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Material symmetry: a key to specification of interatomic potentials
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Abstract. The paper shows that symmetry forms a basis for relations between different properties of material. In this way, the key quantities

for specification of an atomistic model are identified. Material symmetry distinguishes representative processes of small strains. It is proved

that the errors in the densities of the energies stored in these processes determine the range of inaccuracies with which an atomistic model

recreates processes of small deformations. The errors are equal to the inaccuracies in the eigenvalues of the elasticity tensor, that is in the

Kelvin moduli. For cubic crystals, the elementary processes indicated by the symmetry initiate the key paths of large deformations: Bain and

trigonal ones. Therefore, the substantial errors in the Kelvin moduli lead to incorrect reconstructing the metastable phases: bcc, sc and bct.

The elastic constants commonly used in the literature do not provide such information as the Kelvin moduli. Using the eigenvalues of the

elasticity tensor as well as other key properties indicated by the symmetry, the EAM model proposed by A.F. Voter for copper is specified.

The obtained potential more accurately reproduces small and large deformations and additionally, correctly describes defect formation as

well as Cu dimer properties.
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1. Introduction

At present, more and more complex materials with wide spec-

tra of properties are designed and manufactured, hence they

find many industrial applications. One of the examples can

be copper matrix composite reinforced by alumina particles.

Because of the combination of high strength and electri-

cal/thermal conductivity, the composite is used not only as

electronic material but also as wear-resistant material in fric-

tion brake parts. The improvement of mechanical properties of

copper by incorporating ceramic particles depends on bond-

ings formed at phase boundaries [1]. In order to obtain inter-

faces with the appropriate strength, it is necessary to establish

mechanical characteristics of the phase boundaries with differ-

ent microstructures. These data can be derived by means of an

adequate atomistic model. Such a model accurately describes

interatomic interactions in the interfaces. In consequence, it

enables the reconstruction of the microstructures observed in

high-resolution transmission electron-microscopy (HRTEM).

The characteristics of the phase boundaries derived by means

of the atomistic model allow the improvement of mechani-

cal properties but also make it possible to correctly describe

the performance of the composite in the operating conditions.

As a result, we can formulate criteria of limit states for the

considered material.

Summing up, advanced materials presently created are not

completely characterized. Models of interatomic interactions

taking into account actual microstructures of the materials can

provide a series of essential data [2].

The basis of presently formulated interatomic potentials

are experimental and/or ab initio data. The results of the ex-

periments are more accurate than these obtained from the

first principle calculations. However, it should be underlined

that the ab inito studies reveal relationships between various

properties of material and identify data in areas inaccessible

to the experiment. A set of data constituting the basis for a

formulated model should be representative for a class of con-

sidered issues. The aim of the paper is to show that material

symmetry determines data crucial for the correct description

of the material behavior in the range of small and large de-

formations. A model which incorrectly reproduces changes

induced by strain processes also inaccurately reconstructs the

microstructure of the considered material. Additionally, char-

acterization of mechanical properties obtained with the use of

such a model is unreliable. Symmetry of the considered mate-

rial determines eigensubspaces of the elasticity tensor. Each of

them is characterized by the appropriate eigenvalue that is the

Kelvin modulus [3]. If the model predicts the Kelvin moduli

consistently with the experimental data, an arbitrary process

of small strains is reproduced correctly. This was shown and

elaborated in [4]. Because of a limited number of parameters

of the model, the Kelvin moduli can differ a little from the

experimental values. Then, the model reproduces small-strain

processes with some acceptable inaccuracy. In the literature,

the elastic constants are used instead of the Kelvin moduli.

Small errors in the constants can considerably deviate one

or several Kelvin moduli from the experimental values. As a

result, strain processes belonging to the eigensubspace with

the incorrect modulus undergo significant disturbance. This

irregularity is transfered to the range of large deformations.

In the paper, the Kelvin moduli are used to specify a mod-

el of interatomic interactions in copper by A.F. Voter [5, 6].

The potential has a special form which enables reproducing

the process of volume deformation according to the univer-
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sal binding-energy relation (UBER) [7, 8]. This relationship

describes the results of the ab initio calculations and experi-

ments. Additionally, the UBER is valid also in metal/ceramic

interfaces. Therefore, this kind of potential can be applied

to build a coherent model describing interfacial bonding in

the frame of a Charge Transfer Ionic Potential + Embedded

Atom Method approach (CTIP+EAM) [9, 10]. In the present

work, parametrization conditions for the Voter model are for-

mulated in a particularly simple form thanks to using material

symmetry according to the method proposed in [4] (Sec. 2).

The obtained potential, called here symmetry-based (s-b), is

applied to reconstructing two key processes of large deforma-

tions: tetragonal (Bain) and trigonal ones. The derived char-

acterizations are compared with the results provided by the

original model and with the ab initio and experimental data.

This reveals in what way the specification of a model with the

use of data indicated by symmetry influences the description

of large deformations and metastable structures (Sec. 3). The

work is summarized in Sec. 4.

