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NUMERICAL MESOSCOPIC ANALYSIS OF FRACTURE IN FINE-GRAINED
CONCRETE

Ł. SKARŻYŃSKI1, J. TEJCHMAN2

This paper presents numerical two-dimensional results for fine-grained concrete under quasi-static
three-point bending at meso-scale. Concrete was modelled as a random heterogeneous three-phase
material. The simulations for notched concrete beams were carried out with the standard finite
element method using an isotropic damage constitutive model enhanced by a characteristic length
of micro-structure by means of a non-local theory. The effect of the volume fraction, shape, size,
statistical distribution and stiffness of aggregate was analysed. Moreover, the effect of the bond
thickness, notch size and characteristic length of micro-structure on the material behaviour was
numerically investigated. The FE results were compared with own laboratory test results and other
meso-scale calculations for three-phase concrete elements.
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1. I

Fracture process is a fundamental phenomenon in concrete materials under mechani-
cal loading (B̌ and P [1], L and  M [2]). It is a major reason of
damage in concrete contributing to a significant degradation of the material strength.
Cracks are always preceded by the formation of narrow zones of intense deforma-
tion (micro-cracking zones) which act as a precursor to ultimate fracture and failure.
The width of localized zones is commonly not negligible to cross-section dimensions
of a concrete specimen and is large enough to cause significant energy release and
accompanying stress redistribution in the structure (B̌ and P [1]). Hence,
an understanding of the mechanism of the formation of localized zones (width and
spacing) is crucial to evaluate mobilized material strength close to the peak and in
the post-peak regime and related size effect, and thus to ensure safety to the civil
engineering structures. The mechanism of strain localization strongly depends upon
a heterogeneous structure of materials over many different scales, changing e.g. in
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concrete from the few nanometers (hydrated cement) to the millimetres (aggregate
particles). Therefore, to take strain localization into account, material composition
(micro-structure) has to be taken into account (B̌ and P [1], L and 

M [2], N et al. [3], S et al. [4], K and T [5], H [6]). At
the meso-scale, concrete can be considered as a composite material by distinguishing
3 important phases: cement matrix, aggregate and interfacial transition zones ITZs. In
particular, the presence of aggregate and ITZs is important since the volume fraction
of aggregate can be as high as 70-75% in concrete and ITZs are always the weakest
regions in concrete. The concrete behaviour at the meso-scale fully determines the
macroscopic non-linear behaviour. The advantage of meso-scale modelling is the fact
that it directly simulates micro-structure and can be used to comprehensively study
local phenomena at the micro-level such as the mechanism of the initiation, growth
and formation of localized zones and cracks (H [6], K and A A-R [7], S-
 et al. [8]). Through that the mesoscopic results allow for a better calibration of
continuum models enhanced by micro-structure and an optimization design of concrete
with enhanced strength and ductility. The disadvantages are: very high computational
cost, inability to model aggregate shape accurately and the difficulty to experimentally
measure the properties of ITZs. The concrete behaviour at the meso-scale can be
described with continuum and discrete models. In this study we used an enhanced
continuum approach. The intention of our 2D meso-mechanical continuum calcula-
tions is to investigate the effect of different parameters on the fracture behaviour of a
fine-grained notched concrete beam under tensile loading during quasi-static three-point
bending. Concrete was modelled as a random heterogeneous three-phase material. To
obtain mesh-objective FE results for concrete specimens with localized zones, a sim-
ple isotropic continuum constitutive damage model (M et al. [9], S̇́

and T [10]) enhanced by a characteristic length of micro-structure by means
of a non-local theory (P-C and B̌ [11], B̌ and J [12],
B́ et al. [13]) was used. The effect of meso-structural features such as volume
fraction, shape, size, statistical distribution, grading curve and stiffness of aggregate
was carefully analysed. In addition, the effect of the thickness of the bond between
cement matrix and aggregate, notch size in the beam and characteristic length of
micro-structure on the fracture behaviour was numerically investigated. The results of
our mesoscopic analyses were directly compared with corresponding laboratory test
results with notched concrete beams, where the width, length and shape of a localized
zone on the surface of notched concrete beams was determined with a Digital Image
Correlation (DIC) technique (S̇́ et al. [14]). In addition, our FE results were
also compared with recent meso-scale continuum computations performed by G

et al. [15], D and S [16], H et al. [17], H [6], K and A A-R [7] for
three-phase concrete elements under uniaxial tension. In the calculations by G

et al. [15], H et al. [17] and H [6], the same constitutive model was used as in our
study. In turn, K and A A-R [7] applied a coupled plasticity-damage model
without enhancements.
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The paper is a continuation of our earlier initial meso-scale calculations (S̇́

and T [10]) where the main attention was paid to a direct comparison be-
tween numerical results and experimental ones in 3 geometrically similar notched
beams under quasi-static bending of very fine and fine-grained concrete with respect
to load-displacement curves, width and shape of a localized zone and a related size
effect. The present analysis is more comprehensive at the meso-level and concerns the
smallest notched concrete beam only.

