
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 62, No. 4, 2014

DOI: 10.2478/bpasts-2014-0066

INVITED PAPER

Instrumentation optical fibres for wave transformation, signal

processing, sensors, and photonic functional components,

manufactured at Białystok University of Technology

in Dorosz Fibre Optics Laboratory

R.S. ROMANIUK∗

Warsaw University of Technology, Institute of Electronic Systems, 15/19 Nowowiejska St., 00-665 Warsaw, Poland

Abstract. Tailored, specialty optical fibres, made of complex glasses, called collectively as a non-telecommunications or instrumentation

family, serve for various optical wave transformations for particular functional purposes and optical signal processing, rather than for long

distance lossless and dispersionless, undistorted transmission. Research work on these fibres started during the late seventies of the last

century in ITME/Warsaw and in Białystok University of Technology at the Faculty of Electrical Engineering. The initiator of this research

at Glass Works Białystok [39] and Białystok University of Technology [4] was, then a very young engineer, Jan Dorosz. Over 35 years of

development of the technological team, under his skilful management, resulted in a top laboratory which today does research at the cutting

edge of the photonics science. The Białystok Optical Fibre Technology Laboratory (OFTL) is now a pearl in the crown of his Alma Mater.

The paper opens this special issue of the PAS Bulletin on Technical Sciences, devoted to professor Jan Dorosz, and shows some of the

developments in the area of optical fibre photonics, which were carried out at his active laboratory.
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1. Introduction

The Laboratory of Optical Fibre Technology at Białystok Uni-

versity of Technology, established and run for many years by

Jan Dorosz, has a long tradition, now of over 35 years, of

intensive and very creative work [1–73]. The Laboratory spe-

cialization were (and are) soft, multicomponent glass optical

fibres made by modified multi-crucible (MMT) and rod-in-

tube (RiT) technologies [24, 28]. Now, the Laboratory en-

ters also the advanced modified CVD technologies. During

this long period, the laboratory provided countless samples

of specialty optical fibres to domestic and international op-

toelectronic and photonic laboratories - university and indus-

try based. Out of these finely designed fibres, numerable and

useful functional components, devices, sensors, and optical

sources have been made. Some of the designed novel fibres,

like multicore constructions, were really if not the first, then

very close to the first ones worldwide [5]. Some pilot applica-

tions were striking at that time [7, 16]. The results from this

Laboratory, and a few tens of other ones which used Białys-

tok fibres, have been published worldwide in a few hundred of

well positioned and well cited papers [17, 18, 39, 41]. Some

major families of the specialty fibres researched, manufactured

and characterized at Białystok Optical Fibre Technology Lab-

oratory and next used in many practical application laboratory

experiments included:

• circular isotropic optical fibres of various materials, and

tailored dispersion and refraction parameters [20],

• circular optical fibres with ultimately complex refractive

index profiles [10],

• polarizing and polarization maintaining optical fibres [6],

• optical fibres with complex cross sections of the core [14],

• complex material, IR and nonlinear optical fibres [11], and

• multicore optical fibres [22, 26].

The paper is a sort of a short tutorial on these, listed

above, specialty optical fibres, showing their beautiful trans-

mission and interesting wave transformation properties, but

illustrated and supported richly with the specimens designed,

manufactured and characterized skilfully by prof. Jan Dorosz

and his excellent Photonics Technological Team at the Faculty

of Electrical Engineering, Białystok University of Technology.

2. Isotropic optical fibers

Classical eigenequation is used to describe the HE/EHml

modes of the EM wave in an isotropic optical fibre of ar-

bitrary geometry [52]:

(µ1F
′
1/uF1 + µ2F

′
2/wF2)(n

2
1F

′
1/uF1 + n2

2F
′
2/wF2)

= m2(µ1/u2 + µ2/w2)(n2
1/u2 + n2

2/w2),
(1)

where F1(u) – a periodic function describing the core field,

F2(w) – an evanescent function describing the out-of-core
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(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –

derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =

a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >

β > k2 = n2ko, ko = 2π/λo – wave numbers, respective-

ly in the core, cladding and outside the fibre – in vacuum,

β = 2π/λ – modal constant of propagation, λ – modal wave-

length in optical fibre, βn = β/k = neff – normalized prop-

agation constant, which is an effective modal refractive index,

ω = 2πf , V = u2 + w2 = a2k2
o(n2

1 − n2
2) = (akNA)2 –

normalized frequency, (n2
1 − n2

2)
1/2 = NA – numerical aper-

ture of optical fibre, µi – relative magnetic permeability of

i-th region, n1, n2 – refractive indices of the core and the

cladding in the fibre, generally they are not constant but are

functions of radius ni(r) or radius and angle ni(r, Θ), m –

azimuthal modal number in circular and elliptical fibres and

transverse modal number in square and rectangular core fibre,

l – radial modal number.

For m = 1, and a fibre with circular or strip core, the

ideal Eol and Hol modes are not coupled and have only the

mentioned in their names field components in the direction

of propagation. Particular form of Eq. (1), and the kind of

wave functions F depend on the fibre geometry, mainly the

core. We assume that the fibre supports hybrid modes HE,

EH or, in approximation, LP modes of linear polarization [3].

Two expressions in parentheses on the left side of Eq. (1)

represent modes of characteristics combined with magnetic

permeability (without charges on the boundary, Ho1 modes

in cylindrical fibre) and core/cladding refractions. Right side

of the equation couples the modes into a hybrid form of both

fields E and H in the direction of propagation. Wave func-

tions F have to possess a property of mutual transforma-

tion between various kinds of tailored optical fibres. Strip

and cylindrical cores are special cases of elliptical cores, etc.

Part of modal power of m-th mode Pm is carried in the core

Pm
1 , and the other part is in the cladding Pm

2 . The expres-

sion η(r) = P1/Pm, where Pm = P1 + P2 is a modal power

profile η = (neffng − n2
2)/NA2 [51].

In the angular coordinates – longitudinal axial, radial and

azimuthal (z, r, φ) for a quasi-ideal cylindrical fibre, the wave

functions F are quasi-periodic and quasi-exponential Bessel

functions Jm(u) and Km(w), and the eigenequation has the

following classical form (µ1 = µ2 = 1):

(J ′
m/uJm + K ′

m/wKm)(n2
1J

′
m/uJn + n2

2K
′
m/wKm)

= m2(u−2 + w−2)(n2
1u

−2 + n2
2w

−2).
(2)

Left side of the equation, in a product form of two compo-

nents, represents the modes dependent and nondependent of

the refractive profile of the fibre. For azimuthal modal number

m = 0 (lack of azimuthal dependence) the right side of equa-

tion is equal to zero and the modes are not coupled. Each

factor equalled to zero gives Ez = 0 for the nondependent

mode on the profile Ho1 and Hz = 0 for the mode dependent

on the profile Eo1:

(J ′
m/uJm + K ′

m/wKm) = 0,

(n2
1J

′
m/uJn + n2

2K
′
m/wKm) = 0.