2. Symmetry-based specification

of an interatomic potential

2.1. EAM model by Voter. The Voter model of interatomic

interactions is formulated according to the Embedded Atom

Method (EAM) [11]. Potentials of this kind are fast and ac-

curate for noble metals. Therefore, they are widely applied

in the literature. The EAM approach assumes that the en-

ergy of a metal crystal per atom consists of two contribu-

tions: Eat = 1
2

MP
m=1

φ(rm) + F (ρ). The first of them comes

from pair interactions of a central atom with its neighbors

and the other one constitutes the energy needed to embed

the central atom in electron density ρ. The density is formed

by the neighboring atoms: ρ =
MP

m=1

f(rm). Thus, the de-

termination of the energy Eat requires considering certain

surroundings. This area contains the atoms whose distances

rm from the central atom do not exceed a cutoff radius rct.

The pair potential and the electron density are expressed

as follows: φ(r) = DM

h
1 − e−αM(r−RM )

i2
− DM and

f(r) = r6[e−βr +29e−2βr]. The form of the density function

f comes from the 4s orbital, which is appropriate for copper.

Both the function f(r) and φ(r) have to be suppressed at the

distance equal to the cutoff radius. Therefore, finally they take

the form:

hsm(r) = h(r) − h(rct) +
rct

m

"
1 −

� r

rct

�m
#

dh

dr

�����
rct

, (1)

where h(r) = φ(r) or f(r). Unlike the pair potential and the

electron density, the embedding energy is not determined by

an explicit formula. The function F (ρ) is uniquely defined by

means of an assumption. The energy F takes such a form that

the process of volume deformation controlled by the lattice

constant a proceeds according to the UBER:

F
�
a(ρ)

�
= Esm

at (a) − 1

2

S(rct)X
s=1

lsφ
sm

 É
ns

2
a

!
. (2)

The above formula is based on the description of the atom

environment in terms of spheres of neighbors [4]. The para-

meters ns and ls characterize the face centered cubic (fcc)

structure and remain constant during the strain process. The

first of them constitutes the number of the sth sphere of neigh-

bors which determines the sphere radius: Rs =

É
ns

2
a. The

other parameter denotes the number of atoms belonging to

this sphere. The values of the parameters are given in [4].

The cohesive energy Eat(a) is determined by the UBER [8]:

Eat(ea) = Ecoh(1 + ea)e−ea which is modified so as to obtain

the appropriately suppressed function:

Esm
at (ea) = Ecoh

Eat

�ea√1 − ǫ
�
/Ecoh − ǫ

1 − ǫ
. (3)

In the above equation, the variable ea is related to the lattice

constant a in the following way: ea = η(a − a0)/a0 where

η =
È

(9B0Ωat)/|Ecoh| while a0, Ωat, B0 and Ecoh con-

stitute the equilibrium values of the lattice constant, atomic

volume, bulk modulus and the cohesive energy, respectively.

The parameter ǫ shifts the UBER curve in such a way that the

cohesive energy equals to zero when the radius of the nearest

neighbor sphere reaches the cutoff distance rct:

Esm
at (eact) = 0, (4)

where eact = η(
√

2rct − a0)/a0.

Summing up, the Voter model of interatomic interactions

requires specification of five parameters: rct, β, DM , RM and

αM . The additional quantity ǫ is determined numerically by

solving Eq. (4).

It is assumed that the potential should correctly describe

mechanical properties of the crystal, formation of defects and

accurately characterize the simplest structure of copper that

is the dimer. This gives rise to successive conditions which

specify the potential.

2.2. Elastic eigenvalues. The first two specification condi-

tions require that the second and the third Kelvin moduli (λII

and λIII) are consistent with the experimental data. These re-

lationships take particularly simple forms due to applying the

symmetry relationships in the point group of the crystal [4]:

1

3Ωat

"
1

2

SX
s=1

ls(1−3bs)φ
norm
s +F ′

SX
s=1

ls(1−3bs)f
norm
s

#
=λexp

II ,

(5)

2

3Ωat

"
1

2

SX
s=1

lsbsφ
norm
s + F ′

SX
s=1

lsbsf
norm
s

#
=λexp

III . (6)

In the above relationships, the qualities bs, s = 1, ..., S are

structural parameters like ns and ls while φnorm
s and f norm

s

constitute normalized contributions to the Kelvin moduli from

the pair interactions and the electron densities. Taking into ac-

count relationship (2), the derivative of the embedding energy

F ′ takes the following form:
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F ′ =
dF

da

���
a0

da

dρ

���
ρeq

= −

SP
s=1

É
ns

2
lsφ

sm′
�É

ns

2
a0

�
2

SP
s=1

É
ns

2
lsfsm′

�É
ns

2
a0

� ,

where φsm′ =
dφ

dr
and fsm′ =

df

dr
. Equations (5) and (6) sup-

plement the property of the potential according to which the

volume deformation is correctly reproduced and thereby the

first Kelvin modulus λI = 3B0 agrees with the experimental

value. Symmetry-based conditions (5) and (6) replace three

Voter relationships in which the elastic constants C11, C12 and

C44 were taken into account. There arises a question, which

of the property sets should specify the model: the moduli λ
or the constants C. In order to show in what way the errors

in the Kelvin moduli influence the reproducing processes of

small strains, the following analysis is carried out.

