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Control contribution for wear bearing recurrence process
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Abstract. This paper presents the methods of control problem solutions using recurrence equations implementation and UOS transformation
for the bearing wear estimation during the finite and infinite time units of an operation process. If we have two wear value increase processes
then very important is information which process is divergent more slowly. On the other hand, in comparison with two convergent processes
we must decide which process is convergent more quickly. The wear process is determined mostly by the summation factor method. Such a
method is applied for the solutions of recurrence equations with variable coefficients.

Key words: recurrences equations, wear bearing control process.

1. Preliminaries

The problems referring to the experimental and numerical
wear of slide bearing exploitation questions require the knowl-
edge of information about the features of the sequence of the
existing wear process during the operation time [1–4]. The
abovementioned information includes especially the kind and
velocity of the wear value increases during the particular time
units of the operation and very important are convergence and
divergence phenomena of the wear value increases. If we have
two wear value divergent processes, then very important is
information which process is divergent more slowly. On the
other hand, in comparison with two convergent processes, we
must decide which process is convergent more quickly. This
paper allows us to consider such a problem. If the wear value
process in particular time units of the operating time is de-
creasing to some wear limit values, then it is possible to obtain
the wear bearing stabilization in sufficient many time units of
the operation. If the wear value process in particular time units
of the operating time is increasing, then we have the phenom-
enon of wear bearing continuous increments in sufficient many
time units of the operation. In both cases mentioned above,
the sum of wear values after the considered time units of the
operation, i.e. the cumulative function of wear values can be
divergent. The most important for practical needs is the con-
vergence or divergence of the cumulative values of bearing
wear after the considered time units of the operation. To per-
form investigations of the abovementioned control problems,
the wear value processes are described by non-homogeneous
recurrent equations with a variable free term. The results ob-
tained in this paper show that convergence or divergence of
the wear processes depends on experimentally determined co-
efficients which occur in the considered wear recurrent equa-
tions. The coefficients depend on bearing materials, operation
conditions, environmental external influences, and vibration
influences. Therefore, the assumption and knowledge of ma-
terials, exploitation conditions and finally external influences

enable us to determine the control of wear during the op-
eration time [3, 4]. The results obtained in this paper show
how to anticipate wear of a slide bearing after many time
units of the operation if bearing materials, exploitation and
environmental conditions are known.

The presented paper is devoted both mathematical theo-
ry of solutions of summation or recurrence equations with
variable coefficients and applications to HDD micro-bearing
control wear process determination and its convergences in
succeeding time units of operation.

While the authors have applied recurrence equations with
variable coefficients for bearing material properties descrip-
tion, we can observe any relationship between the composi-
tions, microstructure, processing or other physical characteris-
tics of the tribo-components, that could add new information
to identify or quantify the roots causes and control of wear
of various bearing materials [5–8].

2. The object of the problem

We assume three sequences {gn}, {f n}, {hn} of three dimen-
sional wear values gn, fn, hn in mm3 or µm3 for particular
time units n = 1, 2, 3, . . . and for mentioned wear values we
assign the respective wear processes described by the follow-
ing three recurrent equations [1–8]:

gn+2 = Pgngn+1 + Qgngn, Pgn ≡
b

a
−

c

n + 1
,

Qgn ≡
b · c

a · n
,

b

a
>

c

n + 1
⇒ n >

a · c

b
− 1,

(1)

fn+2 = Pfnfn+1 + Qfnfn + Rfn,

Pfn ≡ 1 −
b

a · n
,

Qfn ≡
b

a · n
, Rfn =

d

a · n
, n >

b

a
,

n = 1, 2, 3, ...

(2)
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hn+2 = Phnhn+1 + Qhnhn + Rhn,

Phn = −
n2 + 1

n + 1
,

Qhn =
2n2

n + 1
, Rhn =

d · n

n + 1
,

n = 1, 2, 3, ...