(3)

For nonzero azimuthal number m > 0, assuming small re-

fraction difference n1 ≈ n2, which is a condition of the

weak propagation, and using expressions for Bessel functions

derivatives J ′
m = −mJm/u + Jm−1 = mJm/u − Jm+1,

K ′
m = −mKm/w − Km−1 = mKm/w − Km+1 one ob-

tains:

(J ′
m/uJm + K ′

m/wKm) = m(u−2 + w−2), (4)

(J ′
m−1/uJm + K ′

m+1/wKm) = 0, for EH, (5)

(J ′
m+1/uJm + K ′

m−1/wKm) = 0, for HE. (6)

Solutions of these eigenequations for the isotropic fibre

are presented schematically in Fig. 1. The wave propagates

in the fibre with the phase velocity v = ω/β, confined be-

tween two ultimate boundaries v1 = c/n1 and v2 = c/n2,

and with the group velocity vg = dω/dβ. The group re-

fraction index determines this kind of refraction which is

combined with the rate of energy transfer along the fibre

ng = c/vg. The fundamental mode is HE11 with the cut-

off frequency equal to zero. Power distribution in the fibre

cross section, propagation constant, and arguments of wave

functions may be all calculated from approximate expressions

valid for various ranges of the normalized frequency (assum-

ing n1 ≈ n2) [51]. For small values of V , the following

equations are valid: w ≈ 2 exp−[e + Jm(V )/V Jm(V )], e-

Euler constant, u ≈ (1 + 21/2)V/[1 + (4 + V 4)1/4]. Modal

cut-off is for w = 0 and u = V , and the modal wave prop-

agates with the velocity of an unconfined free wave in the

space filled with the cladding material. The cut-off condition

for both kinds of modes Eol and Hol is Jo(u) = Jo(Vc) = 0,

where Vc is a value of V for cut-off. The cut-off for modes

which fields are constant azimuthally does not depend on

n1 and n2 refractions (which is counter-intuitive). For the

modes with m > 1, using the asymptotic value of function

Km(w → 0) → (m − 1)!2m−1/wm, the cut-off condition is:

Jm−1/uJm = n2
2/(m − 1)(n2

1 + n2
2),

for n1 ≈ n2Jm−1/uJm = 1/2(m− 1).
(7)

The group velocity, for a certain range of the normal-

ized frequency, is smaller than the value for a free wave in

the core medium, or the group refraction has a value big-

ger than n1. For small values of absolute differential re-

fraction ∆n = n1 − n2, the profile of modal power is

η = (neffng − n2
2)/NA2 ≈ 1 − (u2/V 2)(1 − K2

o/K2
1).

Normalized power distribution in the far field, in a weakly

propagating cylindrical fibre is [52]:

P/Po = {[u2w2/(u2 − α2)(w2 + α2)]

· [Jo(α) − αJ1(α)Jo(u)/uJ1(u)]}2,

α = ka sinΘ = VNA sin Θ.

(8)
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a) b)

c)

Fig. 1. Schematic characteristics of a cylindrical isotropic opti-

cal fibre calculated from the eigenequation (2) and its particular

forms (3-8), a) phase space of the fibre v = ω/β, vg = ∂ω/∂β,

v2 = c/n2 > veff > v1 = c/n1, 1,2− NA1 < NA2; insert shows

field distribution for HE11 mode, b) value of the u argument of the

Bessel function for small and big relative differential refraction cal-

culated from u ≈ (1+21/2)V/[1+(4+V 4)1/4], ∆ = (n2
1−n2

2)/n2
1,

insert shows real pulled fibre by the Białystok OFTL, c) normalized

distribution of modal fields as a function of normalized frequency

η = (neffng−n2
2)/NA2 ≈ 1−(u2/V 2)(1−K2

o /K2
1 ), 1−n1 = 1, 6,

n2 = 1, 55; 2 – n1 = 1, 6, n2 = 1

Optical fibres of the above characteristics were manufac-

tured at the Białystok OFTL by the modified multicrucible

technology MMT [24]. Fibre core/cladding proportions were

determined using the Poisuille flow law:

ar/ap =
√

Qr/Qp, where Q = π Pr 4/8ηl, (9)

where Q(r, p) – volume flow of core/cladding glasses, P –

pressure difference in the crucible nozzle cross section, η –

viscosity, r, l – nozzle radius and length. External fibre di-

ameter was 125 µm to fit standard measurement systems, and

stems from the flow continuity equation viQi = const, and de-

pends on diameter of external nozzle and rate of fibre pulling.

3. Optical fibres with complex refractive profiles

MMT technology developed at Białystok OFTL [21] allowed

to shape complex refractions in fibre cross sections. Three

groups of refractions were researched and then the fibres were

manufactured and characterized: multi-step, ring and double

W. Pairs of relevant glasses were chosen to enable efficient

refraction shaping by mobile high-index ion diffusion. Neces-

sary condition for diffusion is existence of gradient of chem-

ical potential. The diffusion was modelled using the second

Fick’s law for axial symmetry:
(

∂2c/∂r2
)

+ ∂c/r∂r − (1/D) (∂c/∂t) = 0, (10)

where c = c(r, t) – distribution of ions modifiers, D – dif-

fusion constant, t – diffusion time, r - radius. For boundary

conditions: t = 0, c = (r, t) = Co when 0 < r < a and

c(r, t) = 0 for r > a, where a-fibre core radius, Co – con-

centration of modifying ions in the source glass, the diffusion

equation has a solution in a form of concentration distribution

of the diffusing ion (thus, changed refraction):

c(r, t) = C0

∞
∫

0

exp

(

Dt

R2
u2

)

J0

(

− r

R
u
)