An arbitrary strain process controlled by a variable ε is

written in the basis of the eigenstates of the elasticity tensor

C [12]:

ε = ε
6X

i=1

aiωi, (7)

where ai, i = 1, . . . , 6 are the coordinates of the strain ver-

sor ε/ε in the orthonormal basis {ωi}. Applying the spectral

decomposition of the tensor C of a cubic crystal [3, 13], the

density energy stored in the arbitrary process of small strains

is expressed as a linear combination of the energy densities

in elementary processes [4]:

Φ(ε) = a2
I ΦI(ε) + a2

IIΦII(ε) + a2
IIIΦIII(ε),

Φi(ε) =
1

2
λiε

2.
(8)

The elementary processes belong to different eigensubspaces

of the elasticity tensor; therefore for cubic crystals a2
I = a2

1,

a2
II = a2

2 + a2
3 and a2

III = a2
4 + a2

5 + a2
6.

If the Kelvin moduli are burdened with the errors di:

λi = (1 + di)λ
exp
i the energy density stored in the strain

process differs from the correct one in the following way:

DΦ =
�
Φ(ε) − Φexp(ε)

�.
Φexp(ε)

=
X

i

�
λexp

i dia
2
i

�.X
i

�
λexp

i a2
i

�
, i = I, II, III.

(9)

The obtained formula uniquely identifies the error DΦ for the

arbitrary strain process which is represented by the versor ε/ε
in the reference system (aI, aII, aIII). The coordinates inform

of the participations of the elementary processes in the con-

sidered process ε. The versor ε/ε can be also oriented by

two angles (θ, φ): aI = sin(φ) cos(θ), aII = sin(φ) sin(θ)
and aIII = cos(φ) where θ ∈< 0, π/2 > and φ ∈< 0, π/2 >.

This kind of description enables us to prove that the error

DΦ takes the extremal values when the strain versor is par-

allel to one of the axes of the coordinate system, that is, the

strain process belongs to one of the eigensubspaces of the

elasticity tensor. These values are equal to the divergences di.

Thus, the errors in the Kelvin moduli determine the accuracy

with which the model reproduces small strain processes. Such

an estimation is not provided by the elastic constants. Little

errors in the quantities can significantly disturb reproducing

certain processes of small strains.

The energy density Φ can be expressed at the atomic level

in the following way:

Φ(ε) =
Eat(ε) − Ecoh

Ωat
, (10)

where Eat(ε) is the energy of the deformed crystal per atom.

Thus, the error DΦ is equal to the inaccuracy with which

the model predicts the change in the crystal energy due to

the small strain ε. As the deformation process continues, the

error is transfered further into the range of large strains.

2.3. Stacking fault energy. The next datum introduced to the

model is the intrinsic stacking fault energy γSF . The quan-

tity determines the cost of the formation of the following

disturbance ABC|BCABC in the sequence of layers of the

fcc structure. Ab initio studies show that for different met-

als, the energy γSF is mainly determined by the contribu-

tions from atoms belonging to four layers neighboring with

the fault plane [14]. The surroundings of each of the atoms

can be described by an identical set of spheres of neighbors

(see Table 1). Therefore, the contributions to the stacking fault

energy from the individual atoms take the same value. Both

the fcc structure and the faulted one can be reconstructed by

means of a periodic hexagonal cell whose base is determined

by the vectors a =
1

2
[1 2 1]a0 and b =

1

2
[1 1 2]a0 lying in

the plane (111) (see Fig. 9). Each of the cell planes paral-

lel to the base contains three atoms. The characterization of

the disturbed structure presented above enables us to express

the unrelaxed stacking fault energy by means of the following

formula:

γur
SF =

12(Eat
SF − Ecoh)

Ah
, (11)

where Ah = 3
√

3a2
0/4 is the area of the periodic cell base

while Eat
SF is the energy of an atom located in the layer neigh-

boring with the fault plane. This energy takes the form:

Eat
SF =

1

2

SX
s=1

lSF
s φsm(

r
nSF

s

2
a0) + F (ρSF ), (12)

where the parameters nSF
s and lSF

s characterize the faulted

structure (Table 1) while ρSF is the electron density in which

the considered atom is embedded:

ρSF =
SX

s=1

lSF
s fsm(

r
nSF

s

2
a0). (13)

The embedding energy in the Voter model is not expressed

explicitly. Therefore, the energy F (ρSF ) is determined from

Eq. (2) in which a = aSF . The quantity aSF constitutes the

lattice constant of the fcc structure at which the electron den-

sity in a lattice site is equal to ρSF :