(3)

After experimental measurements it follows, that dis-
crete wear values gn+2, fn+2, hn+2 of the sequences {gn},

{fn}, {hn} for n = 1, 2, 3, . . . i.e. the wear values increas-
es in mm3 of HDD micro-bearing journal or sleeve equal
to sums (Pgngn+1 + Qgngn), (Pfnfn+1 + Qfnfn + Rfn),
(Phnhn+1 +Qhnhn +Rhn) of wear in two foregoing succes-
sive time units (may be months) where addends are multiplied
by dimensionless variable stochastic wear coefficient Pgn and
Qgn or Pfn and Qfn or Phn and Qhn. Variable coefficients
Pgn, Qgn or Pfn, Qfn or Phn, Qhn as well free term Rfn,
Rhn depend on the obtained in experimental way dimensional
wear standard deviation of micro-bearing material, the journal
angular velocity and the frequencies of vibrations. Variable n
is numbered by natural numbers 1, 2, 3, . . .. Dimensionless
positive constants values a, b, c > 0 are independent of n
in (1) but d is dimensional in (2), (3). Constants a, b are di-
mensionless in (2) too. Such experimental values depend on:
bearing material properties, bearing operating conditions and
so on. To confirm the positive wear values gn, fn for each n in
first and second process (1), (2) we ought assume inequalities
n > (a · c/b) − 1 and n > b/a, n = 1, 2, . . . respectively. To
solve mentioned problem it is necessary to add the boundary
conditions. Hence we assume that in two first time units (may
be month for n = 1 and n = 2), the wear from experiments
attains dimensional values g1 = f1 = h1 = W1 [µm3], and
g2 = f2 = h2 = W2 [µm3] respectively.

The specific properties of wear values sequence described
by the formula (3) denotes wear prognosis where after suf-
ficient many time units n ≫ 1 of exploitation process, ob-
served wear value hn+2 in the next time units is exactly equal
the wear value d + n(2hn − hn+1) in previous time units.
The specific properties of wear values sequence described by
the formula (2) denotes wear prognosis where after sufficient
many time units n ≫ 1 of exploitation process, observed wear
value fn+2 in the next time units is exactly equal the wear
value fn+1 in previous time units.

The distinguishing mark of the wear values in sequence
(1) denotes wear prognosis where after sufficient many time
units n ≫ 1 of exploitation process, obtained wear value gn+2

in the next time units is equal to the wear value gn+1 in pre-
vious time units multiplied by the experimental determined
constant coefficient b/a which can be controlled or modulat-
ed. After sufficient many time units for n ≫ 1 or in the case
for c → 0, we have limits Pgn → b/a, Qgn → 0 and men-
tioned exploitation process (1) tends to the following recurrent
relation [9, 10]:

gn+2 =
b

a
gn+1, for n >> 1, or c → 0. (4)

In this singular case for additional assumption 0 < b/a < 1
then we have phenomenon of wear values decreasing to zero
after sufficient many time units of journal bearing operation.
It is only necessity condition of convergence of wear cumula-
tive value after sufficient many time units of operation. Nev-
ertheless the sufficient condition is satisfied and imposing the
boundary condition, the wear cumulative value after N ≫ 1
and infinite many time units of exploitation for N → ∞ has
the following form [9–11]:

GN =

N
∑

n=1

gn = W1g + W2g

1 − (b/a)N

1 − (b/a)
,

G∞ = W1g + W2g

a

a − b
.

(5)

3. A new variable method for wear cumulative

process determination

Now we show the method to be sure on the new variable intro-
duction which enables us to reduce the order of the considered
recurrence equation for wear cumulative process [5, 7]. Wear
process Eqs. (1), (2) can be described in the following form
[12, 13]:

for (1): a · yn+1 − b · yn = 0, (6a)1

yn ≡ gn+1 +
c

n
gn, (6a)2

for n = 1, 2, 3, ...
for (2): a · n · yn+1 + b · yn = d, (6b)1

yn ≡ fn+1 − fn (6b)2

for n = 1, 2, 3, ....
The homogeneous and non-homogeneous first order recur-

rent Eqs. (6a)1, (6b)1:

for (6a)1: a · yn+1 − b · yn = 0 ⇒ yn+1 −
b

a
yn = 0, (7a)

for (6b)1:

a · n · yn+1 + byn = d ⇒ yn+1 +
b

a · n
yn =

d

a · n
, (7b)

have the general solutions in the form: yn = Bn(C2) for
y1 = C2, n = 2, 3, 4, . . .; with the arbitrary constant C2. Such
solution yn are introduced into recurrent Eqs. (6a)2, (6b)2 and
hence we obtain the following, linear, non-homogeneous first
order wear process recurrence equation [14]:

for (6a)2: gn+1 +
c

n
gn = C2

(

b

a

)n−1

, (8a)

for (6b)2: fn+1 − fn =
C2

(n − 1)!