J1(u)du, (11)

where Co – initial concentration, D, t, a as above, J – Bessel

function, 2Rr – diameter of core nozzle, 2Rp – diameter

of cladding nozzle, Ld – diffusion length. Normalized diffu-

sion (ion exchange) coefficient is defined K = Dt/R2. It is

possible to combine K with the parameters of technological

process. The flow continuity equation is R2V = a2v, where

R – nozzle diameter, V – rate of glass flow, a – fibre radius,

v – fibre pulling rate. K is combined with volume glass flow

via the relation K = Dπl/Qr. Diffusion length and time are

related td = Ld/V = LdR
2/a2v, thus K = DLd/a2vtr,

where vtr – glass flow rate from core crucible. This sim-

plification assumes that the resulting refractive profile of the

MMT fibre is approximately of α power type. Calculations of

complex profiles for particular ions Pb, Ba, K, and Na lead via

determination of the localization of the Matano plane using

modified Boltzman-Matano method:

Dion = −(1/2td)(dx/dC)|x

Cx
∫

Cr

(X − XM )dC, Kion

= Dld/r2
cv,

(12)

where XM – localization of Matano plane. Figure 2 shows

some of manufactured fibers in Białystok OFTL with very

complex refractive index profiles.

a) b)

Fig. 2. Optical fibers of complex refractive profiles manufactured at

Białystok OFTL, cross-section photographs and measured refractive

index profiles: a) glasses F2-S6-S7-S8, b) glasses BF8-BLF2-F2-

S6 (after Ref. 24). Curves 1, 2, and 3 show changes of refraction

depending on the thermal process parameters

Bull. Pol. Ac.: Tech. 62(4) 2014 609
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4. Ring core optical fibers

Refractive index profile in a ring-core step-index optical fibre

is n(r) = n1 for a ≤ r ≤ b and n2 outside this region, i.e in

the central refractive depression and outside the ring. Normal-

ized thickness of the ring core is η = b/a. We assume TEM

wave in this fibre and weak propagation ∆ ≈ 1−n2/n1 ≪ 1.

Electrical field in three fibre regions is:

Ey
m = C1Im(W ) cos(mθ)

or Ey
m = C1Im(W ) sin(mθ),

W = wr/ηa = (w/η)(r/a), for 0 ≤ r ≤ a,

(13)

Ey
m = [C2Jm(U) + C3Nm(U)] cos(mθ),

or Ey
m = [C2Jm(U) + C3Nm(U)] sin(mθ),

U = ur/ηa, for a ≤ r ≤ b,

(14)

Ey
m = C4Km(Wη) cos(mθ)

or Ey
m = C4Km(Wη) sin(mθ)

for b ≤ r,

(15)

where Ci are amplitude constants, Im, Jm, Nm, Km are

Bessel functions of the first and second kind of the m-th

order, u, w – are wave arguments u2 = b2k2(n2
1 − β2k−2),

w2 = b2k2(β2k−2 − n2
2), V 2 = b2k2(n2

1 − n2
2) – is normal-

ized frequency, k = 2π/λ, m – azimuthal modal number,

η = b/a, β – propagation constant. Applying boundary con-

ditions for equations (13–15) one obtains eigenequation for

ring-core fibre:

wKm+1(w)/uKm(w)

= {uIm(w/η)[Jm+1(u)Nm+1(u/η)

−Jm+1(u/η)Nm+1(u)] + wIm+1(w/η)[Jm+1(u)Nm(u/η)

−Jm(u/η)Nm+1(u)]}/{uIm(w/η)[Jm+1(u/η)Nm(u)

−Jm(u)Nm+1(u/η)] + wIm+1(w/η)[Jm(u/η)Nm(u)

−Jm(u)Nm(u/η)]}.
(16)

This equation, for η → ∞, is reduced to classical

eigenequation of a cylindrical weakly propagating fibre. Fig-

ure 3 presents numerical solutions of this equation for differ-

ent η ring-core fibres.

The lowest order mode in ring-core fibre is LP01, which

is equivalent to HE11. The next mode is LP11, equivalent to

TE01, TM01 or HE21. Increasing η, for constant V , from 1

to infinity, ring-index fibre is closer to classical fibre. With

decreasing η to unity, for V = const, the number of modes

is smaller. Ring-index fibres can be divided to two classes:

with central depression small - comparable to the wavelength

2a ≈ λ, and big 2a ≫ λ. The second group, for big 2a, may

propagate planar modes, as in slightly curved planar optical

waveguide. A standing planar wave builds at the circumfer-

ence, while the propagation is along the axis. The first group

works in two wave conditions: 1 – choice of V and η val-

ues for singlemode propagation of LP01, 2 – via introduction

of sufficiently big optical losses in the axial depression and

discrimination of LP01, due to different penetration depths of

LP01 and LP11 in the depression. Ring-index fibre may be

single mode for LP01, but also quasi single mode for LP11.

In the latter case the ring-index fibre works as single-mode at

the values of V bigger than for 2,405, Fig. 3c. The value of

cut-off normalized frequency for LP11, Vc(LP11) is obtained

from (16) assuming u = V (or neff (LP11) = n2) for modal

numbers and treating η as a parameter of the solutions. Fig-

ure 3c shows Vc(LP11) = f(η). The fibre is singlemode for

LP01 below the curve V (η). When η goes to unity then V may

be considerably bigger than the cut-off of LP01 in classical

fibre.

a) b)

c)

Fig. 3. Optical fibers of ring cores and their modal characteristics.

Inserts show cross sections of manufactured optical fibers at Białys-

tok OFTL, a-b) modal cut-off characteristics for various values of η
parameter, c) calculated condition of single mode work of ring-index

fiber as a function of η

5. Elliptical core optical fibres

The wave equation in elliptical coordinates for Ez field com-

ponent is

∂2Ez/∂ξ2 + ∂2Ez/∂η2

+[q2(εk2
o − β2)(sinh2 ξ + sin2 η)]Ez = 0,

(17)

where ko = 2π/λo – vacuum wave number, λo – wavelength

in vacuum, β – propagation constant, ε – dielectric constant

equal ε1 in core (ξ < ξo) and ε2 in cladding (ξ > ξo) for step

index fibre. Separation of azimuthal Θ(η) and radial compo-

nents R(ξ) of EM field is done assuming product form of

E and H functions: E(ξ, η) = Θ(η)R(ξ). Wave equation for

610 Bull. Pol. Ac.: Tech. 62(4) 2014
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azimuthal and radial components in elliptical coordinates has

the Mathieu form for Θ(η) and modified Mathieu for R(ξ):