SX
s=1

lsf
sm

 É
ns

2
aSF

!
= ρSF . (14)

Bull. Pol. Ac.: Tech. 61(2) 2013 443



K. Nalepka

Table 1

Parameters of the neighbor spheres (s) in the fcc structure with the intrinsic

stacking fault (SF). For comparison, the numbers of atoms in the individual

spheres for the fcc (lfccs ) and hcp (lhcp
s ) lattices are also shown

s nSF
s lSF

s lfccs lhcp
s

1 1 12 12 12

2 2 6 6 6

3 2 2
3

1 − 2

4 3 21 24 18

5 3 2
3

6 − 12

6 4 9 12 6

7 5 18 24 12

Summing up, the stacking fault energy γSF is the dif-

ference of the energies of two structures: disturbed and face

centered cubic ones. This difference is referred to the area of

the fault plane. According to the analysis carried out above,

the value of γSF is determined by the change in the energy of

an atom in the fault region with respect to the cohesive energy

Ecoh. Formula (11) derived in the present work enables cal-

culation of the unrelaxed stacking fault energy. This quantity

is close to γSF . The ab initio results show that the relaxation

in the direction perpendicular to the fault plane induces only

insignificant decrease in the energy [15].

The intrinsic stacking fault energy is directly related to

forming other defect types such as the hexagonal close packed

(hcp) structure or the twin fault observed in fcc metals. The

difference between the environments of atoms in the structures

hcp and fcc is analogical to the change which is introduced

by the intrinsic stacking fault. This change is easy to describe

if we compare the system of neighbor spheres around the

atom located near the fault plane with the system in the fcc

structure. There can be identified two kinds of differences:

additional spheres and decreases in numbers of atoms in the

spheres which were present in the fcc structure. In the case

of the hcp structure, both increases and decreases in numbers

of atoms are twice larger (Table 1). This relation holds up to

the thirteenth neighbor sphere. At that distance, the interac-

tions between the central atom and its neighbors are negligibly

small, which can be read from the UBER curves based on the

ab initio calculations [8]. Accordingly, the difference of the

pair interaction energies per atom in the hcp and fcc struc-

tures is twice larger than the change in the pair interaction

energy induced by the stacking fault. The differences of the

embedding energies remain in a similar relation. However,

because of nonlinearity of the function F (ρ), double increase

in the electron density does not induce exactly double change

in the embedding energy. Therefore, the hcp-fcc structural en-

ergy difference is related to the stacking fault energy in the

following way:

∆Efcc→hcp ≈ 2(Eat
SF − Ecoh). (15)

This relationship is confirmed by the ab initio calculations

[16]. They also reveal another relation; this time between the

twin energy and the stacking fault energy:

γT ≈ 1

2
γSF . (16)

Like previously, the dependence results from the relation be-

tween the changes which the twin and the stacking fault in-

troduce into the surroundings of an atom of the fcc structure.

According to the assumption, the appropriate specifica-

tion of the potential should ensure the correct prediction of

the stacking fault energy:

γur
SF = γexp

SF . (17)

This quantity influences many processes of large deforma-

tions. As shown above, it determines the energies of forming

different defect types observed in fcc metals, especially in

grain boundaries and in heteroepitaxial structures obtained by

the physical vapor deposition [17]. The stacking fault energy

is introduced to the model instead of the quantity ∆Efcc→hcp

used by Voter.

2.4. Vacancy formation energy. The vacancy formation en-

ergy is the next feature which is assumed for the potential

specification. According to the Voter approach, the unrelaxed

energy Eur
f is used. It is compared with the appropriately

established experimental value. The energy cost of the vacan-

cy formation in the perfect crystal without relaxation is as

follows:

Eur
f = Evac − (N − 1)Ecoh. (18)

The quantity Evac constitutes the energy of atoms located in

the vacancy surroundings with the radius equal to the cut-

off distance rct. Describing the atom environment by means

of neighbor spheres, the following formula for the energy is

derived:

Evac =
IX

i=1

li

"
1

2

SX
s=1

(ls − δis)φ
sm

�É
ns

2
a0

�
+ F (ρvac

i )

#
,

(19)

where the values of the structural parameters: l and n are

given in Table 1 in [4], δis denotes the Kronecker delta while

I is the number of the neighbor spheres contained in the

vacancy surroundings. The quantity ρi constitutes the elec-

tron density at an atom of the sphere ith: ρi =
SP

s=1

(ls −

δis)f
sm

�É
ns

2
a0

�
. Owing to the specificity of the Voter po-

tential, the embedding energy F (ρi) is calculated from (2)

with a = avac
i . Like in (14), the quantity avac

i is obtained by

solving the equation:

SX
s=1

lsf
sm

 É
ns

2
avac

i

!
= ρvac

i . (20)

In order to determine the unrelaxed vacancy formation ener-

gy (18), the quantity Evac is compared with the energy of

the same set of atoms but in the perfect crystal; therefore

N =
IP

i=1

li.