2. C   

A simple isotropic damage continuum model was used for describing the material
degradation with the aid of a single scalar damage parameter D, growing monotonically
from zero (undamaged material) to one (completely damaged material) (K

[18], S and J [19]). The relationship between the stress σi j and strain tensor εkl is

(2.1) σi j = (1 − D)Ce
i jklεkl,

where D denotes the scalar damage parameter growing monotonically from zero (un-
damaged material) to one (completely damaged material) and Ce

i jkl is the linear elastic
material stiffness matrix. The loading function of damage is as follows

(2.2) f (ε̃, κ) = ε̃ −max {κ, κ0} ,
where κ0 denotes the initial value of κ when damage begins. If the loading function
f is negative, damage does not develop. During monotonic loading, the parameter κ
grows (it coincides with ε̃) and during unloading and reloading it remains constant. A
Rankine failure type criterion was assumed to define the equivalent strain measure ε̃
(J and M [20])

(2.3) ε̃ =
max

{
σ

e f f
i

}

E
,

where E denotes the modulus of elasticity and σ
e f f
i are the principal values of the

effective stress tensor

(2.4) σ
e f f
i j = Ce

i jklεkl.

If all principal stresses are negative, the loading function f is negative and no damage
takes place.

To describe the evolution of the damage parameter D determining the shape of a
softening curve during tensile loading, the exponential law was used (P et al.
[21])

(2.5) D = 1 − κ0
κ

(
1 − α + αe−β(κ−κ0)

)
,
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where α and β are the material constants. The constitutive isotropic damage model
for concrete requires 5 material constants only (2 elastic and 3 plastic): E, ν, κ0, α
and β. The model is suitable for tensile failure (M et al. [9], S̇́ et
al. [14]) and mixed tensile-shear failure (B́ and T [22], S et al.
[23]) in quasi-brittle materials. Its disadvantages are that it cannot realistically describe
irreversible deformations, volume changes and shear failure (S and S [24]).

To capture strain localization in concrete, to obtain mesh-independent results and
finally to include a characteristic length of micro-structure lc (which determines the
width of a localized zone), an integral-type non-local theory was used in FE simula-
tions as a regularization technique (B̌ and J [12], B́ and T

[25]). Alternatively, a a characteristic length of micro-structure could be also introdu-
ced by means of a second-gradient theory (e.g. Wosatko et al. [26]). The equivalent
strain measure ε̃ was replaced by its non-local value ε̄ (P-C and B̌

[11]) to evaluate the loading function (Eq.2) and to calculate the damage threshold
parameter κ

(2.6) ε̄ =

∫
V ω (‖x − ξ‖) ε̃ (ξ) dξ∫

V ω (‖x − ξ‖) dξ ,

where V – the body volume, x – the coordinates of the considered (actual) point, ξ –
the coordinates of surrounding points and ω – the weighting function. As a weighting
function ω, the Gauss distribution function was used

(2.7) ω (r) =
1

lc
√
π

e−
(

r
lc

)2
,

where the parameter r is a distance between two material points. The averaging in Eq.7
is restricted to a small representative area around each material point (the influence of
points at the distance of r =3× lc is only 0.01%). To obtain fully mesh-objective FE
results, the maximum size of finite elements should be equal to (2-3)× lc (B and
T [25]) A characteristic length is usually related to material micro-structure and
is determined with an inverse identification process of experimental data (L B̌

et al. [27], S̇́ et al. [14]). The FE calculations were carried out using a
large-displacement analysis. The non-local averaging was performed in the current
configuration. A non-local approach was applied during softening.

Due to the fact that the measured width of a localized zone was not clearly depen-
dent upon the concrete mix (S̇́ et al. [14]), in the first step the mesoscopic
characteristic length lmc was simply imposed such that the numerical results agreed with
the experimental observations (lmc =1.5 mm). In our future numerical investigations, it
will be related to concrete microstructure (aggregate size or aggregate spacing).
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3. I    FE 

The simplified two-dimensional mesoscopic FE simulations were performed with a
small-size notched free-supported beam made from fine-grained concrete (80×320×40
mm3) subjected to quasi-static three-point bending (Fig. 1). The same concrete beam
was experimentally investigated by L B̌ et al. [27]) and by S̇́ et al.
[14] in size effect tests. The beam was subjected to a vertical displacement at the
top mid-point at a very slow rate. Concrete at the meso-scale was considered as a
three-phase material encompassing cement matrix, aggregate and interfacial transition
zones (ITZs) between cement matrix and aggregate. Four different fine-grained concrete
mixes were numerically analysed with the mean aggregate diameter d50 =2 mm, d50 =4
mm, d50 =4 mm and d50 =0.5 mm, respectively (Fig. 2). To reduce the calculation
time, the size of the smallest inclusions had to be limited (Fig. 2). Thus, the final
aggregate size varied between the minimum value dmin =2 mm and maximum value
dmax =8 mm (aggregate size distribution curve ‘a’ of Fig. 2), dmin =2 mm and dmax =10
mm (aggregate size distribution curve ‘b’ of Fig. 2), dmin =2 mm and dmax =6 mm
(aggregate size distribution curve ‘c’ of Fig. 2) and dmin =0.5 mm and dmax =3 mm
(aggregate size distribution curve ‘d’ of Fig. 2). The aggregate was generated according
to the method given by E and K̈ [28]. The aggregate was randomly placed
starting with the largest ones and preserving a certain mutual distance ( M et al.
[29])

