
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 62, No. 2, 2014

DOI: 10.2478/bpasts-2014-0039

VARIA

Determination of optimal current in the non-ideal one-phase system

with unsteady parameters
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Abstract. Some of parameters in electrical systems cannot be considered as constants. In particular, some electrical loads should be described

as unsteady because of physical reasons, e.g. arc and arc-resistance furnaces. One of the method to describe parameters of such loads is

description by fuzzy numbers. Moreover, this description enables to determine optimal current of the system with unsteady parameters by

an application of the optimisation technique called as fuzzy mathematical programming. The optimisation problem has been presented for

one-phase system with sinusoidal waveforms. The obtained solution (optimal current) can be determined as crisp one (real numbers) in

frequency domain in the numerical way. The determined optimal current has minimal RMS value in this case when the power constraints do

not have to be fulfilled strictly because of changes of system parameters. It means simultaneously the minimisation of power losses in the

system. This solution generalizes the classical optimisation solution obtained for the systems with constant parameters. In order to illustrate

the problem the appropriate example has been presented.
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1. Introduction

The description by means of fuzzy sets and fuzzy numbers

is still developed in electrical circuits, e.g. in control systems

for generators [1] and motors [2], as well in neuro-fuzzy net-

works e.g. for gas sensors [3]. In this paper the optimisation

and description of unsteady electrical parameters by means of

fuzzy numbers have been presented. This description makes

able to take into consideration the normal changes of parame-

ters in the electrical systems (parameters of the voltage source

with inner impedance) as well as changes of load parameters

caused by their physical properties. The arc and arc-resistance

furnaces can be considered as examples of loads with unsteady

parameters. Potential changes of electrical parameters can be

described by membership functions determined in measure-

ment processes. This description is the first step in order to

determine the optimal current in the considered one-phase

system. The optimal current as a solution to the optimisa-

tion problem is determined by application of mathematical

programming.

The description of electrical parameters by means of fuzzy

numbers has been presented by other authors in some earli-

er works. In the paper [4] in order to minimise power losses

the goal function as well as constraints have been formulated

as fuzzy sets and the solution has been determined as tak-

ing an optimal decision with the genetic algorithm technique.

In the paper [5] the description by means of fuzzy sets has

been adopted to solve the problem of optimal reactive power

flow and minimisation of power losses in an electrical sys-

tem taking into considerations their costs. The solution has

been determined as taking optimal decision i.e. the determina-

tion of intersection point with maximum value of membership

functions. In the paper [6] the description by means of fuzzy

sets has been adopted to solve the problem of optimal reactive

power flow and minimisation of power losses in electrical sys-

tem taking into considerations changes of active power in the

system during 24 hours. The solution of the problem is deter-

mined by operations on fuzzy numbers defined by L. Zadeh

[7]. As opposed to the aforementioned papers, in this paper

the potential changes of main electrical parameters are taken

into consideration and mathematical programming is appli-

cated in order to solve the problem. This approach taking into

account the shapes of all considered fuzzy numbers in fuzzy

constraint.

2. Formulation and solution of the problem

The considered one-phase system with sinusoidal waveforms

is presented in Fig. 1.

Fig. 1. The considered one-phase with source parameters described

as fuzzy numbers

In this system the source voltage as well as the inner im-

pedance of the source and the load impedance are understood

as fuzzy numbers. They represent potential changes of these

parameters in real situations. Taking into consideration that
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the fuzzy set A in a certain space X = {x} is defined as the

set of pairs:

A = {(µA(x), x)}, ∀x ∈ X, (1)

where

µA : X → [0, 1], µA(x) ∈ [0, 1] (2)

is a membership function, which assigns a membership de-

gree to each element x of the space X , the fuzzy number B̃
is considered as the fuzzy set in the real numbers set R, with

the continuous membership function [8]:

µB : R→ [0, 1], µB(x) ∈ [0, 1]. (3)

Taking also into consideration that the most often changes of

electrical parameters can be represented as the Gauss func-

tion, the RMS value of the source voltage

∣∣∣Ẽ
∣∣∣ as the fuzzy

number can be written in the following form:
∣∣∣Ẽ

∣∣∣ =
{(
µ|E|(|E|), |E|

)}
=

∑

|E|∈|eE|

µ|E|/|E|, (4)

where the sign
∑

has a set meaning, not arithmetic one. As

above mentioned for the Gauss function the graphical repre-

sentation of
∣∣∣Ẽ

∣∣∣ = 400 V supposing ±5% potential changes

has been presented in Fig. 2.