2.5. Dimer properties. The final two parametrization con-

ditions require that the potential correctly describes the metal

dimer. According to them, the model of interatomic interac-

tions should predict the strength ED and the length RD of
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the dimer bond consistently with the spectroscopic data [18,

19]:

φsm(RD) + 2F (ρ(RD)) = Eexp
D , (21)

−Fat = φsm′(RD) + 2fsm′(RD)

·
"
Ecoh

� η

a0

�2

(aD − a0)e
−η

√
1−ǫ(aD−a0)/a0

−1

2

SX
s=1

É
ns

2
lsφ

sm′
�É

ns

2
aD

�#,"
SX

s=1

É
ns

2
lsf

sm′
�É

ns

2
aD

�#
= 0.

(22)

Relationship (22) constitutes the equilibrium condition. There-

fore, it allows determining the dimer bond length. The ob-

tained value should be equal to the experimental one: RD =
Rexp

D . In (22), aD is the lattice constant of the Cu crystal at

which the electron density in a lattice site is equal to the

electron density at the dimer atom:

SX
s=1

lsf
sm

 É
ns

2
aD

!
= fsm(RD). (23)

The embedding energy in condition (21) is calculated from

(2) with a = aD.

Conditions (5), (6), (11), (18) derived above in which de-

fined quantities take the experimental values can be applied

to specification of an arbitrary EAM model describing inter-

atomic interactions in fcc metals. The relationships have par-

ticularly simple forms due to using material symmetry and

the description of the atom environment by neighbor spheres.

Thanks to this, the proposed conditions reduce the computa-

tional cost of solving the optimization problem for the poten-

tial specification. The developed approach enables simplifica-

tion of the equations to determine the embedding energies,

since in the Voter model the function F (ρ) is defined implic-

itly by means of the UBER. The above-mentioned conditions

supplemented by two successive ones (21) and (22) concern-

ing the dimer properties constitute the relationships which

specify the considered potential.

3. Copper properties recreated

by different EAM models

The conditions derived in the previous section are applied to

the specification of the Voter potential. For this purpose, the

minimization of the following function is carried out:

g =
X

i

(vi − v
exp
i )2

(v
exp
i )2

, (24)

where vi, i = 1, . . . , 6 denote considered properties predicted

by the model and vexp
i constitute the appropriate experimental

data. Optimization problem (24) is solved by the Trust-Region

Method [20] implemented in Matlab package [21]. The mini-

mization is performed with different initial points which form

a representative set in the five dimensional space. As a re-

sult, the following parameters for the Voter model are ob-

tained: rct = 4.9456 Å, β = 4.1067 Å−1, DM = 0.5312 eV,

RM = 2.3834 Å and αM = 1.8816 Å−1. Additionally, the

shift parameter ǫ amounts to 0.0497384 eV.

The EAM functions for the model specified with the use

of the material symmetry are shown in Fig. 1. The descrip-

tion of small-strain processes provided by the s-b potential is

presented in Table 2. The equilibrium state is such as the ex-

perimentally identified one [22–25] while the Kelvin moduli

differ from the experimental values [26, 27] in the range of

3%. Therefore, the proposed model reproduces an arbitrary

process of small strains in good agreement with the experi-

ment. The distribution of errors in energy densities DΦ(ε) is

presented in Fig. 2. The arbitrary strain process ε(ε) is repre-

sented by the contributions aII and aIII. The participation of

the first elementary process aI is obtained from the relation-

ship: a2
I + a2

II + a2
III = 1. The distribution DΦ(ε) shows with

what errors the key processes of large strains are initiated:

the Bain and the trigonal paths. The first of them begins in

the second eigensubspace and the other in the third subspace.

Therefore, the errors DΦ are such as for λII and λIII that

is 2.5% and −2.6%, respectively. The different description

of small-strain processes is provided by the original Voter

potential. The model correctly identifies the equilibrium state

as well as the first and the third Kelvin moduli but the second

modulus deviates from the experimental value by over 9%.

Fig. 1. EAM functions for the s-b (solid line) and Voter (dashed

line) models: pair potential φ, electron density referred to the densi-

ty at an atom of copper crystal in the equilibrium ρ and embedding

energy F

Table 2

Descriptions of small-strain processes provided by the EAM models in

comparison with the experimental characterization: cohesive energy (Ecoh

in eV), lattice constant (a0 in Å), press (p in MPa), Kelvin moduli (λ in

GPa) and elastic constants (C in GPa). The experimental data at the

temperature 0K are given in the left column and at the room temperature in

the right column

s-b Voter Exp. Mishin

Ecoh −3.48 −3.54 −3.48a
−3.54b

−3.54

a0 3.603 3.615 3.603c 3.615d 3.615

p 10−6 10−5 0 9.0

λI 426.0 426.0 426.0e 414.9f 414.9

λII 52.6 56.1 51.3e 47.5f 47.3

λIII 159.4 162.0 163.6e 151.6f 152.4

C11 177.1 179.4 176.2e 170.0f 169.9

C12 124.5 123.3 124.9e 122.5f 122.6

C44 79.7 81.0 81.8e 75.8f 76.2
a Ref. [22], b Ref. [23], c Ref. [24],
d Ref. [25], e Ref. [26], f Ref. [27].
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As a result, the potential improperly reproduces the processes

which in a large part proceed in the second eigensubspace

(see Fig. 3). Therefore, the process initiating the Bain path is

burdened with 9.4% error. The trigonal path begins with the

error −1%.