(

−
b

a

)n−1

+
d

a

n−1
∑

m=1

(m − 1) !

(n − 1) !

(

−
b

a

)n−m−1

, (8b)

where g1 = C1, f1 = C1 (arbitrary summation constant),
n = 2, 3, 4, . . .. We impose boundary conditions g1 = W1g
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and g2 = W2g; f1 = W1f and f2 = W2f in places n = 1
and n = 2, on the general solution (8a), (8b).

At first we determine wear process {gn}.
Equation (7a) has the general solution in the following

form [13, 14]:

yn = C2(−1)n−1

n−1
∏

j=1

(

−
b

a

)

=C2

(

b

a

)n−1

≡ Bn(C2) (9)

for n = 2, 3, 4, . . . where C2 = y1 denotes the arbitrary con-
stant.

Solution (9) in presented form yn is introduced into the
formula (6a)2 and hence we obtain the following implication
and wear process solution [15]:

(

gn+1 +
c

n
gn = yn

)

⇒

gn =
(−c)

n−1

(n − 1)!

{

C1+C2

n−1
∑

k=1

(−1)
k k!

c

(

b

a · c

)k−1
}

,
(10)

where n =2,3,. . . and g1 = C1.
On the general solution (10), we impose wear process

boundary conditions g1 = W1g and g2 = W2g in first n = 1
and in second time units n = 2. Hence we obtain:

C2 = W2 + cW1g, C1 = g1 = W1g. (11)

We put constants (11) into implication result (10). After sum-
mation and terms ordering in solution (10) the wear value
process solution has the final form:

gn = W1gg1n(δ, c, n) + W2gg2n(δ, c, n), (12)

where

g1n(δ, c, n)≡
(−c)n−1

(n−1)!

{

1+

n−1
∑

k=1

[

(−1)kk!

(

δ

c

)k−1
]}

,

g2n(δ, c, n)≡
(−c)n−2

(n−1)!

n−1
∑

k=1

[

(−1)k−1k!

(

δ

c

)k−1
]

,

(13)

whereas n = 2, 3, 4, . . .; k = 1, 2, . . ., n − 1; δ ≡ b/a, and
g11 = 1; g12 = 0; g21 = 0; g22 = 1. The wear values process
during the particular time units for c → 0, 0 < δ < 1 is
convergent to zero (g∞ → 0). We have [16]:

g∞ = W1gg1∞ (|δ| < 1, c → 0, n → ∞)

+ W2gg2∞ (|δ| < 1, c → 0, n → ∞) ,
(14)

where

g1∞ ≡ lim
n→∞

lim
c→0

(−c)n−1

(n−1)!

(
1 +

n−1X
k=1

"
(−1)kk!

�
δ

c

�k−1
#)

= lim
n→∞

lim
c→0

(
(−c)n−1

(n−1)!
+

1

(n−1)!

n−1X
k=1

(−1)n+k−1k! cn−k

)
= 0,

g2∞ ≡ lim
n→∞

lim
c→0

(−c)n−2

(n−1)!

n−1X
k=1

"
(−1)k−1k!

�
δ

c

�k−1
#
|δ|<1

= lim
n→∞

lim
c→0

(
1

(n−1)!

n−1X
k=1

(−1)n+k−3
·k!·δk−1

·cn−k−1

)
|δ|<1

= 0,

(15)

where n = 2, 3, 4, . . ., k = 1, 2, . . ., n − 1, δ ≡ b/a.
The sum of wear values i.e. cumulative wear values after

considered N and infinite time units i.e. for N → ∞ has the
form [17, 18]:

GN =

N
∑

n=1

gn =

W1gG1N (δ, c, N) + W2gG2N (δ, c, N),

G∞ =
∞
∑

n=1

gn

= W1gG1∞ (δ, c,∞) + W2gG2∞ (δ, c,∞),

(16)

G1N (δ, c, N) ≡

N
∑

n=1

g1n (δ, c, n),

G2N (δ, c, N) ≡

N
∑

n=1

g2n (δ, c, n).

(17)

For c > 0 and δ > 1 cumulative sums of wear GN ,
GN+1, GN+2, . . . always increase after successive N , N +1,
N +2, . . . time units hence cumulative wear process in diver-
gent. For c → 0 and 0 < δ < 1 wear process is convergent
and then cumulative wear sums have finally the form (5).