∂2Θ/∂η2 + [c − 0, 5(εk2
o − β2)q2 cos 2η]Θ = 0

∂2R/∂ξ2 − [c − (0, 5(εk2
o − β2)q2 cosh 2ξ]R = 0,

(18)

where c – is a separation constant. Solutions to Mathieu equa-

tions are azimuthal Mathieu functions of sinus sen and cos-

inus type cen, equally for the core and cladding of elliptical

fibre, but with the change of the value of argument γ from

γcore to γclad: Θ(η) = [sen(η, γ2) or cen(η, γ2)]. These func-

tions are equivalents to field changes along the circumference

of the circle (here an ellipse) of type cosnφ and sin nφ for

cylindrical fibre. The γ parameter is:

γ2 = (εk2
o − β2)(q2/4)

= [(a/b)2 − 1](b2/4)(εk2
o − β2)

= (a2/b2 − 1)(u2/4),

(19)

where q2 = a2−b2, a, b – ellipse semi axes, bigger and small-

er, u = b2(εk2
o − β2) – equivalent to u argument of Bessel

function in cylindrical fibre. Periodic solutions of Mathieu

wave equations exist only for characteristic values of separa-

tion parameter c. These values are: an(γ2) even and bn(γ2)
odd. For circular core fibre q = 0 and γ = 0 and Mathieu

solutions for azimuthal components are cosnΘ and sin nΘ.

Solutions of modified Mathieu equation of the core are radial

Mathieu functions: R(ξ) = [Sen(ξo, γ
2
core) or Cen(ξo, γ

2
core)],

sinusoidal Se and cosinusoidal Ce type. These functions are

similar to J Bessel functions. Solution of modified equation in

the cladding are evanescent radial Matthieu functions Fek and

Gek, similar to K Bessel functions: R(ξ) = [Fek(ξo, γ
2
clad) or

Gek(ξo, γ2
clad)]. At the core/cladding boundary, the periodic

Mathieu functions transform smoothly into evanescent ones.

Evolution of elliptical core into circular results into transfor-

mation of Mathieu functions into Bessel ones. The arguments

of azimuthal Mathieu functions are n1 and n2 refractions in

step index fibre of n(r) in gradient index fibre. Fitting of

fields at the core/cladding boundary requires usage of infinite

set of functions opposite to single ones in the case of circular

core fibre. This stems from the fact that confocal ellipses do

not have the same shape, opposite to concentrical circles. For

bigger arguments, the ellipses turn more similar to circles.

All modes of elliptical fibre are hybrid, opposite to circular

one, where some modes are azimuthally symmetric, trans-

verse TM without longitudinal components of the field. The

degenerated fundamental mode HE11 of circular fibre splits

to two modes when the core turns weakly elliptical. These

modes are odd and even oHE11 and eHE11, where axial mag-

netic fields are odd and even Mathieu functions. Analogously

to HE11, modes oHE11 and eHE11 do not have cut-off and

electrical fields are transverse, along the major axis of ellipse

for oHE11 and along minor axis for eHE11. When the ellipse

turns to a strip, the mode oHE11 turns to H10 and the mode

eHE11 turns to E10. To simplify the solutions, a single func-

tion description is assumed for core and cladding. Simplifica-

tion holds only for HE1m modes, small ellipticity a/b < 2, 5,

and weakly guiding condition ∆n = n1 − n2 ≈ 0. Other

simplifications assume multifunction description in core and

single function in cladding or vice versa. The eigenequation

for single function description is, respectively, for odd and

even modes:

[S′
en/u2Sen + G′

ekn/w2Gekn]

[ε1C
′
en/u2Cen + ε2F

′
ekn/w2Fekn]

= n2(1/u2 + 1/w2)(ε1/u2 + ε2/w2),

(20)

[C′
en/u2Cen + F ′

ekn/w2Fekn]

[ε1S
′
en/u2Sen + ε2G

′
ekn/w2Gekn]

= n2(1/u2 + 1/w2)(ε1/u2 + ε2/w2).

(21)

Arguments of Mathieu functions are ξo and γ2
1(core) =

q2(k2
1 − β2)/4 = u2(a2/b2 − 1)/4, γ2

2(clad) = q2(β2 −
k2
2)/4 = w2(a2/b2−1)/4, where (similarly to cylindrical and

planar core fibre) k1 = n1ko, k2 = n2ko, u2 = b2(k2
1 − β2),

w2 = b2(β2 − k2
2), V 2

b = u2 + w2 = k2
ob2(n2

1 − n2
2). When

the ellipse turns to a circle then C′
en/Cen and S′

en/Sen go to

uJ ′
n/Jn and F ′

ekn/Fekn and G′
ekn/Gekn turn to wK ′

n/Kn.

When ellipse turns to strip then Cen goes to cosu, and Sen

goes to sin u, and Fekn and Gekn go to e−w. The mode

oHE11 of transverse Et field along the longer axis, has big-

ger propagation constant than eHE11 oβ > eβ, has small-

er phase velocity, is more resistant to fibre bending loss-

es and is called slow mode. The most important feature

of singlemode elliptical fibre is birefringence B = ∆β =

oβ − eβ or ∆ne = one − ene. B is function of V and

∆n = n1 − n2. Applying some geometrical and refractive

simplifications like small ellipticity and weak propagation

several useful analytical forms of eigenequation may be de-

rived:

a∆β/e2(1 − (n2/n1)
2)3/2 = 3πV 2/(V + 2)4, (22)

a∆β/e2(1 − (n2/n1)
2)3/2 = u2w2/8V 3, (23)

a∆β/e2(1 − (n2/n1)
2)3/2

= [u4w3/8V 5J2
1 ][Ko/K1 + 1/w],

(24)

a∆β/e2(1 − (n2/n1)
2)3/2

= [u2w2/8V 3][1 + uK2
oJ2/K2

1J1],
(25)

a∆β/e2(1 − (n2/n1)
2)3/2

= (u2w2/8V 5){(Jo/J1)
3[(u2 − w2)w2/u]

+[Jo/J1]
2[(w4 + u4}/u2]

+(Jo/J1)2u(4 + w2) − (8 + w2 − u2)}.

(26)

Elliptical and strip core fibres exhibit zero birefringence for

certain V and ellipticity ∆ng = ong − eng = 0. For small-

er V , there is ong > eng and ∆ng > 0. For bigger V ,

the sign of ellipticity changes ong < eng and ∆ng < 0.

Group velocity of the slow (odd, peculiar) mode oHE11 turns

bigger than the fast mode (even, regular) eHE11. Phase ve-

locities remain unchanged ovp < evp. Rectangular symme-

try of elliptical fibre cause that all modes have two orien-

tations: eHEml,
oHEml,

eEHml,
oEHml, where modal num-

bers denote: m – field periodicity for η coordinate, l – l-
th root of the eigenequation. Fundamental modes eHE11,
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oHE11 are not degenerated and have cut-offs for V = 0.