Fig. 2. Error (DΦ) with which the s-b potential determines elas-

tic energy density as a function of participations of the elementary

processes (aII and aIII) in a small-strain process. The errors for the

processes initiating the Bain and the trigonal paths are marked by

the black points B(1, 0, 2.5%) and T
�
0, 1,−2.6%

�
, respectively

Fig. 3. Distribution of errors DΦ for the Voter potential. The errors

for the processes initiating the trigonal and the Bain paths are marked

by the black points B(1, 0, 9.4%) and T
�
0, 1,−1%

�
, respectively

Additionally, it is shown in what way the considered mod-

els reconstruct a process of uniaxial tension. The load is ap-

plied in an arbitrary direction relative to the cubic system of

copper. The errors with which the s-b and Voter models pre-

dict the density of the elastic energy stored in the analyzed

process are presented in a form of a surface in Fig. 4. The er-

ror function DΦ takes the extreme values at the tension along

one of cubic cell edges and when the load is applied perpen-

dicularly to one of the octahedral planes. In the first case, the

elastic energy is stored mainly in the second eigensubspace

while in the other one in the third eigensubspace. Therefore,

the errors remain close to the errors in the respective Kelvin

moduli.

a)

b)

Fig. 4. Surface of absolute value of error in density of elastic energy

stored during uniaxial tension in arbitrary direction: a) s-b model, b)

Voter model

The considered potentials are compared with the Mishin et

al. model [28]. It is one of more frequently used potentials for

copper. The model contains 23 parameters which were speci-

fied by means of the ab initio data. The potential reproduces

small-strain processes in accordance with the experiment. Al-

though, the equilibrium structure identified experimentally is

predicted at the pressure 9 MPa (see Table 2).

The characteristics of the planar defects provided by the

s-b model are shown in Table 3. They are compared with the

results obtained by means of the Voter and Mishin et al. poten-

tials as well as with the experimental data [29–33]. The planar

defects remain related to the hcp-fcc structural energy differ-

ence ∆Efcc→hcp. Therefore, the quantity also is captured in

Table 3. The proposed model predicts the energy ∆Efcc→hcp

consistently with the experimental datum. The obtained val-

ue determines the magnitudes of the stacking fault and twin
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energies according to the relations (15), (11) and (16). The

Voter potential provides comparable results. On the contrary,

the Mishin et al. model predicts higher values. It results from

the specification which is based on the ab initio data.

Table 3

Energies (γ in mJ/m2) of planar defects and structural energy difference

(∆Efcc→hcp in meV) predicted by the EAM potentials in comparison

with the experimental data; s: surface with the orientation (111), SF:

intrinsic stacking fault (ur: unrelaxed), T: twin

s-b Voter Exp. Mishin

γs(111) 1264 1232 1790a 1239

γur
SF

36.2 36.8 –

γSF 35.7 36.2 41.0b, 35–45c 44.4

γT 17.9 18.2 24d 22.2

∆Efcc→hcp 6.3 6.5 6.2e 7.6
a For orientation Ref. [29], b Ref. [30], c Ref. [31],
d Ref. [32], e Ref. [33].

The description of the vacancy formation and the charac-

terization of the dimer bond obtained with the use of the s-b

model as well as by the Voter and Mishin et al. potentials

are compared with the experimental results [18, 19, 34–37]

in Table 4 and Table 5, respectively.

Table 4

Energy (Ef ) and volume (Ωf ) of vacancy formation predicted by the s-b

model in comparison with the experimental data and the results obtained by

the Voter and Mishin et al. potentials

s-b Voter Exp. Mishin

Ef [eV] 1.291 1.258 1.19a, 1.28b, 1.29c 1.272

Ωf /Ωat 0.734 0.743 0.75d 0.701
a Ref. [34], b Ref. [35], c Ref. [36], d Ref. [37].

Table 5

Strength (ED in eV) and length (RD in Å) of the Cu dimer bond obtained

by the EAM potentials in comparison with the experimental data

s-b Voter Exp. Mishin

ED −2.056 −2.070 −2.08±0.02a, −2.05b
−1.93

RD 2.219 2.231 2.2197b 2.18
a Ref. [18], b Ref. [19].