Now we determine wear process {fn}.

Equation (7b) has the general solution in the following
form:

yn =
C2

(n−1)!
(−1)n−1

(

b

a

)n−1

+
d

a
f3n,

f3n ≡

n−1
∑

m=1

(m−1)!

(n−1)!

(

−
b

a

)n−m−1

for n = 2, 3, 4, ...,

(18)
where C2 = y1 denotes the arbitrary constant.

Solution (18) in presented form yn is introduced into the
formula (6b)2 and hence we obtain the following implication
and wear process solution:

fn+1 − fn = yn

⇒ fn = C1 +

n−1
∑

k=1

[

C2

(k − 1)!

(

−
b

a

)k−1

+
d

a
f3k

]

,
(19)

whereas f1 = C1, C2 – arbitrary summation constant, f3n –
free term function f31 = f32 = 0.

To determine the particular solution of recurrence Eq. (2)
we impose boundary conditions f1 = W1f and f2 = W2f in
places n = 1 and n = 2 on the solution (19), and we obtain:

C2 = W2f − W1f = f2 − f1 = y1, C1 = W1f . (20)

We put constant C2 and C1 from Eq. (20) into Eq. (19), then
the particular solution of recurrence Eq. (2) has the final par-
ticular wear value solution in following form [19]:

fn = W1ff1n(δ, n) + W2ff2n(δ, n) + ∆ · f3n, (21)
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where

f1n (δ, n) ≡ 1 −

n−1
∑

k=1

[

(−δ)
k−1

(k − 1)!

]

,

f2n (δ, n) ≡
n−1
∑

k=1

[

(−δ)k−1

(k − 1)!

]

n = 2, 3, ...,

f3n (δ, n) ≡ +
n−1
∑

k=1

[

k−1
∑

m=1

(m − 1) !

(k − 1) !
(−δ)k−m−1

]

,

n = 3, 4, ...,

(22)

whereas δ ≡ b/a, ∆ ≡ d/a and f11 = 1, f21 = 0, f31 = 0,
f32 = 0, m = 1, 2, . . ., k − 1; k = 1, 2, . . ., n − 1.

During the infinity time units (n → ∞) the wear attains
the value [16, 19]:

f∞ = W1ff1∞ (δ,∞) + W2ff2∞ (δ,∞) + ∆ · f3∞ (δ,∞),

f1∞ (δ,∞) = 1 − e−δ, f2∞ (δ,∞) = e−δ,

f3∞ (δ,∞) = +
∞
∑

k=2

[

k−1
∑

m=1

(m − 1)!

(k − 1)!
(−δ)k−m−1

]

,

1 − e−δ > 0.
(23)

The sum of wear values i.e. cumulative wear values after con-
sidered N and infinite time units i.e. for N → ∞ has the form:

FN =

N
∑

n=1

fn = W1fF1N (δ, N)

+W2fF2N (δ, N) + ∆ · F3N ,

F∞ =

∞
∑

n=1

fn = W1fF1∞ (δ,∞)

+W2fF2∞ (δ,∞) + ∆ · F3∞,

(24)

F1N (δ, N) ≡
N

∑

n=1

f1n (δ, n),

F2N (δ, N) ≡

N
∑

n=1

f2n (δ, n),

F3N (δ, N) ≡
N

∑

n=1

f3n (δ, n).

(25)

F1∞ (δ,∞) ≡

∞
∑

n=1

f1n (δ, n),

F2∞ (δ,∞) ≡

∞
∑

n=1

f2n (δ, n),

F3∞ (δ,∞) ≡

∞
∑

n=1

f3n (δ, n).

(26)

The sums of wear FN , FN+1, FN+2, . . . always increase af-
ter successive N , N + 1, N + 2, . . . time units. Hence the
considered wear process is divergent.

The particular sums of wear values after successive time
units N = 1, 3, . . . have the following form [19]:

F1 = W1f + W2f · 0, F2 = W1f + W2f ,

FN ≡ W1f

N
∑

n=1

{

1 −

n−1
∑

k=1

[

(−δ)
k−1

(k − 1)!

]}

+W2f

N
∑

n=1

{

n−1
∑

k=1

[

(−δ)
k−1

(k − 1)!

]}

+∆ ·

N
∑

n=1

{

n−1
∑

k=1

[

k−1
∑

m=1

(m − 1)!