(3.1) Dp > 1.1
D1 + D2

2
,

where Dp is the distance between two neighbouring particle centres and D1,D2 are the
diameters of two particles, respectively. The aggregate volume fraction was ρ =30%,
ρ =45% or ρ =60%.

The calculations were carried out with one set of the material constants E, ν, κ0, α, β
and lmc given in Tab. 1, which were prescribed to finite elements corresponding to a
specified concrete phase. These material constants were determined with the aid of
comparative FE analyses of both the load-deflection curves and width of a localized
zone above the notch with corresponding laboratory experiments (L B̌ et al.
[28] and S̇́ et al. [14]) which were carried out with 3 geometrically similar
notched beams using fine-grained concrete (dmax =8.0 mm,d50 =2.0 mm corresponding
to the curve ‘a′ of Fig. 2) and very fine-grained concrete (dmax =3.0 mm,d50 =0.5 mm
corresponding to the curve ‘d’ of Fig. 2) (Figs. 3 and 4) (S̇́ and T

[10]). The modulus of elasticity E and crack initiation strain κ0 were solely changed in
3 phases (the remaining constants were the same: υ =0.2, α =0.95, β =200 and lc =1.5
mm). In turn, the macroscopic calculations for a homogeneous concrete material were
carried out with the following material constants: E =38.5 GPa, υ =0.2, κ0 =1.3×10−4,
α =0.95, β =400 and lc =2 mm (S̇́ and T [10]). In general, the
material constants should be determined with laboratory tensile tests for each phase
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Fig. 1. Geometry of small-size notched concrete beam with thickness of 40 mm subjected to quasi-static
three-point bending used in tests by Le Bellěgo et al. [26] and Skarżyński et al. [14] (P – vertical force,

D =80 mm – beam height).

Fig. 2. Aggregate size distribution curves assumed for FE calculations (note that small aggregates were
cut off to reduce the computation time).
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(that is certainly possible for aggregate and cement matrix but not feasible for ITZs).
Since the material constants for aggregate and cement matrix were not separately
determined with laboratory experiments, other relationships between material constants
E and κ0 were also possible to obtain a satisfactory agreement between experiments
and FE analyses.

Table 1
Material parameters assumed for FE calculations of concrete notched beams under bending at

meso-scale (Skarżyński and Tejchman [10]).

Parameters Aggregate Cement matrix ITZ

Modulus of elasticity E [GPa] 40 35 30

Poisson’s ratio υ[-] 0.2 0.2 0.2

Crack initiation strain κ0 [-] – 1 x 10−4 7 x 10−4

Residual stress level α [-] – 0.95 0.95

Slope of softening β [-] – 200 200

Mesoscopic characteristic length lmc [mm] – 1.5 1.5

Fig. 3. Calculated nominal strength 1.5Pl/(bD2) versus normalised beam deflection u/D(P – vertical
force, u– beam deflection, D- beam height, b – beam width, l - beam span): A) FE-results,

B) experiments by Le Bellěgo et al. [26]: 1) small-size beam 80×320×40 mm3, 2) medium-size beam
160×640×40 mm3, 3) large-size beam 320×1280×40 mm3 (three-phase random heterogeneous
fine-grained concrete with characteristic length of micro-structure lmc =1.5 mm) (Skarżyński and

Tejchman [14]).



338 Ł. S̇́, J. T

Fig. 4. Formation of localized zone with mean width of wc =3.5-4.0 mm directly above notch in 3
different experiments with small-size notched beam 80×320×40 mm3 using DIC (vertical and horizontal

axes denote coordinates in [mm] and colour scales strain intensity) (Skarżyński et al. [14]).
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The ITZ was assumed to be the weakest component where damage was always
initiated (L and  M [2], K and T [5]). The width of ITZs
was assumed to be equal to tb =0-0.75 mm. The FE-meshes included up to 560’000
triangular elements were used. The size of finite elements was small enough to obtain
objective results: sa =0.5 mm (aggregate), scm =0.1-0.2 mm (cement matrix) and
sITZ =0.1 mm (ITZ). The calculation time was about 2-5 days using PC with CPU
Q6600 2×2.4 GHz and 4 GB RAM.