Fig. 2. The RMS value of the voltage source as the fuzzy number

with marked α-cuts

The presented description can be useful in order to obtain

the solution of the optimisation problem in fuzzy sense, i.e.

taking into considerations the membership functions of con-

straints. The solution of this problem is based on the frequency

domain. In order to present above mentioned fuzzy optimisa-

tion it is proper to describe fuzzy time functions of the voltage

source [9]. In the paper there are considered periodical fuzzy

time functions where the amplitudes (RMS values) of func-

tions are fuzzy numbers. In particular, the voltage source is

described as a fuzzy time function:

ẽ(t) =
√

2
∣∣∣Ẽ

∣∣∣ sin (ωt+ ψ) , (5)

where
∣∣∣Ẽ

∣∣∣ – the RMS value of the voltage source being not a

real (crisp) but the fuzzy number for considered harmonics.

The application of fuzzy numbers to time waveforms de-

scription makes possible to obtain fuzzy time functions of

the voltage source – Fig. 3. These time waveforms represent

potential changes of a voltage source. Similarly, the inner im-

pedance of the source can be described as a fuzzy number.

Changes of source voltage and inner impedance of the source

can respectively cause changes of power consumed by loads.

For this reason the optimisation in electrical circuits some-

times requires to fulfill constraints in a fuzzy sense.

Fig. 3. The ee(t) waveform

The optimisation problem is considered:

min J = min
i

|I|2 (6)

under the fuzzy constraint:

Re
{
ẼI∗ − IZ̃I∗

}
≈ P̃ , (7)

where Ẽ, Z̃ , P̃ – fuzzy numbers, and P̃ is the active pow-

er consumed by the load before optimisation, considered as

fuzzy number.

The constraint (7) can be considered as the active power

consumed from a non-ideal voltage source should be the same

before and after optimisation, and this constraint is the fuzzy

one so it means that this condition doesn’t have to be fulfilled

precisely. When the voltage of the source is described as:

Ẽ =
∣∣∣Ẽ

∣∣∣ ejψ; ψ = 0; (8)

and current of the source can be represented as follows:

I = Ia + jIb (9)

then the constraint (7) has the form:

ẼIa − R̃Z
(
I2
a + I2

b

)
≈ P̃ . (10)

In order to formulate and solve the problem the concept of

α-cuts is used, presented in (Fig. 2). For the following values

of membership function µ|E| the corresponding values of |E|
are determined with figurative signs:

• the symbol Eα=0, L means the lower limit of |E| for

µ|E| = α = 0;

• the symbol Eα=0, U means the upper limit of |E| for

µ|E| = α = 0;
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• the symbol Eα=0.5, L means the lower limit of |E| for

µ|E| = α = 0.5;

• the symbol Eα=0.5, U means the upper limit of |E| for

µ|E| = α = 0.5; etc.

Then the optimisation problem in fuzzy sense can be written

as:

min J = min
i

|I|2 = min
(
I2
a + I2

b

)
(11)

and fuzzy constraint (10) for fixed values of α-cuts has the

following form:

Eα=0, LIa −RZ, α=1, L

(
I2
a + I2

b

)
≥ Pα=0, L;

Eα=0.1, LIa −RZ, α=0.9, L

(
I2
a + I2

b

)
≥ Pα=0.1, L;

...

Eα=0.5, LIa −RZ, α=0.5, L

(
I2
a + I2

b

)
≥ Pα=0.5, L;

...

Eα=0.9, LIa −RZ, α=0.1, L

(
I2
a + I2

b

)
≥ Pα=0.9L;

Eα=1, LIa −RZ, α=0, L

(
I2
a + I2

b

)
≥ Pα=1L;

Eα=1, UIa −RZ, α=0, U

(
I2
a + I2

b

)
≤ Pα=1, U ;

Eα=0.9, UIa −RZ, α=0.1, U

(
I2
a + I2

b

)
≤ Pα=0.9, U ;

...

Eα=0.5, UIa −RZ, α=0.5, U

(
I2
a + I2

b

)
≤ Pα=0.5, U ;

...

Eα=0.1, UIa −RZ, α=0.9, U

(
I2
a + I2

b

)
≤ Pα=0.1, U ;

Eα=0, UIa −RZ, α=1, U

(
I2
a + I2

b

)
≤ Pα=0, U .

(12)

Generally fuzzy constraint (10) can be described as:

∀
α∈[0,1]

Eα, LIa −RZ, 1−α, L
(
I2
a + I2

b

)
≥ Pα,L;

∀
α∈[0,1]

Eα, UIa −RZ, 1−α, U
(
I2
a + I2

b

)
≤ Pα,U .

(13)

This technique is called as fuzzy mathematical program-

ming [8]. As the solution of the problem the optimal current

(active current) of the source voltage can be determined:

optI = optIa + joptIb (14)

by minimisation the Lagrange’s functional as follows:

L(Ia, Ib, λ) = I2
a + I2

b

+
1∑

α=0

λα, L
[
Eα, LIa −RZ, 1−α,L

(
I2
a + I2

b

)
− Pα,L

]

+

1∑

α=0

λα, U
[
Eα,UIa −RZ, 1−α,U

(
I2
a + I2

b

)
− Pα,U

]
.