(k − 1)!
(−δ)

k−m−1

]}

,

N = 2, 3, 4, ...

......................................................................

F∞ ≡ W1f

∞
∑

n=1

{

1 −

n−1
∑

k=1

[

(−δ)
k−1

(k − 1)!

]}

+W2f

∞
∑

n=1

{

n−1
∑

k=1

[

(−δ)
k−1

(k − 1)!

]}

+∆ ·

∞
∑

n=1

{

n−1
∑

k=1

[

k−1
∑

m=1

(m − 1)!

(k − 1)!
(−δ)

k−m−1

]}

→ ∞.

(27)

To prove that the sums of wear values after successive time
units N = 1, 2, 3, . . . have always the positive values, we
write the wear values (22) for ∆ = 0 in following form [20]:

f3 = W1f + (W2f − W1f ) (1 − δ),

f4 = W1f + (W2f − W1f )

[

1 +
1

1!
(−δ) +

1

2!
(−δ)

2

]

,

....................................................................

fn = W1f + (W2f − W1f )

·

[

1 +
1

1!
(−δ) +

1

2!
(−δ)

2
+ .... +

1

(n − 1)!
(−δ)

n−1

]

,

(28)

and during the infinity time units the wear attain the value:

f∞ = W1f + (W2f − W1f ) exp (−δ)

= W1f

(

1 − e−δ
)

+ W2f e−δ, 1 − e−δ > 0.
(29)

whereas W2f > W1f .

4. Summation factor tools for wear process

determination

Let l.h.s. of the following second order non-homogeneous re-
currence Eq. (3) describing wear process {hn} for n = 1, 2, ...
and with free term Rhn:

hn+2 − Phnhn+1 − Qhnhn = Rhn, (30)

is the total sum or the total differential. In this case we can
choose such coefficients Ln, Mn that the following equality
is true [19, 20]:
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S1
ερ (Lnhn+1 + Mnhn)

= hn+2 − Phnhn+1 − Qhnhn = Rhn.
(31)

Unified Operator of Summation (UOS) of first rank imposed
on the complex number (. . . ) is defined in the following form
[19, 20]:

S1
ερ(...) ≡ S1

0(....) + ερ(...), (32)

whereas Unitary Translation Operator (UTO) gives:

S1
0(hn) ≡ hn+1, S0

0(hn) ≡ hn. (33)

We denote: ρ – complex number of the complex variable, ερ
– basis of the unified operator of summation S in particular
case is equal ερ = +1 or ερ = −1, 1 – the first rank as an
upper index of the operator of the unified summation, −1 –
the first rank as an upper index of the reciprocal operator of
the unified summation.

Imposing reciprocal first order operator UOS on the both
sides of Eq. (31) we obtain [19]:

Lnhn+1 + Mnhn = S−1
ερ (Rhn) + C (−ερ)

n
. (34)

The symbol S−1
ερ is the reciprocal unified operator of sum-

mation UOS with the basis ερ and C-arbitrary summation
constant. If the equality (30) not valid i.e. total sum not ex-
ists, we can find the summation factor Un for Eq. (30). After
multiplication of both sides of the Eq. (30) by this factor,
we can always find such coefficients L∗

n, M∗

n that following
equality is true [20]:

S1
ερ (L∗

nhn+1 + M∗

nhn)

= Unhn+2 − UnPhnhn+1 − UnQhnhn = UnRhn.
(35)

Imposing the reciprocal first order operator UOS on the both
sides of Eq. (35) we obtain [20]:

L∗

nfn+1 + M∗

nfn = S−1
ερ (UnRn) + C (−ερ)

n
. (36)

Reciprocal UOS is always univocal because [20]:

S−1
ερ [C (−ερ)

n
] ≡ 0. (37)

Formulae (34) and (36) present the first order non-
homogeneous recurrent equation with variable coefficients.

5. Wear process resolved by means

of summation factor

Now we are going to the determination of the wear process
sequence {hn} for n = 1, 2, 3, . . . i.e. the wear solution from
the Eq. (3) presented in the following form [20]:

(

1 +
1

n

)

hn+2 +

(

n +
1

n

)

hn+1 − 2n · hn = d

⇔ hn+2 = −
n2 + 1

n + 1
hn+1 +

2n2

n + 1
hn +

d · n

n + 1
,

(38)

where d 6= 0 denotes an arbitrary coefficient independent of n.
We take into account wear solution for known boundary con-
ditions i.e. wear values h1 = W1h, h2 = W2h in two succes-
sive time units n = 1 and n = 2. In abovementioned problem
L.h.s. of recurrence Eq. (38) does not present the total sum.