Typical experimental force-deflection curves with notched beams of fine-grained
concrete obtained in experiments by L B̌ et al. [27] and in mesoscopic FE
analyses by S̇́ and T [10] are presented in Fig. 3. A satisfactory agre-
ement between experimental and numerical results was obtained (note that numerical
results depend on the stochastic distribution of aggregate). The maximum experimen-
tal and numerical vertical force occurred at the beam deflection of u =0.02-0.04 mm.
In turn, Fig. 4 shows the formation of a localized zone on one side of the surface
of a fine-grained small-size concrete beam above the notch from laboratory tests by
S̇́ et al. [14] using a Digital Image Correlation (DIC) technique, which is an
optical way to visualize surface displacements by successive post-processing of digital
images taken at a constant time increment from a professional digital camera (based
on displacements, strains can be calculated). A localized zone occurred always before
the peak on the force-deflection diagram and was strongly curved. In some cases, it
branched. The measured width of a localized zone above the notch increased during
deformation due to concrete dilatancy (Fig. 5A) up to wc =3.5-4.0 mm (≤ dmax) in the
range of the deflection u =0.01-0.04 mm until a macro-crack was created. The maxi-
mum height of a localized zone above the notch was about hc =50-55 mm at u =0.04
mm (Fig. 5B). The width of a localized zone did not depend upon the concrete mix
type and beam size (S̇́ et al. [14]).

The beam was modelled as a partially homogeneous and partially heterogeneous
with a meso-section in the neighbourhood of the notch to reduce the computation time
(Fig. 6). Based on earlier FE calculations, the minimum width of the heterogeneous
region bms = D near the notch should be equal to beam height Din order to obtain
similar results as in the entirely heterogeneous beam (S̇́ and T [10]).
The calculated width of a localized zone above the notch was determined at the beam
deflection of u =0.15 mm based on the non-local softening strain measure ε (Eq. 6).
As the cut-off value εmin =0.025 was always assumed at the maximum mid-point value
of εmax =0.08-0.13.

Our combined macro-mesoscopic FE simulations are similar to a two-scale appro-
ach using a Coupled Volume Method, where the size of a macro-element equals the
size of a meso-call (to avoid the assumption of any size of the representative volume
element, G et al. [30]). However, our simulations are faster because there is no
need to continuously move between 2 calculation levels (the effect of an insignificant
number of finite elements in a homogeneous beam region on the computation time is
practically negligible).
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Fig. 5. Evolution of width wc (A) and height hc (B) of localized zone with deflection u directly above
notch in experiments with small-size notched beam 80×320×40 mm3 of fine-grained concrete using

DIC: a) aggregate dmin =2 mm and dmax =8 mm, b) aggregate dmin =0.25 mm and dmax =3 mm
(× – maximum vertical force, • – formation of macro-crack).
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Fig. 6. FE mesh: three-phase heterogeneous concrete in notch neighbourhood with round shaped
aggregate, cement matrix and interfacial transition zones ITZ and one-phase homogeneous concrete in

remaining region.

4. M FE 

Below the numerical 2D effect of different parameters such as the aggregate distribu-
tion, aggregate volume, aggregate shape, aggregate stiffness, bond thickness, notch size
and characteristic length on the material behaviour (load-deflection curve and strain
localization) is described. The parameters were varied independently. Three different
stochastic realizations were usually performed for the same case.

4.1. E    

The effect of a random distribution of round-shaped aggregate particles in the concrete
beam on the force-deflection diagram and width of a localized zone is shown in Figs.
7 and 8. The aggregate volume was ρ =45% using two aggregate size distribution
curves ‘a’ (dmin =2 mm, dmax =8 mm) and ‘d’ (dmin =0.25 mm, dmax =3 mm) of Fig.
2, respectively. The ITZ thickness was tb =0.25 mm.

All stochastic force-deflection curves are obviously the same in the almost entire
elastic regime. However, they are significantly different at and after the peak (Fig. 7)
due to a localized zone propagating between aggregate distributed at random, which
is always non-symmetric and curved (Fig. 8). The difference in the strength is about
10-20%. The calculated width of a localized zone is approximately wc =4.5 mm=3×
lc =9×scm independently of dmax or dmin (as in our tests, S̇́ et al. [14]). The
calculated localized zone is created at about u/D =0.0003 (u =0.024 mm) and its width
increases during the deformation process.
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Fig. 7. Calculated force-deflection curves for fine-grained concrete beam (lmc =1.5 mm, ρ =45%,
tb =0.25 mm): A) with aggregate size distribution curve ‘a’ of Fig. 2 (dmin =2 mm and dmax =8 mm) and

B) with aggregate size distribution curve ‘d’ of Fig. 2 (dmin =0.25 mm and dmax =3 mm) for three
random distributions of circular aggregates (curves ‘a’, ‘b’ and ‘c’).
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Fig. 8. Calculated localized zone in fine-grained concrete beam in notch region based on distribution of
non-local strain measure corresponding to load-deflection curves ‘a’, ‘b’ and ‘c’ of Figs.7A and 7B

(lmc =1.5 mm, ρ =45%, tb =0.25 mm)

A similar strong stochastic effect was also observed in FE calculations by G

et al. [17] and H [6]. Surprisingly, a negligible stochastic effect was found in FE
simulations by K and A A-R [7].

