

HOOI 2.1 2.4 1.0 63 -0.4

TuckerALS 5.1 7.7 11 58 -0.0
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Fig. 6. Mean SIRs of A
(1) obtained by the MBSS with different con-

figurations over 50 runs. The results are stable although randomly

sampled fibers were used. The MBSS without the RPCA performed

poorly, which justifies to use the RPCA

Simulation 2. In this simulation MBSS incorporating

NMF methods is applied to perform nonnegative Tucker de-

composition (NTD) of large-scale data. Three sets of non-

negative signals were chosen from the benchmarks of NM-

FLAB, see Fig. 7a-c for their waveforms. Each set consist-

ed of five signals and the sample numbers were all 1,000.

The entries of the core tensor G ∈ R
5×5×5 were drawn

from a uniform distribution, and 60% of them were random-

ly set to zero. By using such components a large data tensor

Y ∈ R
1000×1000×1000 with sparse components was construct-

ed using the Tucker model. Finally, 20 dB noise drawn from

independent uniform distributions was added to Y. For this

large data tensor, most of existing NTD algorithms such as the

HALSNTD [50] and HONMF algorithm [16] ran out of mem-

ory or their convergence was extremely slow in our computer

and thus failed to perform nonnegative Tucker decomposi-

tions. In MBSS, this time we applied the DNNMF algorithm

[51] to extract nonnegative components in each mode and

using only 60Jn (i.e., 300) fibers n = 1, 2, 3. Figure 7d-f

shows the recovered waveforms by the MBSS and (g) shows

the corresponding SIRs of each component. From the figure,

it is evident that all components were nicely recovered by

the MBSS. The averaged SIRs of the estimated components

were 21 dB, 29 dB, and 26 dB. Moreover, MBSS consumed

only 32.3 seconds and achieved a fit of 0.9192 in a typical

run. (We have used the multiplicative update rule proposed in

[52] to obtain the nonnegative core tensor). For a comparison,

TuckerALS with nonnegativity constraints consumed 2344.9

seconds to achieve a fit of 0.8132, using only one iteration.

By setting the maximum iteration number only 10, Tucker-

ALS consumed 23440 seconds and achieved a fit of 0.92.

However, the averaged SIRs of the components estimated by

TuckerALS were only 3.9, 2.4, and 2.4 dB. From these re-

sults we can conclude that the MBSS is quite competitive

with existing algorithms for large-scale nonnegative Tucker

decomposition.

Simulation 3. In this simulation we applied MBSS to

the COIL-20 images clustering [53]. The database COIL-20

consists of 1440 gray images of 20 objects (72 images per

object). Each image has been preprocessed and was with the

size of 128 × 128, which was captured from different ori-

entations of a object. We stacked these images together and

formed a tensor Y with the size of 128 × 128 × 1440. In

the first step the tensor Y was decomposed by using MBSS

with J1 = J2 = 5, J3 = 25. In MBSS, we used LRA-NMF

described in detail in [52] to extract each factor. Then we

obtained two sets of features: FM=Â(3) and

FT = Y ×1 Â(1)† ×2 Â(2)†, (25)

where the features in FM are a sort of features which can

actually be extracted by running matrix factorization, e.g.,

NMF, on the unfolding version Y(3) directly, whereas the

features in FT are tensor features as they have exploited the

Tucker structure of tensors. Then we used their two t-SNE

[54] components to visualize and cluster the images by using

the K-means method. It is well known that K-means often

gives slightly different clustering results in different runs. To

reduce the uncertainty, in each run of K-means, K-means was

replicated 5 times, each with a new of initial cluster centroid

positions (see the document for K-means included in Mat-

lab Statistics Toolbox). Then we ran K-means 100 times and

their averaged values of clustering accuracy were recorded

and compared (see [55] for the definition of clustering ac-

curacy). From our experimental results, if FM was used, the

averaged clustering accuracy was 72.57%. If FT was adopt-

ed, the averaged accuracy was increased to 79.58%, which

shows that the clustering procedure indeed benefitted from the

Tucker structure. This also shows that, although the MBSS

is based on independent matrix factorizations, it is different

from ordinary matrix factorizations because its factors actu-

ally share a special multilinear structure. This also partially

explain why tensor decompositions cannot be simply replaced

by matrix factorizations. In fact, its Tucker structure allows
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(a) The sources in mode 1 (b) The sources in mode 2 (c) The sources in mode 3

(d) The estimated sources in mode 1 (e) The estimated sources in mode 2 (f) The estimated sources in mode 3
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Fig. 7. Performance of the MBSS for Nonnegative Tucker Decomposition (NTD) of a large-scale tensor with the size of 1000×1000×1000,

where the DNNMF algorithm was used to extract nonnegative components. Most source signals were nicely recovered and the runtime was

only 32 seconds. For this large-scale tensor NTD methods such as HALSNTD and HONMF ran out of memory on our computer standard PC

us to perform more complicated data analysis tasks. The above

mentioned implementation of the MBSS was also compared

with the HOOI, the TuckerALS, and the HALSNTD. The

maximum iteration number of these ALS algorithms was set

500. After the decomposition, FT defined by (25) were com-

puted and their two t-SNE components were clustered by us-

ing K-means. In clustering stage all the algorithms used the

same configuration as MBSS, which has been detailed above.