For bigger ellipticities, modes of higher order eHEml,
oHEml

have respectively bigger and smaller cut-off frequencies. For

bigger ellipticity, the mode oHE11 is more confined in the

core than eHE11. Chosen modal characteristics of ellipti-

cal fibres manufactured at Białystok OFTL are presented in

Fig. 4.

a) b)

c)

Fig. 4. Optical fibers with elliptical cores, multimode and single-

mode [50]. Inserts show elliptical fiber cross-sections, Fibers manu-

factured at Białystok OFTL, a) propagation constants (modal eigen-

refraction) as function of normalized frequency V , b) function of

differential group refraction, c) normalized birefringence for HEe
01

and HEo
11: phase (left axis) and group (right axis) for fundamen-

tal modes. nw = (n2
eff − n2

2)/(n
2
1 − n2

2), nw1 = ∆neff/∆n2,

∆neff = no
eff − ne

eff , ∆ng = no
g − ne

g , ng = c/vg , Pw =
∆η/η∆n, ∆η = ηo − ηe

6. Strip core optical fibres

A single mode optical fibre with perfect strip core, is hy-

pothetically an extremely attractive transmission medium be-

tween integrated circuits of planar optics. Low-loss and non-

distorting interconnections between photonic integrated cir-

cuits (PICs) require precision and selective etching of aligning

V -grooves for classical circular core optical fibres. Coupling

losses between circular cores and planar optical waveguides

are a considerable part of the power balance. Let us assume a

single mode strip core 2r thick (x-direction) and 20r wide (y-

direction) of n1 refraction, embedded in n2 cladding. Large

core width allows one to assume field constancy in this direc-

tion. Optical wave propagates along fibre axis in two modes

Em0, Hm0 of non-coupled E and H field components in the

direction of propagation. A single transverse modal number

in planar geometry shows field changeability only in direc-

tion of the core thickness. The fundamental modes are E10

and H10. Eigenequation (1) in general form is here still valid.

Periodic and evanescent functions are in this case very simple

F1 = sin(u), and cos(u); F2 = exp(−w). For such functions,

the approximate eigenequation of strip core optical fibre is:

[cos(u)/u sin(u) − exp(−w)/w exp(−w)]

[n2
1 cos(u)/u sin(u) − n2

2 exp(−w)/w exp(−w)] = 0,
(27)

where modal number l = 0 denotes field constancy in y direc-

tion. Equation (27) holds for even modes with field maximum

in the core strip centre. For odd modes with field minimum

in core strip centre, the eigenequation is:

[− sin(u)/u cos(u) − exp(−w)/w exp(−w)]

[−n2
1 sin(u)/u cos(u) − n2

2 exp(−w)/w exp(−w)] = 0.
(28)

Equalizing product factors in Eq. (27) to zero, one obtains

the eigenequation for He modes, which are nondependent of

the refractive index profile tg(u) = w/u, and for modes Ee

dependent on the profile (of electrical charges on the me-

dia boundary) tg(u) = n2
1w/n2

2u. Equation (28) gives so-

lutions with minimal field in the middle of the strip core

thickness, for odd modes Ho tg(u) = −u/w, and for modes

Eo tg(u) = −n2
1u/n2

2w. Regular mode cut-off is when the

effective modal refraction neff is equal to cladding refrac-

tion n2. When βn = neff = n2, then w = 0, u = V = Vc,

sin Vc = 0, Vc = 0, π, 2π,... For peculiar modes is cosVc = 0,

Vc = π/2, 3π/2, 5π/2,... Figure 5 shows schematically modal

characteristics of strip core optical fibres. Such fibres were

manufactured at Białystok OFTL [63]. Fundamental modes

H10 (slow) and E10 (fast) have slightly different propagation

constants. Simultaneous excitation of both modes causes the

strip core fibre to be birefringent. The modal birefringence

∆neff (eigenbirefringence) is approximately proportional to

the square of differential refraction of core and cladding

∆n, and holds for a wide range of this value ∆n = 0, 1–

10%. Normalized birefringence for the strip core is present-

ed in the form ∆neff/(∆n)2 = f(V ), similarly to ellipti-

cal cores. Strip core may be treated approximately as one of

the solutions for slim elliptical cores. Phase and group ve-

locities are expressed as previously v = ω/β, ω = 2πf ,

vg = ∂ω/∂β – is curve inclination in phase coordinates ω−β,

vgn = vg/c = V ∂neff/∂V + neff , neff = β/k = βc/ω,

V = ωrNA/c, c/vg = ng. For small normalized frequen-

cies V , both velocities v and vg of fundamental fast mode

E10 are bigger than for the slow fundamental mode H10. For

larger values of V , the value of vg for fast mode is smaller

than for slow mode, and the differentia value ∆vg is equal to

zero for V = Vgo.

The confinement coefficient for modal field is defined as

η = P1/(P1 + P2). For strip core it has the following ana-

lytical form of a function solely of wave arguments and nor-

malized frequency u2 + w2 = V 2, η = 1 − u2/V 2(1 + w)
for the mode nondependent of refraction H10, and η =
1 − n2

1n
2
2u

2/(n2
1n

2
2V

2 + n4
1w

3 + n4
2wu2) for the mode de-
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pendent of refraction E10. For all shapes of core, the fol-

lowing relation is valid: c2/vvg = n2
1η + n2

2(1 − η) [51].

For H10 mode, the power distribution is not changing in the

function of ∆n. For mode E10, at pre-set value of V , thick-

ness 2r of the strip core gets bigger, when the value of ∆n
diminishes. When 2r→ ∞, ∆n → 0 then the whole opti-

cal power is contained in the core. Far field of optical fi-

bre with strip core is determined, as in other cases, by the

geometry of radiating core aperture, and is a sum of all

amplitudes and phases from all points of the aperture. For

H10 mode, the y direction field component, normalized to

one against the maximum value on the core/cladding bound-

ary changes trigonometrically Ey = cos(ux/r)/ cos(u). Out-

side the strip core, the field diminishes exponentially to ze-

ro Ey = exp(−wx/r)/ exp(−w). Assuming that the finite

width of the strip core does not influence the field too much,

and summing over the aperture using Fourier transform and

applying tg(u) = w/u as a solution of the eigenequation for

regular modes He, the dependence on normalized optical pow-

er distribution P (Θ) as function of angle Θ measured from

fibre axis is:

Pn = P (Θ)/Po

= [u2w2(cosα − α sinα cos(u)/u sin(u))/

(u2 − α2)(w2 + α2)]2,

α = kr sin Θ = V sinΘ/NA.