4.2. E       

To model the effect of the aggregate shape, four different grain shapes were taken into
account, namely: circular, octagonal, irregular (angular) and rhomboidal (Fig. 9) ke-
eping always the volume fraction and centres of grains constant (lmc =1.5 mm, ρ =60%,
tb =0.25 mm).

The aggregate shape can have a different influence on the beam ultimate strength
depending upon the aggregate size distribution (Figs. 10 and 11). For the aggregate size
distribution of Fig. 2a, the ultimate beam strength is the highest for rhomboidal-shaped
particles and the lowest for octagonal-shaped particles (Fig. 9A, Figs. 11B and 11D).
This difference equals even 30%. In the case of the aggregate size distribution curve of
Fig. 2b, the ultimate beam strength is similar for all assumed particle shapes (Fig. 10B).
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Fig. 9. Aggregate shape assumed in calculations: a) circular, b) octagonal, c) irregular (angular),
d) rhomboidal.

For the aggregate size distribution of Fig. 2c, angular-shaped inclusions have the lower
tensile strength than circular grains (Fig. 10C). From simulations follows that the mean
tensile strength is usually higher with the larger mean grain size and the narrower grain
range (Figs. 10A, 10B, 10C and 11).

The width of a localized zone equals approximately wc =3 mm for ρ =60% and
is not influenced by the aggregate shape, aggregate distribution, mean and maximum
grain size (Fig. 12). In turn, the form of a localized zone is strongly affected by the
aggregate shape contributing thus to the different strength. The calculated width of a
localized zone is in good agreement with our experiments with fine-grained concrete
(Figs. 4 and 5A). Our outcome is in contrast to statements by P-C and
B̌ [11], and B̌ and O [31] wherein the width of a localized zone in usual
concrete was estimated to be dependent upon dmax. It is also in contrast to experimental
results by M and N [32] which showed that the width of a localized zone
in usual concrete increased with increasing aggregate size. The differences between
our and the experimental results (B̌ and O [31], M and N [32]) lie
probably in a different concrete mix, specimen size and loading type. For instance,
in our other tests with large reinforced concrete beams 6.0 m long without shear
reinforcement under bending, the width of a localized zone in usual concrete was
higher, i.e. 15 mm, indicating that the macroscopic characteristic length was lc =5 mm
(S and T [33]). This problem merits further experimental and numerical
investigations.
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Fig. 10. Calculated force-deflection curves for different aggregate shape of Fig. 9: a) circular,
b) octagonal, c) irregular (angular), d) rhomboidal (fine-grained concrete beam 80×320 mm2,

lc =1.5 mm, ρ =60%, tb =0.25 mm) and different aggregate size distributions of Fig. 2: A) d50 =2 mm
and dmax =8 mm (curve ‘a’), B) d50 =4 mm and dmax =10 mm (curve ‘b’), C) d50 =4 mm and

dmax =6 mm (curve ‘c’).

Fig. 11. Calculated force-deflection curves for different aggregate shape of Fig. 9: A) circular,
B) octagonal, C) irregular (angular), D) rhomboidal (fine-grained concrete beam 80×320 mm2,

lc =1.5 mm, ρ =60%, tb =0.25 mm) and different aggregate size distribution of Fig. 2: a) d50 =2 mm
and dmax =8 mm (curve ‘a’), b) d50 =4 mm and dmax =10 mm (curve ‘b’), c) d50 =4 mm and

dmax =6 mm (curve ‘c’).
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Fig. 12. Calculated localized zone based on distribution of non-local strain measure in fine-grained
concrete beam in notch region corresponding to load-deflection curves ‘a’, ‘b’, ‘c’ and ‘d’ of Figs. 10A,

10B and 10C (lc =1.5 mm, ρ =60%, tb =0.25 mm).

According to K and A A-R [7] the aggregate shape has a weak effect on
the ultimate strength of concrete and on the strain to damage-onset, but significantly
affects the crack initiation, propagation and distribution. The stress concentrations at
sharp edges of polygonal particles cause that the ultimate tensile strength and strain at
the damage onset are the highest for circular grains model. Similar conclusions were
derived by H et al. [19] and H [6].

4.3. E     

Circular grains with the volume of ρ =30%, ρ =45% and ρ =60% were used (lmc =1.5 mm,
tb =0.25 mm), Fig. 13. Figures 14 and 15 demonstrate the effect of the aggregate vo-
lume in fine-grained concrete beam with the aggregate size distributions ‘a’ of Fig. 2
(dmin =2 mm, dmax =8 mm) and ‘d’ of Fig. 2 (dmin =0.25 mm, dmax =3 mm).