The results are shown in Table 3. Note that the HOOI did

not impose any nonnegative constraints, Tucker-ALS only im-

posed the nonnegative constraints on the loading matrices (it

currently cannot impose nonnegativity on the core tensor),

whereas the HALSNTD and the MBSS impose the full non-

negative constraints (all the loading matrices and the core ten-

sor are nonnegative). So the fits of the HALSNTD and MBSS

were slightly lower than those of the HOOI and TuckerALS.

MBSS did not use ALS iterations, however, it obtained al-

most the same fit as the HALSNTD, but much faster than the

HALSNTD and the TuckerALS (MBSS was slower than the

HOOI because the HOOI did not need to impose nonnega-

tive constraints.) The final fit and clustering accuracy reveals

that, although without ALS iterations, the MBSS is able to

provide better or similar results by consuming significantly

reduced time in comparison to ALS methods.

Table 3

Comparison of performance of 4 algorithms for the real-world application

– COIL 20 images clustering

Algorithm HOOI TuckerALS HALSNTD MBSS

Runtime(s) 13 5644 3603 45

Fit 0.69 0.69 0.67 0.66

Accuracy (%) 73 71 78 80

400 Bull. Pol. Ac.: Tech. 60(3) 2012



Fast and unique Tucker decompositions via multiway blind source separation

Simulation 4. In this simulation the MBSS is applied to

the steady-state visual evoked potential (SSVEP) data analysis

using real EEG data. SSVEP is a periodic electrical response

over the occipital scalp areas of the brain, elicited by the repet-

itive presentation of a flickering visual stimulus. SSVEP has

the same frequency (plus higher harmonics) as the stimulus,

and can be recorded from the scalp using electroencephalog-

raphy (EEG) [56]. Based on this mechanism a SSVEP brain-

computer interface (BCI) can be designed, which typically

depends on the external visual stimuli which are in the form

of an array of light sources with different and distinct fre-

quencies [57]. SSVEP BCI can translate the frequency modu-

lation of EEG signals into computer commands, by recogniz-

ing the frequency components of the EEG signals recorded

during different stimulus presentations [58]. How to extract

and recognize SSVEP components accurately is one of the

crucial issues for SSVEP BCI. Although SSVEP is evoked by

a repetitive stimulus with relatively stationary intensity, the

spontaneous EEG signal or noise with the same frequency as

the stimulus and its harmonics, but having time-varying in-

tensity, may contaminate the SSVEP measured from the scalp

and make it an unstable signal [59]. Effective extraction of

the true SSVEP components from the EEG signals will help

in enhancing the recognition accuracy of stimulus frequency

components, thereby improving the performance of SSVEP

BCI. Here, we validate the proposed MBSS algorithm with

real EEG data recorded in a SSVEP experiment in compari-

son to the TuckerALS, the HONMF and the HALSNTD [50]

algorithms.

The EEG signals were recorded at a 250 Hz sampling

rate from eight channels P7, P3, Pz, P4, P8, O1, Oz and O2

(arranged according to the international 10–20 standard sys-

tem) by a Biosemi Active Two amplifier, with a bandpass

filtering 5–50 Hz. The EEG data were then collected from 12

stimulus trials with 4 s duration for each trial. The first six

trials correspond to 6.5 Hz flickering frequency and the re-

maining to 10.5 Hz. A complex Morlet wavelet transform was

first applied to obtain the time-frequency information from the

EEG data with the minimum frequency resolution of 0.5 Hz.

Finally, an EEG spectrum tensor with dimension of 91 fre-

quency components × 1000 sample points × 8 channels ×
12 trials was constructed.
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Fig. 8. Example 3: Visualization of two t-SNE components obtained from the feature FT extracted by using MBSS with LRA-NMF.

The averaged clustering accuracy was 79.58% over 100 runs
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In the MBSS, only 40Jn fibers were uniformly randomly

sampled and then the DNNMF algorithm was employed to

extract the latent non-negative components. Figure 9 illustra-

tes the four-way EEG spectrum tensor factorization results

upon applying the MBSS. Two components in factor A(1) ex-

plicitly represent the SSVEP frequency components consisting

of the fundamental frequency and higher harmonics, corre-

sponding to the stimulus frequencies of 6.5 Hz and 10.5 Hz.

The components of A(2) and A(3) reflect the temporal and

spatial information about the SSVEP spectrum, respectively.