(29)

a) b)

c)

Fig. 5. Modal characteristics of optical fibers with strip cores;

2b/2a = 2 × 25 µm, b/a = 0, 08, ∆ = 2%; a) effective refrac-

tion as function of V for fundamental modes, b) normalized bire-

fringence of strip core optical fiber nw1 = ∆neff/(∆n)2 = f(V ),
c) group refraction for fundamental modes. Insert shows strip core

optical fiber manufactured at Białystok OFTL

For large V , the aperture is wide, measured by the pa-

rameter NA/λo, and optical power is totally confined to the

core strip η ≈1 and the field outside the core, in cladding,

falls to zero abruptly. Radiation characteristic of a system with

large aperture and strongly defined refraction boundaries of

large contrast has a main lobe and a large number of side

lobes of relatively big intensities. For smaller V , the aperture

gets narrower, the main lobe widens, reaching the maximum

value. Further decreasing of V causes again narrowing of the

main radiation lobe, because the modal field propagates deep-

er from core to cladding, and the effective radiative aperture

increases. Aperture boundaries are now not well (strongly)

defined, and the boundary effective refraction contrast fades,

causing smaller field changes there. Field distribution in the

aperture is, in approximation, Gaussian, and its Fourier trans-

form, or the radiation characteristic, is also Gaussian, without

side lobes.

7. Polarization optical fibres

Optical fibres with strong birefringence, some of them with

additional discrimination of the second polarization compo-

nent of the fundamental mode, are indispensable in interefro-

metric applications, where there is needed polarization con-

formance of the interfering beams of light transmitted long

distance along signal optical fibres from sensing optical fi-

bres. In some instruments, the polarization separation be-

tween two orthogonally polarized components of the fun-

damental mode is required to be as high as −60 bB or

more [54]. Inside a broad family of anisotropic optical fi-

bres, there are birefringent fibres and polarizing ones. Polar-

izing fibres may be split to several kinds: fibres of strong

linear birefringence – maintaining the input state of wave po-

larization, polarizing fibres – behaving like a distributed po-

larizer, fibres with circular and elliptical birefringence, and

fibres of modulated birefringence. The most widely used po-

larization maintaining optical fibres are Panda and Bow-tie.

The birefringence is inbuilt in the internal fibre structure, via

inserts from borosilicate or aluminosilicate glass of higher

linear expansion coefficients than the host glass, and located

in the cladding symmetrically from both sides of the core.

The core is compressed thermally/mechanically only along a

single transverse axis/plane, what induces internal birefrin-

gence [14]. The induced stress level in the core is of the

order of 10 kg/mm2 [51]. This birefringence is a strong func-

tion of temperature, thus the fibre exhibits thermal disper-

sion of birefringence. Technologically induced birefringence,

in the range of 10−4–10−3 is much stronger than the acci-

dentally induced birefringence by such factors as: external

fibre bending – macro and micro, torques, residual core el-

lipticity, statistical fluctuations of core diameter, etc. Panda

like fibres were manufactured at Białystok OFTL by various

hybrid methods, including MMC and RiT. The glass stress

sectors/members should be positioned as close to the core as

possible. The ultimate confinement is the increase in fibre at-

tenuation, when the core evanescent field begins to feel the

lossy members.
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The theoretical area of confinements for polarization iso-

lation between orthogonal members of the fundamental mode

in a strongly birefringent, polarizing fibre, with stimulated

polarization discrimination, is determined by the following

factors: Rayleigh scattering, differential polarization attenua-

tion, and natural polarization crosstalk in birefringent fibre.

Such a theoretical area is influenced by real life conditions

like equipment, lab conditions of measurements, fibre para-

meters, etc. Polarization separation in real fibre depends on

internally inbuilt birefringence, fibre construction – Bow-tie,

Panda, D-type, elliptical core; type of cladding and fibre jack-

et, method of fibre cabling, kind of stress members, kind of

introduced external fibre excitation or enforced geometry –

like fibre coiling.

Fig. 6. Polarization maintaining optical fibers, cross sections and

birefringence characteristics. Manufactured in Białystok OFTL

8. Multi core optical fibres

Analysing single mode multicore optical fibres we assume the

following simplifications: inter-core separation is comparable

to the core diameter if not smaller, optical fibre is weakly

propagating, refraction is step-index, core/cladding geometry

is perfect, one of the cores is optically excited, the field of

fundamental mode extends to the neighbouring core. Opti-

cal power flow of periodic character between neighbouring

cores is just the effect of coupling the evanescent fields and

relevant additive phase relations of coupled waves. Coupling

coefficients between neighbouring cores are [17]:

Cij = Co

∫

Aj

n2
jΨ

clad
i Ψcore

j dA,

i 6= j, i, j = 1, 2, Co =
k
√

εo

4
√

µoNiNj

,

N =
(

πa2ncore/2
)

√

εo

µo

V 2

U2

K2
1 (W )

K2
o (W )

,

(30)

where Aj – cross section of j-th core. By assuming further

simplifications: neglecting self-coupling, use known exten-

sions of K functions and substitutes for integrals of Bessel

functions, one may obtain coupling coefficients in analytical

forms. Optical fibre with M-cores, to obtain coupling coeffi-

cients, requires summing of the integrals over all M-1 cores:

CM
ij = Cij + Co

M
∑

core=1
c 6=i,c 6=j

∫

Ac

n2
coreΨ

clad
i Ψclad

j dA. (31)

The second component in Eq. (31) is a coupling between i-
th and j-th cores via mutual coupling in a series of adjacent

cores. We neglect this component. This is equivalent to the

assumption that the coupling between immediately adjacent

cores dominates. Only in such a case the coupling coefficients

have analytical form. In opposite case, optical power is a com-

plex superposition of modal power from different cores. Phase

relations in arbitrary multicore optical fibre never assume the

values 0 or 1, as it is in a twin core optical fibre. Analyti-

cal form for inter-core coupling coefficients, in our simplified

case is:

Cij = CoΘij ,

Θij =
ajKo (Wid/ai)

Ko (Wi) Jo (Uj)

(Wi/ai) I1 (Wiaj/ai) Jo (Uj) + (Uj/aj) Io (Wiaj/ai) J1 (Uj)

(Wi/ai)
2 + (Uj/aj)