Symbol Un ≡ n is the summation factor, because multiplying
by n both sides of Eq. (38) we obtain:

(n + 1) hn+2 +
(

n2 + 1
)

hn+1 − 2n2hn = d · n (39)

and by virtue of UOS transformation [20] the following equal-
ity is true:

S1
−2

(

n · hn+1 + n2hn

)

= (n + 1)hn+2 + (n + 1)2 hn+1 − 2n · hn+1 − 2n2hn

= (n + 1)hn+2 +
(

n2 + 1
)

hn+1 − 2n2hn.

(40)

Hence Eq. (39) can be written in the following form:

S1
−2

(

n · hn+1 + n2hn

)

= d · n. (41)

When a reciprocal UOS operator is imposed on the both sides
of Eq. (41), we obtain the following expression [20]:

n · hn+1 + n2hn = S−1
−2 (d · n). (42)

By virtue of properties of reciprocal UOS operator, we obtain
[20]:

S−1

−2 (d · n) = d · n · J − d · J2 + C3 · [− (−2)]
n

,

J ≡
1

1 + ερ
=

1

1 − 2
= −1.

(43)

Symbol C3 denotes the first summation constant. Equa-
tion (42) has the form:

n · hn+1 + n2 · hn = −d · n − d + C3 · 2
n. (44)

Dividing both sides of Eq. (44) by n, we obtain:

hn+1 + n · hn = −d

(

1 +
1

n

)

+ C3 ·
2n

n
. (45)

The general solution of Eq. (45) has after transformation the
following form [19–23]:

hn = (−1)n−1 · (n − 1)!















C4 +

n−1
∑

k=1









(−1)k

C3

k
· 2k − d

(

1 +
1

k

)

k!























.
(46)

n = 2, 3, . . . where h1 = C4. On solution (46) we impose
boundary condition h1 = W1h for n = 1 and h2 = W2h

in place n = 2, hence we obtain the following summation
constants:

C4 = W1h,

C3 = d + 0.5 (W1h + W2h).
(47)

In presented formula (46) we can now show a linear combi-
nation of two linear independent particular solutions of the
homogeneous equation plus the particular solution of non-
homogeneous recurrence accordingly with Eq. (38). Above-
mentioned linear combination of particular solutions is written
in following form [20]:
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hn = W1h h1n + W2h h2n + h3n, n = 1, 2, 3, ...,

h1n = (−1)n−1(n − 1)!

[

1 +
n−1
∑

k=1

(−1)k 2k−1

kk!

]

,

n = 2, 3, ...,

h2n = (−1)n−1(n − 1)!
n−1
∑

k=1

(−1)k 2k−1

kk!
,

n = 2, 3, ...,

h3n = d(−1)n−1(n − 1)!

n−1
∑

k=1

(−1)
k

kk!

(

1 + k − 2k
)

,

n = 2, 3, ..., k = 1, 2, ..., n− 1,

h11 = 0, h21 = 0, h31 = 0.

(48)

6. The general numerical implementations

The numerical calculations are performed using Mathcad 15
Professional Program.

To illustrate the cumulative dimensionless wear values
G1N , G2N after N = 10, 15, 20, 25, 30 time units pre-
sented by sums (16), (17) taking into account results (13) we
perform the numerical calculations.

The sum of dimensionless wear values computation results
for functions G1N , G2N after N = 10, 15, 20, 25, 30 time
units and for dimensionless ratio 0.3 < δ < 1 and 0.1 ≤ c < 1
are presented in Figs. 1–3.

a)

b)

Fig. 1. The cumulative dimensionless wear values: a) for G1N , b) for
G2N after N = 10, 15, 20, 25, 30 time units of operations versus
dimensionless parameter ratio δ = b/a inside interval (0.30,1.0)
presenting bearing material properties and operating conditions with

c = 0.30

a)

b)

Fig. 2. The cumulative dimensionless wear values: a) for G1N , b) for
G2N after N = 10, 15, 20, 25, 30 time units of operations versus
dimensionless parameter ratio δ = b/a inside interval (0.30,1.0)
presenting bearing material properties and operating conditions with

d = 0.50

a)

b)