A model which accurately reconstructs microstructure and

correctly predicts mechanical properties of copper in complex

materials should properly describe large deformations includ-

ing the formation of metastable phases. Volume expansion

is one of the key processes of large strains. Realizing it by

means of a considered potential, we obtain the simplest de-

scription of the loss of continuity in material. The proposed

potential reproduces the process of the volume deformation in

accordance with the ab initio data [28] (see Fig. 5). A similar

agreement is obtained in the case of the Voter and Mishin et

al. models.

The next essential process of large deformations is the

Bain path. During the process, the base of the cubic cell is

uniformly extended while, in the perpendicular direction con-

traction occurs. As a result, a tetragonal cell with the height c
and the base edge a arises. When c/a = 1/

√
2 the fcc struc-

ture turns into the body centered (bcc) one (see Fig. 6). In

the classical approach, the volume per atom is kept constant:

Ωat = a3
0/4 [38]. Therefore, the process is described by the

following Green-Lagrange strain tensor:

EB(e) = e

�
1 0 0

0 1 0

0 0 −2
e + 1

(2e + 1)2

�
, (25)

where the variable e is related to the ratio c/a = p: e =
0.5(1 − p2)/(p2 + 2).

Fig. 5. Dependence of relative crystal energy per atom E/Ecoh on

relative lattice constant a/a0 in the volume deformation process. For

comparison the ab initio data are included [28]

Fig. 6. Bcc structure (marked by thick solid lines) obtained at

c/a = 1/
√

2 along the Bain path

Along the Bain path, the volume of the tetragonal cell can

be allowed to relax. In this way, the actual energy difference

between the structures fcc and bcc ∆Efcc→bcc is obtained. In

the present work, it is noted that the classical Bain path can

be replaced by a simpler linear process which also connects

the fcc structure to the bcc one. For this purpose, the elements

of the tensor EB are approximated by the first-order Taylor

series:

EB.L(e) = e

�
1 0 0

0 1 0

0 0 −2

Ǒ
. (26)
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The introduced process proceeds consistently with the clas-

sical Bain path in the range of small strains. Additionally,

EB.L(e) belongs to the second eigensubspace of the ten-

sor C. This gives rise to the conclusion that a model repro-

duces the beginning of the Bain path with the same accuracy

as it predicts the second Kelvin modulus λII. If the error is

large the path undergoes a strong disturbance, which results

in an incorrect energy difference ∆Efcc→bcc.

The changes in the crystal energy per atom predicted

by the s-b potential along the three mentioned Bain paths

as well as the changes for different tetragonal deformations

are presented in Fig. 7. The results are compared with the

ones obtained by means of the Voter and Mishin et al. mod-

els as well as with the experimental/ ab initio data [33, 39,

40] (see Fig. 8). Additionally, the characterizations of aris-

ing metastable structures provided by the EAM models are

collated in Table 6.

Fig. 7. Crystal energy changes (E−Ecoh) predicted by the s-b mod-

el as a result of tetragonal deformations determined by ratio of the

cell edges (c/a) and volume per atom referred to the equilibrium

value (V/V0). Three Bain processes are identified by thick lines:

volume-relaxed (solid), volume-fixed (dashed) and linear (dotted)

Fig. 8. Crystal energy change along three Bain paths predicted by

the s-b and Voter models. For comparison, the experimental and

ab initio structural energy differences ∆Efcc→bcc and ∆Efcc→bct

(Table 6) are also shown

Table 6

Characterizations of the Cu metastable phases bcc, bct and sc obtained by

the EAM models in comparison with the experimental and ab initio data:

structural energy difference (∆E in meV), volume per atom referred to the

equilibrium value (V/V0)) and ratio of the tetragonal cell edges (c/a)

s-b Voter Exp./Ab initio Mishin

∆Efcc→bcc 42.5 46.3 41.7a, 36.8b, 34.0c 46.0

V/V0 1.01 1.01 1.00c 1.00

∆Efcc→bct 39.7 42.2 36.4b, 30.0c 45.0

c/a 0.63 0.62 0.66b 0.65c 0.66

V/V0 1.02 1.02 1.00c 1.00

∆Efcc→sc 417.4 417.0 446c, 464.8d 433

V/V0 1.17 1.18 1.17c 1.16
a Ref. [33], b Ref. [39], c Ref. [40], d Ref. [41].

In the range of small strains, the Voter model reproduces

the considered Bain processes with the error DΦ(εII) =
9.4%. Too fast increase in the energy results in the too high

transition energy ∆Efcc→bcc in comparison with the experi-

mental and ab initio values (see Fig. 8 and Table 6). A similar

effect is observed at the transformation of the fcc structure

into the body centered tetragonal (bct) one. The error in the

second Kelvin modulus DΦ(εII) for the proposed potential

is significantly lower therefore, the Bain processes are repro-

duced more correctly. The Mishin et al. model predicts the

high values of the energy differences on account of fitting to

the ab initio data.