2
,

(32)

where Θij is an algebraic relations between I , J and K
functions. Coupling analysis operates on useful expressions

like: average coupling coefficient −C =
√

C12C21, a num-

ber of normalized propagation constants βs = (β1 + β2) /2,

∆β = β1 − β2, ∆βr = (β1 − β2) /β1; ∆βr
AS =

(βAS − βSA) /βAS, V AS
p = ̟/βAS phase velocity; βN =

(

β2/k2
o − εcclad

)

/ (εcore − εclad); power transfer efficiency

Pte =
(

1 + (∆β/2C)2
)−1/2

; and inter-core contrast P c
ij =

(Pi − Pj) / (Pi + Pj) |z=mZb
= − cos(2mZbCij). AS sym-

bol is a description of indexed modes in a double core optical

fibre, taking into account their symmetric – antisymmetric

field distribution against fibre axis. Differential value of prop-

agation constant in twin-core optical fibre is a measure of

its inter-core birefringence. Modal beating length is defined

as a function of coupling coefficient Zb = πP te/2C. The

values of C and P te behave as additional propagation con-

stants, because the coupled modes may be treated as new AS

super-modes propagated in double-core optical fibre. The fun-

damental mode HEx
11 is fully coupled from one core to the

other, only if the total phase shift ∆Φ fulfils the condition

∆Φ = (2m + 1)π. For SA modes this is equivalent to the

integral relation on ∆Φ, and the resulting condition of full

power transfer:

∆Φ = ̟

1
∫

−1

[(V AS1

p )−1 − (V AA1

p )−1]ds,

ko
√

εrdzen

1
∫

−1

[

(

1 − ∆
(

1 − βAS1

N

))1/2

−
(

1 − ∆
(

1 − βAA1

N

))1/2
]

ds = (2n + 1)π,

(33)
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where V AS
p is phase velocity of particular SA mode. For small

values of ∆, the expression under the integral is simplified to

∆βxx
N = βAS1

N − βAA1
N . When mode HEx

11 is excited in a

single core, this is equivalent to excitation by superposition

of SA super-modes AS1 + AA1. The output should be again

mode HEx
11, but from the other core, what is a combination

of SA super-modes AS1 − AA1. The coupling coefficient in

the double-core or twin-core optical fibre depends on all fibre

parameters: geometrical, optical, material and technological.

Choice of technology leads to the fibre of strictly assumed

coupling characteristics. The parameters that were subject to

optimization were: choice of glass set for core/cladding, modi-

fication method of crucible technology including separation of

crucibles, diaphragming or aperturing of glass nozzles, cru-

cibles of special construction, temperature and rate of fibre

pulling. Glass choice influences contrast between cores [18].

When the cores are nearly identical and initially weakly cou-

pled, then propagation constants of fundamental modes HEx
11

in each core are different β1 and β2. Direct transfer of opti-

cal power between fundamental modes is not possible, when

the modes are not perfectly fit in phase. At some point of

the dispersion characteristic of double core fibre ∆β = 0,

for λ = λdysp
o . Figure 7 presents normalized dispersion char-

acteristics βN (λ) of double and quadruple core singlemode

optical fibres, with examples of such fibres manufactured at

Białystok OFTL.

When the wave is coupled to a single core, then the nor-

malized power in the second core is P (z) = sin2(Cz), where

C – is core coupling coefficient. In twin core optical fibre

both self-coupling coefficients are equal. Then the coupling

coefficient for twin core optical fibre is:

C =
(2∆)

1/2

a

U2

V 3

Ko (Wd/a)

K2
1 (W )

,

or beating length

LB = ZB = π/C,

(34)

where U = ka(n2
r − β2/k2)1/2, W = ka(β2/k2 − n2

p)
1/2

– arguments of Bessel function, V = kanr(2∆)1/2 – nor-

malized frequency, ∆ = (n2
r − n2

p)/2n2
r – refractive profile

coefficient. The wavelength λdysp
o for double core optical fi-

bre increases with decreasing difference in core diameters and

increasing contrast between the cores. The mutual coupling

coefficients C12 and C21 are not equal in double core optical

fibre. The coupling may be stronger in a single direction, re-

sulting in more average power in one core. A measure of cou-

pling symmetry, and optical power transfer efficiency (or de-

tuning from λdysp
o ) is a relative coefficient of mutual coupling

Cr
ij = Cij/Cji. Calculations of functions Cr

21(λ)P te
12(λ), for

various kinds of multicore optical fibres were presented else-

where [51]. There are also calculated and measured dispersion

characteristics of: inter-core coupling for twin core optical fi-

bre as a function of normalized core separation, inter-core

contrast P c
12, efficiency of power transfer, optical power from

the coupled core, etc.

a)

b)

Fig. 7. Twin and quadruple core optical fibers and their modal dis-

persion characteristics for SA (symmetric-antisymmetric) modes of

the lowest order. Inserts show photographs of multicore, singlemode

fiber cross sections, a) propagation constant as a function of normal-

ized frequency β(V ) in twin core optical fiber for modes SA1, AS1,

HE11 and SS1, AA1, b) Quadruple core optical fiber and its modal

characteristics for SA modes of the lowest order. Normalized propa-

gation constant βN = (β2/k2
o − ε5)(ε1 − ε5); εi (i = 1, 2, 3, 4)

– core refractions; εi (i = 5) – cladding refraction; homo-core

condition n1 = n2 = n3 = n4 = nr = (ε1)
1/2 > n5 = np,

a1 = a2 = a3 = a4 = a; Exemplary fiber data: core diameter

2a = 2, 5 µm, core separation d = 0, 5 µm, NA = 0, 05 ≈0,

core refraction n1 = nr = 1, 6, step index profile, curve 1 – four

degenerated modes in ideally isotropic fiber SA+x, SA−x, AS+y,

AS−y; curve 2 – three index mode family SAA+x, ASA−y, etc.;

curve 3 – single index mode family S±x, S±x∗, S±y, S±y∗, A±x,

A±x∗, A±y, A±y∗, where A∗=A± with reversed sequence of signs

+ and −, ie. instead of ± there is ∓; curve 4 – fundamental two-

index modes SA±y, SA±y∗, AS±x, AS±x∗; curve 5 – reference to

the fundamental mode HE11 of a single core singlemode fiber of

analogous parameters; curve AS
+y
2 – single mode cut off point and

dispersion curve for the first second order mode in quadruple core

optical fiber; Field distributions of SA modes are: a – symmetrical

mode S; b – symmetric antisymmetric mode SA; c – antisymmetric

mode A; d – symmetric SA mode SAS; e – coupled antisymmetric

SA mode ASA = SAS + ASS
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9. Conclusions

Optical fibre technology may be divided into opto-

telecommunications, and opto-instrumentation [51]. Optical

fibre communications deals with new generations of linear,

ultra-low loss and ultralow dispersion optical fibres transmit-

ting undistorted signals at ultimate rates for very long dis-

tances. Non-telecommunication, tailored optical fibres serve

for instrumentation purposes, building of photonic function-

al devices, and are usually manufactured by more complex

and less standardized methods. Instrumentation fibres usual-

ly are of short lengths and have bigger losses. They serve

for building passive and active, simple and complex, optical

fibre components, sensors, hybrid circuits for optical wave

transformation and optical signal processing, functional cir-

cuits of planar (integrated) optics, etc. Tailored optical fibres

are manufactured by MMC, RiT, and modified CVD meth-

ods. The aim of technology is to manufacture an optical fibre

of assumed properties – geometrical, chemical, mechanical

and thermal, physical, optical, refractive, dispersive, energy

carrying, etc.