Fig. 3. The cumulative dimensionless wear values: a) for G1N , b) for
G2N after N = 10, 15, 20, 25, 30 time units of operations versus
dimensionless parameter ratio δ = b/a inside interval (0.30,1.0)
presenting bearing material properties and operating conditions with

d = 0.90
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Sums of dimensionless wear values G1N , G2N , are con-
vergent if time unit N increases. To obtain bearing dimen-
sional wear values after N time units we must multiply the
dimensionless values G1N , G2N , indicated in Fig. 1–3 by the
in experimental way obtained dimensional wear values W1g ,
W2g in µm3 respectively. The cumulative wear value after fi-
nite N or infinite time units of operation has finally the form
(16).

By virtue of performed calculations we can see that the
largest cumulative wear values increase after N time units
of bearing operations are observed for the dimensionless ra-
tio δ = b/a occurring in interval from 0.85 to 1.00 for G1N ,
G2N . Moreover the increases of the ratio δ imply consequently
the cumulative wear increments presented by the values G1N ,
G2N . This fact is very easy to explain, because ratio δ increas-
es for the bearing material especially hardness decreases.

Wear divergence process increases if increases dimension-
less parameter c depending on standard deviation of vibration
frequencies.

To illustrate the cumulative dimensionless wear values
F1N , F2N , F3N after N = 10, 15, 20, 25, 30 time units
presented by sums (23), (24), (25) taking into account re-
sults (27) we perform the numerical calculations. The sum of
dimensionless wear values computation results for functions
F1N , F2N , F3N after N = 10, 15, 20, 25, 30 time units and
for dimensionless ratio 1 < δ < 3 are presented in Figs. 4—9.

a)

b)

Fig. 4. The cumulative wear dimensionless values F1N after N time
units of operations versus dimensionless parameter ratio δ = b/a
in interval (0,3) presenting bearing material properties and operat-
ing conditions: a) two dimensional chart of dependencies, b) three

dimensional view

a)

b)

Fig. 5. The cumulative wear dimensionless values F2N after N time
units of operations versus dimensionless parameter ratio δ = b/a
in interval (0,3) presenting bearing material properties and operat-
ing conditions: a) two dimensional chart of dependencies, b) three

dimensional view

a)

b)

Fig. 6. The cumulative wear dimensionless values F3N after N time
units of operations versus dimensionless parameter ratio δ = b/a
in interval (0,3) presenting bearing material properties and operat-
ing conditions: a) two dimensional chart of dependencies, b) three

dimensional view
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a)

b)

Fig. 7. The cumulative dimensional wear values: a) for interrup-
tion mode of bearing operation ∆ > 0, b) for continuous mode
∆ = 0, after N time units of operation versus dimensionless ratio
δ = b/a presenting bearing material properties for W1f = 1.0 µm3,

W2f = 0.5 µm3

a)

b)

Fig. 8. The cumulative dimensional wear values: a) for interruption
mode of bearing operation ∆ > 0, b) for continuous mode ∆ = 0,
after N time units of operation versus dimensionless ratio δ = b/a
presenting bearing material properties and operating conditions for

W1f = 1.0 µm3, W2f = 1.0 µm3

a)

b)

Fig. 9. The cumulative dimensional wear values: a) for interruption
mode of bearing operation ∆ > 0, b) for continuous mode ∆ = 0,
after N time units of operation versus dimensionless ratio δ = b/a
presenting bearing material properties and operating conditions for

W1 = 1.0 µm3, W2 = 1.5 µm3

It is evident that the values of sums F1N , F2N , F3N in
each case are increasing if the number of time units N in-
creases. By virtue of performed calculations we can see that
the largest cumulative wear values increase after N time units
of bearing operations are observed for the dimensionless ratio
δ = b/a occurring in interval from 2 to 3 for F1N see Fig. 4
and from 0 to 1 for F2N and F3N see Figs. 5, 6. Therefore
the influence of the δ ratio value on the final cumulative wear
value, will be decide after calculations presenting in Figs. 7–9.

To obtain bearing wear dimensional values after N time
units we must multiply the dimensionless values F1N , F2N ,
F3N indicated in Figs. 4–6 by the in experimental way ob-
tained dimensional wear values W1f , W2f , ∆ in µm3 respec-
tively. Value ∆ = d/a describes various operation conditions.
The cumulative wear dimensional value after finite N or in-
finite time units of operation has finally the form (27).