In our FE simulations, the Young modulus and ultimate beam strength increase
with increasing aggregate density in the range of 30%-60% (Fig. 14). This increase
certainly depends on material parameters assumed for separated concrete phases, in
particular for ITZs being always the weakest parts in concrete.
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Fig. 13. Concrete beams with different volume fraction of aggregate ρ in region close to notch:
a) ρ =30%, b) ρ =45% and c) ρ =60% using grain size distribution ‘a’ of Fig. 2.

The width and shape of a localized zone are influenced by the aggregate volume;
a localized zone becomes narrower with increasing aggregate volume: wc =6 mm at
ρ =30%, wc =4.5 mm at ρ =45% and wc =3 mm at ρ =60% (Fig. 15).

According to K and A A-R [7] the Young modulus linearly increases
with increasing aggregate volume, and the tensile strength decreases with increasing
aggregate density up to ρ =40% and increases next from ρ =40% up to ρ =60%. The
strain at the damage linearly decreases with increasing aggregate volume. H et al.
[17] and H [6] concluded that concrete with a higher packing density of aggregate
up to 50% has a decreasing tensile strength (due to a higher number of very weak
interfacial transitional zones around aggregate). It seems that the property of ITZ
(stiffness, strength and width) is essential for the global strength versus ρ.

4.4. E  ITZ 

The interfacial transition zone (ITZ) is a special region of the cement paste around
particles, which is perturbed by their presence. Its origin lies in the packing of the
cement grains against the much larger aggregate which leads to a local increase in
porosity (micro-voids) and a presence of smaller cement particles. A paste with lower
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Fig. 14. Calculated load-deflection curves for different volume fractions ρ of circular aggregate:
a) ρ =30%, b) ρ =45% and c) ρ =60% (concrete beam 80×320 mm2, lc =1.5 mm, tb =0.25 mm,

A) aggregate size distribution ‘a’ of Fig. 2 (d50 =2 mm,dmax =8 mm), B) aggregate size distribution ‘d’
of Fig. 2 (d50 =0.5 mm,dmax =3 mm).
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Fig. 15. Calculated localized zone based on distribution of non-local strain measure in fine-grained
concrete beam 80×320 mm2 (lc =1.5 mm, tb =0.25 mm) corresponding to load-deflection curves ‘a′, ’b’

and ’c’ of Figs. 14A and 14B

w/c (higher packing density) or made with finer cement particles leads to ITZ of smaller
extent. This layer is highly heterogeneous and damaged and thus critical for the concrete
behaviour (S et al. [34], M et al. [35]). An accurate understanding of the
properties and behaviour of ITZ is one of the most important issues in the meso-scale
analysis because damage is initiated at the weakest region and ITZ is just this weakest
link in concrete. We assumed that ITZs have the reduced stiffness and strength as
compared to the cement matrix (Tabl. 1).

Figures 16 and 17 demonstrate the effect of the ITZ thickness in a fine-grained
concrete beam of Fig. 1 for circular grains with the aggregate size distribution ‘a’ of
Fig. 2 (dmin =2 mm, dmax =8 mm) assuming the aggregate volume fraction ρ =45%
and ρ =60% (lmc =1.5 mm). Since there is very limited data on the thickness of ITZ,
the thickness tb in our study was assumed to be 0 mm, 0.05 mm (H et al. [19], H

[6]), 0.25 mm (G et al. [17]) and 0.75 mm.
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Fig. 16. Numerical effect of different ITZ thickness tb in FE calculations on load-deflection curve:
a) tb =0 mm, b) tb =0.05 mm, c) tb =0.25 mm and d) tb =0.75 mm, A) ρ =45%, B) ρ =60%

(fine-grained concrete beam 80×320 mm2, lc =1.5 mm, circular grains with size distribution ‘a’ of
Fig. 2 (d50 =2 mm,dmax =8 mm).
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The results show that the thickness and strength of ITZs strongly affect both the
load-displacement response and shape of localized zone. Since ITZ is the weakest
phase, the ultimate beam strength decreases with increasing bond thickness (Fig. 16).
This result is in agreement with those by H et al. [19], H [6] and K and A A-R

[7]. However, the residual strength rather increases with increasing bond thickness as
in calculations by K and A A-R [7]. The width of a localized zone is wc =4.5
mm (ρ =45%) and wc =3 mm (ρ =60%) and is not affected by the ITZ size tb (Fig. 17).

Fig. 17. Numerical effect of different bond thickness tbin FE calculations on distribution of non-local
strain measure close to beam notch corresponding to load-deflection curves ‘a’, ‘b’, ‘c’ and ‘d’ of

Figs. 16A and 16B.
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4.5. E   

Figures 18 and 19 demonstrate the effect of the notch size on the load-deflection dia-
gram and strain localization in a fine-grained concrete beam with a random distribution
of aggregate ‘a’ of Fig. 2 (dmin =2 mm to dmax =8 mm) using circular aggregate volume
ρ =30% and ρ =60% (lmc =1.5 mm, tb =0.25 mm). The notch size was 0×0 mm2, 3×3
mm2 and 6×3 mm2 (width×height), respectively. The beam without notch was modelled
as entirely heterogeneous to be sure that a localized zone occurs in a meso-region.