Fundamental parameters of instrumentation optical fibres

are: numerical aperture NA, absolute differential refraction

∆n, relative differential refraction ∆, refractive index profile

function n(r), or n(r, Θ), physical properties of fibre glass.

Refractive profile decides of nearly all signal properties of op-

tical fibre and its sensitivities to external reactions. Thus, one

of the fundamental issues of technology of tailored fibres is

the ability to precisely form the designed/assumed refractive

profile, at the same time keeping the rest of fibre parameters at

the best acceptable level. We distinguish several profile classes

in tailored optical fibres: step-index, multi-step index, monoto-

nous and non-monotonous profiles, W and M class profiles,

ring and multi-ring profiles, capillary, isotropic and anisotrop-

ic profiles, birefringent and polarizing, single argument n(r)
and two argument n(r, Θ) depending on the azimuth. Opti-

cal fibres of distant profiles have completely different proper-

ties: diameter and character of fundamental mode, ability to

couple with other fibres, sensitivity to micro-bending, modal

structure, modal cut-off. Generally, the first propagated mode

may not be HE11. The aims of complex refractive profiles

in tailored optical fibres are: dispersion optimization, single-

point or multipoint dispersion zeroing/flattening/shifting in

fibre spectral work band, achromatic and apochromatic fi-

bres, shaping of higher dispersion derivatives, introduction of

modal changes/transformation, shaping of modal field – distri-

bution and dimensions, immunizing of optical fibre to certain

reactions like temperature changes, micro-bending, acoustic

wave, etc., apodization of photonic component – introduction

of refractive pedestals in profiles, multiple clad fibres, refrac-

tion fitting to planar circuits of integrated optics, shaping of

fibre modal structure, modal characteristics dependence on

normalized frequency, precise localization of modal cut-off

points, shaping of far field radiation characteristic, coupling

characteristics with other tailored fibres, etc.

One of the fundamental classes of tailored optical fibres

are anisotropic ones. Inside this class are fibres of strong

linear birefringence. Such fibres were manufactured in Bi-

ałystok OFTL using hybrid RiT and MMC technologies.

The fibres had the following parameters: normalized bire-

fringence B≈5*10−4, birefringence susceptibility to exter-

nal reactions – thermal and mechanical dB/dT≈7 [rad/m/◦C],

dB/dε ≈100 [rad/mm]. These parameters are comparable to

the fibres manufactured by other standard methods. Birefrin-

gent MMC optical fibres were used for building all optical

fibre polarizers, by permanent discrimination of one compo-

nent of the fundamental mode [24]. Linearly birefringent, high

quality MMC fibre displayed 60dB of polarization discrimi-

nation.

One of fundamental classes of tailored optical fibres are

the ones with non-cylindrical cores. Well defined, geometry

based linear birefringence is present in single mode optical

fibres with elliptical cores [51]. Additional birefringence may

be added to these fibres also by the stress factor [32]. Ellip-

tical core optical fibres of changing ellipticities were man-

ufactured at Białystok OFTL using MMC technology [35]

and the results were compared with classical HB type fibres.

For large cores the natural geometry-based birefringence was

of the order of B≈10−5, while for small cores was bigger

B≈10−4. Other possibility to increase the birefringence was

tested by introduction of heterogeneous, anizotropic refractive

index profile. In a fibre with such a profile, the optical wave

sees different values of the wave evanescent w argument of

Bessel function K(w) in different perpendicular directions of

fibre transverse cross-section.

One of Białystok OFTL specialities are multicore optical

fibres [33–38]. A large number of various types of single-

mode and multimode multicore optical fibres were designed,

manufactured, tested, characterized and used in experimen-

tal applications [44, 52]. Twin core optical fibres were com-

pared to double mode optical fibres working with HE11 and

EH01 or LP11 and LP01 modes. Availability of research sam-

ples of multicore optical fibres gained a considerable interest

in them and resulted in many pilot applications. In a dou-

ble core optical fibre, and especially in twin-core fibre there

was demonstrated efficient transmission of strongly coupled

fundamental super-mode waves [41]. Generation of a com-

plex super-mode was obtained in a few types of multicore

fibres with three, four and more strongly coupled cores [39].

Some types of very complex optical fibres [46] are struc-

tures which cannot be obtained by MCVD method. Hybrid

methods RiT/MMC allow to manufacture fibres of ultimately

complex internal structure [32], and/or of complex signal and

susceptibility characteristics [30].

The current development of Białystok OFTL is concen-

trated on research on active optical fibres for narrowband and

wideband sources and sensors as well as opening MCVD

manufacturing facility [67–73]. The references listed below

are intentionally confined to the works published in cooper-

ation with J.Dorosz. They are arranged chronologically with

time. They show a history of more than 35 years of hard,

focused and efficient efforts concerning the development of

instrumentation optical fibres. These efforts were concentrat-

ed not only on technology, but also on attracting and opening
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Instrumentation optical fibres for wave transformation, signal processing, sensors, and photonic functional components...

this interesting field of photonics technology to young adepts

of science and research. Prof. Jan Dorosz, has recently passed

the baton to young generation of Białystok researchers. Now,

prof. Dominik Dorosz takes the helm, and he is surrounded

by a group of gifted and extremely devoted colleagues. This

paper, prepared for the Jubilee Issue of the Bull. Pol. Ac.:

Tech., bases on a wider description of non-telecom optical

fibres published in Polish elsewhere [66]. The bibliography

quotations in the text are only exemplary, referring to chosen

examples of work done on particular instrumentation fibres.

Wider choice of examples may be found in the extensive list

of references below.
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