To obtain the synchronous influences of the dimensionless
δ = b/a ratio value presenting various properties of bear-
ing materials and influences of bearing operation conditions
presented by parameter dimensional ∆ on the final cumula-
tive wear value, we perform the additionally calculations in
Figs. 7–9.

For example the final cumulative dimensional wear values
after N = 10, 15, 20, 25, 30 time units of operation time and
for selected dimensional wear values W1f , W2f in two first
time units as well for selected dimensional values ∆ in µm3

are illustrated in Figs. 7–9.
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7. Particular calculation example

In two first successive time units slide bearing journal or
of artificial human hip joint attains wear values W1f [µm3],
W2f [µm3]. Determine sum of the wear after ten time units
if we know that in sliding nod we have following parameters
obtained in experimental way: δ = 0.5; d = 0, ∆ = 0. After
measurements we obtain wear (during 100 days) after first
time unit W1f = 0.1 µm3 and wear during the next time unit
W2f = 0.2 µm3. Determine wear after 1000 days i.e. after
N = 10 time units.

Solutions:
From charts presented in Fig. 4a,b and Fig. 5a,b for δ =

0.5 and N = 10 we read F1,10 = 3.2379 and F2,10 = 5.7621.
In other hand by virtue of the Eqs. (22), (24), (25) the total
wear value after ten time units attain value:

F10 = 0.1µm3

10
∑

n=1

f1n (δ, n) + 0.2µm3

10
∑

n=1

f2n (δ, n)

= 0.1µm3 · 3.2379 + 0.2µm3 · 5.7621

= 1.47621 µm3.

(49)

Abovementioned example can be applies for wear determina-
tion during operation of slide journal bearing as well operation
of human artificial hip joint (end prosthesis) [24].

8. Finally remarks

From calculations presented in Figs. 7–9 we show:

• The trends of the marked increases of final cumulative wear
values of bearing surfaces for the hardness decreases of
bearing material i.e. δ increases and after interruption mode
increases of bearing exploitation (i.e. for positive ∆ > 0
increases);

• The tendencies of the very small changes of final cumula-
tive wear values of bearing surfaces for the hardness de-
creases of bearing material i.e. δ increases and after con-
tinuous mode of bearing exploitation (and ∆ = 0);

• The inclinations of the increases of final cumulative wear
values of bearing surfaces for the operation time units N
increases;

• The tendencies of the increases of final cumulative wear
values of bearing surfaces for the interrupted bearing op-
eration mode increases (i.e. for ∆ > 0 increases).

From calculations presented in Figs. 1–3 we show:

• The trends of the increases of final cumulative wear values
of bearing surfaces for the standard deviation increases of
vibration frequencies (i.e. for c dimensionless increases).

9. Conclusions

1. In this paper the bearing wear prognosis was performed
for the wear process where after sufficient many time units
of the exploitation process, the wear value in the next time
units is equal to the wear value in previous time unit multi-
plied by the various form of experimental determined func-
tions depended on a bearing material, an operation mode,

vibration conditions where behavior of such functions has
various limits obtained in an experimental way after suffi-
cient many time units of an operation time.

2. The application of the presented theory is devoted to the
analytical methods for wear slide bearing divergence and
convergence course prognosis in particular time units of op-
erating time and after sufficient many time units of bearing
operation. Moreover, the kind and velocity of divergence
and convergence process of the sum of wear i.e. cumula-
tive values after arbitrary time units of bearing exploita-
tion has been considered. In the case of convergence wear
processes, the cumulative sums of wear has been obtained
in analytical form.

3. The presented analytical tools for the mentioned thesis ex-
amination are constituted by the method of solution of the
second order non homogeneous recurrence equations with
variable coefficients with various limits tendencies after
many time units of operation time which are determined
from the measurements. This fact enables to control the
physical characteristics of bearing materials, vibration in-
fluences, bearing operation materials that could add a new
unknown influence on the bearing wear.

4. The recurrence equations determining the wear values of
slide journal bearing are solved by means of the new meth-
ods namely UOS transformation, replacement of variables
and summation factor presented by the authors in forego-
ing papers [20, 23]. The method of a summation factor
is in this paper implemented by the reciprocal UOS (Uni-
fied Operator of Summation) tool derived by the author
and applied for the analytical solutions of the recurrent
non-homogeneous second order equation with variable co-
efficients and a variable free term.
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