The components in factor A(4) provide considerably discrim-

inative class information, which show trials 1–6 have larger

contributions on the stimulus frequency of 6.5 Hz, where-

as trials 7–12 are more related to the stimulus frequency of

10.5 Hz. We further compare the TuckerALS with nonneg-

ativity constraints, MBSS, HONMF and HALS. The maxi-

mum iteration number for each algorithm was 100. Figure 10

shows the class information obtained by each algorithm. From

the figure, it is seen that the MBSS yields much more dis-

criminative class features than the other existing algorithms.
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Fig. 9. Example 4: Four-way EEG spectrum tensor (frequency × time × channel × trial) factorization by MBSS. The example includes 12

trials recorded from eight channels P7, P3, Pz, P4, P8, O1, Oz and O2 during 6.5 Hz and 10.5 Hz flickering visual stimulus (6 trials each).

Frequency components between 5 Hz and 50 Hz with 0.5 Hz resolution (i.e., 91 frequency bins) were analyzed and the time window length

was 4s (i.e., 1000 sample points). Each trial is represented by a 3-way tensor with dimension of 91 × 1000 × 8
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correspond to the class 2 SSVEP with frequency 10.5 Hz. From these plots it is clear that the MBSS method provides, in this case, the best

discriminative features
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Their computation time and fit are shown in Table 4. It

should be noted that the MBSS needs much less computa-

tion time in comparison to the others, and achieves compa-

rable fit. The TuckerALS and the MBSS implemented here

did not impose nonnegativity constraints on the core tensor.

From the experimental results, by using the existing the DNN-

MF method, the decomposition results obtained by MBSS are

more interpretable and the such decompositions are also more

efficient than NTD methods employing ALS approach. Here,

our aim was not to show that the proposed MBSS can yield

better performance than that of other commonly used meth-

ods for SSVEP analysis, but rather to show that the MBSS is

quite promising in the real-world data analysis. Worth men-

tioning, this may also provide a novel way to analyze EEG

data. Instead of usual two-way analysis (e.g., temporal-spatial

analysis) for the EEG data, the MBSS approach attempts to

extract the SSVEP components by multiway-array factoriza-

tion from the four-way EEG spectrum tensor which integrates

time-frequency features, temporal-spatial patterns and trial-to-

trial variability. The MBSS can impose various constraints on

the data in different ways according to the corresponding char-

acteristics of the electrophysiological signals, and may provide

more intuitive interpretations for the physical meaning of the

signals, thereby assisting the follow-up signal analysis, such

as the classification or detection in BCIs.

Table 4

Comparison of performances of 4 algorithms for the steady-state visual

evoked potential (SSVEP) data analysis in terms of run time and fit

Algorithm TuckerALS MBSS HALSNTD HONMF

Runtime(s) 596 9 236 238

Fit 0.54 0.53 0.53 0.52

6. Conclusions

The existing methods for the constrained Tucker decomposi-

tions are often slow, stuck in local minima and do not provide

unique desired decompositions and therefore, the results are

difficult to interpret. In this paper, a simple approach based

on the generalized multiway blind source separation (MBSS)

is investigated. Using the MBSS approach described in detail,

the component matrices, which are the subject of our main

interest, are estimated directly by applying existing efficient

BSS methods to each unfolding matrix of the data tensor. This

approach leads to essentially unique (neglecting unavoidable

scaling and permutation ambiguities of the components) Tuck-

er decompositions with usually meaningful and physically in-

terpretable results. In other words, we have demonstrated that

by employing the MBSS approach, constrained or penalized

Tucker decompositions provide essentially unique decomposi-

tions and thus the extracted components have specific statisti-

cal or deterministic properties (e.g., statistical independence,

smoothness, sparseness and nonnegativity)12. The MBSS ap-

proach provides an attractive and efficient alternative to ex-

isting algorithms for unique tensor analysis. Note that in the

MBSS approach the specific component matrices of interest

can be extracted independently of other modes, directly from

a reduced matricized data without the need to perform a full

decomposition of the whole data tensor, e.g.,without the need

to employ ALS algorithms which may fail to perform such de-

compositions, especially for ill-conditioned, highly collinear

or noisy data. Simulations show the validity and efficiency of

the proposed method, especially for large-scale problems.

In summary, the MBSS approach can be viewed as a

very flexible and general technique for constrained or pe-

nalized tensor decompositions, which is an efficient alterna-

tive to many existing algorithms for tensor decompositions,

especially to a wide class of the ALS algorithms. The ex-

tensive computer simulations confirmed that by using the

MBSS approach, we can reduce the computing time at least

by one or two orders of magnitude by comparison with ALS

and HOOI algorithms under assumptions that some a priori

knowledge about the hidden components is available. More-

over, for experimental, real world data, the MBSS often gives

more meaningful components of hidden latent variables, with

proper physical or physiological interpretations. However, if

such kind of a priori knowledge is not available, the standard

Tucker or CP (PARAFAC) decomposition algorithms should

still be the first choices.
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