Fig. 18. Numerical effect of notch size on force-deflection curve for two different aggregate densities:
a) 0×0 mm2, b) 3×3 mm2 and c) 6×3 mm2, A) ρ =30%, B) ρ =60% (fine-grained concrete beam

80×320 mm2, lc =1.5 mm, circular aggregate distribution ‘a’ of Fig. 2 with d50 =2 mm and
dmax =8 mm).
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The ultimate beam strength is higher with decreasing notch size (Fig. 18). The
notch size has no influence on the width of a localized zone (wc =6 mm at ρ =30%
and wc =3 mm at ρ =60% (Fig. 19).

Fig. 19. Numerical effect of notch size on distribution of non-local strain measure close to beam notch
corresponding to load-deflection curves ‘a’, ‘b’ and ‘c’ of Figs.18A and 18B.

4.6. E   

Figure 20 shows the effect of the aggregate stiffness in a small size beam (80×320
mm2, dmin =2 mm and dmax =10 mm, ρ =60%, tb =0.25 mm, lmc =1.5 mm). The
calculations were carried out with weak aggregate (which had the same properties as
ITZ of Tab. 1).

For the weak aggregate, a localized zone can propagate through weak grains. The
vertical force is obviously smaller and the width of a localized zone is higher as
compared to the results with the strong aggregate (strong aggregate – wc =3.3 mm,
weak aggregate – wc =5.8 mm).
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Fig. 20. Effect of aggregate stiffness on force-deflection curve and distribution of non-local strain
measure close to beam notch: a) strong circular aggregate, b) weak circular aggregate (fine-grained

concrete beam 80×320 mm2, lc =1.5 mm, circular aggregate distribution ‘c’ of Fig. 2 with d50 =4 mm
and dmax =10 mm, ρ =60%).
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4.7. E     -

The effect of a characteristic length of micro-structure on the load-deflection diagram
and strain localization is shown in Figs. 21 and 22 using the same stochastic distribution
of circular aggregate (lc changed between 0.5 mm and 5 mm).

Fig. 21. Calculated load-deflection curves for different characteristic lengths lc: a) lc =0.5 mm,
b) lc =1.5 mm, c) lc =2.5 mm and d) lc =5 mm (concrete beam 80×320 mm2, ITZ thickness

tb =0.25 mm), A) volume fraction of circular aggregate ρ =30% (aggregate distribution ‘d’ of Fig. 2
with d50 =0.5 mm and dmax =3 mm), B) volume fraction of circular aggregate ρ =45% (aggregate

distribution ‘a’ of Fig. 2 with d50 =2 mm and dmax =8 mm), C) volume fraction of angular aggregate
ρ =60% (aggregate distribution ‘b’ of Fig. 2 with d50 =4 mm and dmax =10 mm).

With increasing characteristic length, both beam strength and width of a localized
zone strongly increase since the material softening decreases and material becomes mo-
re ductile. A pronounced deterministic size effect occurs. A localized zone propagating
in a cement matrix between aggregate grains is strongly curved at lmc =0.5-2.5 mm, whe-
re as it becomes more straight at lmc >2.5 mm. It is about: wc =2.9-17.6 mm=(3.5-5.9)×
lmc =(5.8-35.2)×dmin at ρ =30%, wc =2.5-16.7 mm=(3.0-5.0)× lmc =(1.25-8.35)×dmin at
ρ =45% and wc =2.4-13.9 mm=(2.3-4.7)× lmc =(0.6-3.47)×dmin at ρ =60% (Tab. 2). It
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Fig. 22. Calculated localized zone based on distribution of non-local strain measure for different
characteristic lengths lc: a) lc =0.5 mm, b) lc =1.5 mm, c) lc =2.5 mm and d) lc =5 mm (concrete beam
80×320 mm2, bond thickness tb =0.25 mm), A) volume fraction of circular aggregate ρ =30% (aggregate
distribution ‘d’ of Fig. 2 with d50 =0.5 mm and dmax =3 mm), B) volume fraction of circular aggregate
ρ =45% (aggregate distribution ‘a’ of Fig. 2 with d50 =2 mm and dmax =8 mm), C) volume fraction of
angular aggregate ρ =60% (aggregate distribution ‘b’ of Fig. 2 with d50 =4 mm and dmax =10 mm).

always decreases with increasing ρ (Tab. 2). A characteristic length of micro-structure
is not uniquely connected to the aggregate size.

Table 2
Calculated width of localized zone with different characteristic length lc with volume fraction of

aggregate ρ.