The trigonal path is another deformation process which

connects metastable phases of fcc crystals. In the present pa-

per, this path is realized by means of a hexagonal elemen-

tary cell with the edges a =
1

2
[1 2 1]a0, b =

1

2
[1 1 2]a0

and c = [1 1 1]a0 in the cubic system (see Fig. 9). The

cell recreates the fcc lattice and additionally its orientation

is observed by the HRTEM in Cu epitaxial layers formed on

(0 0 0 1)α−Al2O3 substrates. Along the trigonal path, the cell

base is uniformly extended and the height compressed. When

c/a =
√

2/2 the simple cubic (sc) structure is formed. Sub-

sequently for c/a =
√

2/4, the body centered structure arises

(Fig. 9). The deformations along the trigonal path are such as

in the Bain process; although they are imposed on the different

cell. Therefore, both the path with the fixed volume and the

linear one are described by the same strain tensors EB(e) and

EB.L(e), but in the reference system of the hexagonal cell:

x̂H = [1−2 1]/
√

6, ŷH = [1 0−1]/
√

2 and ẑH = [1 1 1]/
√

3.

In the cubic system, the tensor EB.L takes the form:

ET.L(e) = e

�
0 −1 −1

−1 0 −1

−1 −1 0

Ǒ
. (27)

Thus, the trigonal path begins in the third eigensubspace of

the elasticity tensor. If the potential predicts the third Kelvin

modulus with some inaccuracy the committed error occurs in

successive stages of the trigonal process in the range of small

strains. This disturbance influences energy changes at large

deformations.
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Fig. 9. Trigonal deformation of the fcc structure resulting in the

simple cubic and body centered cubic structures

Fig. 10. Crystal energy change along three trigonal paths predicted

by the s-b and Voter models. For comparison, the experimental and

ab initio structural energy differences ∆Efcc→sc and ∆Efcc→bcc

(Table 6) are also shown

Both the proposed model and the Voter one predict λIII

inaccurately. The s-b potential determines the modulus with

the larger error (−2.6%). Therefore, along the trigonal path,

we obtain slower increase in the crystal energy per atom than

in the case of the Voter model (see Fig. 10). Despite this, the

fcc-sc structural energy difference is slightly closer to the ab

initio values [40, 41] than ∆Efcc→sc determined by the Vot-

er potential (see Table 6). The final result depends not only

on the path initiation but also on other factors including the

volume relaxation of the sc structure. The relaxation is de-

termined in large measure by repulsive interactions between

a central atom and its neighbors. In the Voter model, the re-

pulsion is larger on account of the form of the embedding

energy (see Fig. 1). Therefore, during the relaxation, there is

the larger increase in the volume and as a result the value of

the ∆Efcc→sc is slightly lower than that predicted by the s-b

potential. Summing up, the correctness of the Kelvin modulus

is one of the factors which condition accurate reconstruction

of the trigonal processes. Therefore, a small error in the prop-

erty has little influence on the obtained characterizations of

the metastable phases.

4. Conclusions

Material symmetry determines the elementary processes of

deformations. The present work shows that the errors in the

energy densities of these processes, that is in the Kelvin mod-

uli, determine the range of inaccuracies with which a model

reproduces small-strain processes. Such an estimation is possi-

ble because the errors in the Kelvin moduli constitute extrema

of the function which ascribes errors in energy densities to

different small-strain processes. The elementary processes ini-

tiate the key paths of large deformations. Therefore, the con-

siderable errors in the Kelvin moduli result in incorrect repro-

ducing the structural transformations: fcc-bcc, fcc-sc as well

as fcc-bct. The elastic constants do not have such properties

as the Kelvin moduli. As a result, despite small errors in these

constants, a model can reproduce certain small-strain process-

es with large inaccuracy. If the tetragonal or trigonal paths

undergo disturbances the fcc-bcc or fcc-sc structural trans-

formations are recreated incorrectly. Thus, the present work

identifies the relation which symmetry introduces between the

elastic properties of material and structural transformations.

Applying the description of the atom environment in terms

of neighbor spheres, the formula of the unrelaxed stacking

fault energy useful for an EAM model parametrization has

been obtained. The mentioned description also allows identi-

fying the symmetry-based relation between the fcc structure

with the stacking fault and the hcp one. As a result, the rela-

tionship between the unrelaxed stacking fault energy and hcp

structural energy is obtained. Summing up, material symme-

try indicates key properties for a model specification. Using

them, we obtain a potential which better describes processes

of small and large deformations.

The conclusion presented above has been confirmed by

the specification of the Voter model describing interatomic

interactions in copper. For the parametrization, the set of the

properties considered by Voter has been used but the Kelvin

moduli have been applied instead of the elastic constants. The

relationships for the specification of the model have been ex-

pressed in a particularly simple way due to application of the

symmetry relations. As a result, the potential which more ac-

curately reproduces small strain processes and the key paths

of large deformations has been obtained. Additionally, defect

formation as well as Cu dimer properties are predicted in a

good agreement with the experiments.
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