(15)

The minimum of the Lagrange’s functional can be deter-

mined by means of Kuhn-Tucker conditions:

∂L(Ia, Ib, λ)

∂Ia
= 0,

∂L(Ia, Ib, λ)

∂Ib
= 0,

∂L(Ia, Ib, λ)

∂λ
≤ 0,

∀
α∈[0,1]

λα,L
∂L(Ia, Ib, λ)

∂λα,L
= 0,

∀
α∈[0,1]

λα, U
∂L(Ia, Ib, λ)

∂λα, U
= 0

(16)

and then the optimal current can be described as:

optIa =
1

2

1∑
α=0

λα, L · Eα,L +
1∑

α=0
λα, U · Eα,U

(
1 +

1∑
α=0

λα, L ·Rα, L +
1∑

α=0
λα, U ·Rα,U

) ,

opt Ib = 0.

(17)

Lagrange’s multipliers ∀
α∈[0,1]

λα, L, ∀
α∈[0,1]

λα,U should be

determined in the numerical way.

3. The example

It is considered the source voltage:

ẽ(t) =
√

2
∣∣∣Ẽ

∣∣∣ sin (ωt) V;

where RMS value of the voltage can change with intervals of

±5% and can be described as:

Ẽ =
∣∣∣Ẽ

∣∣∣ ejψ = 400 V; ψ = 0

with membership function as fuzzy number presented in

Fig. 2. The impedance of the source is described in the fre-

quency domain for the basic harmonic in the form as follows:

ZZ = R̃Z + jX̃Z = 0.5 + j1.5Ω,

where R̃Z = 0.5Ω and X̃Z = 1.5Ω are fuzzy numbers pre-

sented in Fig. 4 and Fig. 5.

Fig. 4. The resistance of the source as the fuzzy number
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Fig. 5. The reactance of the source as the fuzzy number

The load impedance for the basic harmonic is described

as follows:

ZO = R̃O + jX̃O = 5̃ + j3̃ Ω,

where R̃O = 5̃ Ω and X̃O = 3̃ Ω are fuzzy numbers presented

in Fig. 6 and Fig. 7.

Fig. 6. The resistance of the load as the fuzzy number

Fig. 7. The reactance of the load as the fuzzy number

Before optimisation, according to changes of the voltage

source (voltage and inner impedance) and load impedance,

the active power has the values as presented in Fig. 8, where

characteristic points have following values:

Pα=0,L = 13 222 W; Pα=0.5,L = 14 472 W;

Pα=1,L = Pα=1,U = 15 842 W;

Pα=0.5,U = 17 347 W; Pα=0,U = 19 006 W.

Fig. 8. The obtained values of active power before optimisation

After optimisation the optimal (active) current can be ob-

tained as:

optIa = 41.8 A; optIb = 0;

and the RMS value: opt |I| = 41.8 A.

Before minimisation for characteristic values of active

power values: Pα=0, L, Pα=0.5, L, Pα=1, L = Pα=1, U ,

Pα=0.5, U , Pα=0, U , the corresponding RMS values of the

current can be determined as:

|Iα=0, L| = 49.03 A;

|Iα=0.5, L| = 52.5 A;

|Iα=1, L| = |Iα=1, U | = 56.29 A;

|Iα=0.5, U | = 60.43 A;

|Iα=0, U | = 64.99 A.

So, the obtained optimal (active) current opt |I| = 41.8 A has

RMS value smaller than the smallest one before optimisation

|Iα=0, L| = 49.03 A. Moreover, determined optimal current

assures reactive power compensation (imaginary part of this

current optIb = 0). It means that optimal currents assure the

proper flow of active power and no reactive power consumed

from voltage source. In that case when the optimal current

can be kept in the system, the active power will be always ob-

tained within the power constraint as presented in Fig. 9 (the

inner Gauss function within the considered active power).

Fig. 9. The obtained values of active power – the internal shape of

Gauss function
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4. Conclusions

The proposed methods of optimisation and description by the

application of fuzzy numbers make possible to describe un-

steady parameters of voltage sources and loads in electrical

systems as well as to determine the optimal current of the

source in one-phase system taking into consideration the prob-

lem of minimisation of power losses. This current has the

minimal RMS value and it is determined as the result of the

optimisation method taking into considerations the addition-

al constraint: active power generated by the voltage source

is the same before and after optimisation. The solution (op-

timal current) is determined as the crisp one (real numbers)

in frequency domain. Precisely it can be determined in the

numerical way.
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