Characteristic length lc
Width of localized zone wc [mm]

for different volume fraction of aggregate ρ

ρ =30% ρ =45% ρ =60%

0.5 mm 2.9 5.9×lc 2.5 5.0×lc 2.4 4.7×lc
1.5 mm 6.2 4.1×lc 4.5 3.0×lc 3.5 2.3×lc
2.5 mm 9.3 3.7×lc 8.7 3.5×lc 6.9 2.7×lc
5.0 mm 17.6 3.5×lc 16.7 3.4×lc 13.9 2.8×lc
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Fig. 23. The calculated evolution of width (A) wc and height hc (B) of localized zone versus beam
deflection u: a) aggregate distribution ‘a’ of Fig. 2 with d50 =2 mm and dmax =8 mm, irregular
aggregate, ρ =60%, lc =1.5 mm, b) aggregate distribution ‘b’ of Fig. 2 with d50 =4 mm and

dmax =10 mm, octagonal aggregate, ρ =60%, lc =1.5 mm, c) aggregate distribution ‘c’ of Fig. 2 with
d50 =4 mm and dmax =6 mm, circular aggregate, ρ =60%, lc =1.5 mm, d) aggregate distribution ‘a’ of
Fig. 2 with d50 =2 mm and dmax =8 mm, circular aggregate, ρ =60%, beam without notch, lc =1.5 mm

(• – maximum vertical force).

Finally, Fig. 23 shows the evolution of the width and height of the localized zone
from FE calculations. The FE results of Fig. 23 are similar as in the experiments
(Fig. 5). The calculated maximum width is 3.25 mm (3.5-4.0 mm in tests) and height
55 mm (50-55 mm in tests) at u =0.2 mm. The calculated localized zone strongly forms
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(linearly) before and after the maximum vertical force in the range of u =0.025-0.05 mm
(width) and of u =0.025-0.1 mm (length). The mean propagation rate of the calculated
localized zone versus the beam deflection is similar as in experiments, although is
more uniform (Fig. 24). In the experiments, a macro-crack occurred at about u =0.04
mm, which cannot be captured by our model. In order to numerically describe a
macro-crack, a discontinuous approach has to be used (e.g. XFEM or cohesive crack
model [37], [38], [39]).

Fig. 24. Comparison between measured (a) and calculated (b) evolution of width of localized zone wc

versus beam deflection u (maximum vertical force occurs at deflection u =0.035 mm)

5. C

A meso-scale numerical model was used to analyse the behaviour of fine-grained con-
crete beams. The FE-calculations revealed that an isotropic damage continuum model
enhanced by a characteristic length of micro-structure is able to properly capture the
evolution of strain localization in a concrete beam under tensile loading, where concrete
was treated as a heterogeneous three-phase material composed of aggregate, cement
matrix and ITZs. The model provides valuable insights into the material behaviour at
the meso-scale strongly affecting its overall mechanical behaviour at the macro-scale.

The following conclusions can be drawn from two-dimensional calculations with
notched fine-grained concrete beams under quasi-static three-point bending (by neglec-
ting smaller aggregate):
• material micro-structure at meso-scale has to be taken into account in calculations
of strain localization to obtain a proper shape of a propagating localized zone,
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• the calculated strength, width and shape of a localized zone are in a satisfactory agre-
ement with our size effect experiments when the characteristic length of micro-structure
is 1.5 mm,
• tensile damage is initiated first in the ITZ region. This region is found to have a
significant impact on the fracture behaviour and strength of concrete,
• the load-displacement evolutions strongly depend on material parameters assumed for
separated concrete phases and a statistical distribution of aggregate. The ultimate beam
strength certainly increases with increasing characteristic length, aggregate stiffness,
mean aggregate size and decreasing ITZ thickness. It may increase with increasing
volume fraction of aggregate. It is also dependent upon aggregate shape,
• the width of a localized zone increases with increasing characteristic length and
decreasing aggregate volume. It may increase if it propagates through weak grains.
It is not affected by the aggregate size, aggregate shape, stochastic distribution, ITZ
thickness and notch size. The width of a calculated localized zone above the notch
changes from about 2×lmc (ρ =60%) up to 4×lmc (ρ =30%) at lc =1.5 mm. If lmc =5
mm, the width of a calculated localized zone above the notch changes from 2.8×lmc
(ρ =60%) up to 3.5×lmc (ρ =30%),
• the calculated increment rate of the width of a localized zone is similar as in expe-
riments,
• concrete softening is strongly influenced by the statistical distribution of aggregate,
characteristic length, volume fraction of aggregate, aggregate shape, aggregate stiffness
and ITZ thickness.

The mesoscopic modelling allows for a better understanding of the mechanism of
strain localization. However, it cannot be still used for engineering problems due to a
long computation time and too small knowledge on both properties of meso-phases in
concrete and a stochastic distribution of aggregate which are of a major importance.
A direct link between a characteristic length and material micro-structure remains
still open. To realistically describe the entire fracture process in concrete, a combined
continuous-discontinuous numerical approach has to be used [38], [39].
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