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Abstract. This paper presents research on applications of fuzzy logic and higher-order fuzzy logic systems to control filters reducing air

pollution [1]. The filters use Selective Catalytic Reduction (SCR) method and, as for now, this process is controlled manually by a human

expert. The goal of the research is to control an SCR system responsible for emission of nitrogen oxide (NO) and nitrogen dioxide (NO2)

to the air, using SCR with ammonia (NH3). There are two higher-order fuzzy logic systems presented, applying interval-valued fuzzy sets

and type-2 fuzzy sets, respectively. Fuzzy sets and higher order fuzzy sets describe linguistically levels of nitrogen oxides as the input, and

settings of ammonia valve in the air filter as the output. The obtained results are consistent with data provided by experts. Besides, we show

that the type-2 fuzzy logic controllers allows us to obtain results much closer to desired parameters of the ammonia valve, than traditional

FLS.
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1. Fuzzy management and processing data

on air pollution

1.1. Characteristics of the problem. Nitrogen oxide (NO)

and nitrogen dioxide (NO2) are gases that are side products

of chemical processes, that can be, in general, characterized

as a combustion of different fuels. These gases must be ex-

hausted to the atmosphere, though they are very dangerous

for human life and for the nature. That is why the amount

of nitrogen oxides must be meaningfully reduced, e.g. with

ammonia (NH3), before they are released. The so-called Se-

lective Catalytic Reduction (SCR), is one of the most popular

way of reduction nitrogen oxides in exhaust gases. The main

idea of an SCR system is to add an appropriate amount of

ammonia to exhaust gases to cause the reduction reaction.

The amount of ammonia is adjusted by a valve, and adjust-

ments (settings) of the valve are dependent on the amount

of nitrogen oxides. Since the process is non-linear, no tradi-

tional control system excluding human supervision has been

applied. As for now, the process, in particular, adjustments

of ammonia valve (its opening angle), are still supervised by

a human expert. Therefore, we propose to apply fuzzy logic

systems (FLS), especially, higher-order fuzzy logic systems

to control efficiently the SCR processes, and to limit, at least

partially, human participation in the process, see Fig. 1.

1.2. Related work. Publication [2] describes some types

of uncertainty that must be handled in power management

systems. The authors show numerous problems encountered

when trying to apply optimization methods. Despite the great

interest in the world of science-based solutions, the majority

of expert knowledge rather than optimization algorithms is

well visible. Traditional methods of control lead to a com-

promise to reach acceptable solutions. Fuzzy logic provides a

framework for discussion of modeling such solutions. Exam-

ples of fuzzy logic systems applications are broadly known,

e.g. [3–5]. Another work on FLSs in the industry and the en-

vironment is [6]. Because of non-linearity of those processes,

fuzzy logic is proposed as one of the most hopeful meth-

ods, and the authors postulate to use it when indexing indus-

tries, in terms of the level of air and water pollution. Publi-

cations that deal with the general problem of fuzzy sets and

fuzzy controllers are [7–10]. The authors [11] present rules

and ideas for Interval type-2 fuzzy logic systems. They in-

troduce the concept of upper and lower membership func-

tions. Higher order fuzzy logic systems are also described

in [12–14].

2. Selective Catalytic Reduction (SCR) system

and dedicated fuzzy controller

2.1. Architecture of SCR system and its control signals.

DeNOx filtration system relies on chemical reactions occur-

ring between nitrogen oxides (NOx) and ammonia (NH3). As

a result of reaction of these two components, nitrogen and wa-

ter are obtained. The exhaust gases containing nitrogen oxides

are introduced to a reactor. Liquid ammonia is taken from a

tank, and it is then converted by heat to gas injected to the

reactor. Ammonia gas in the process is a reducer separating

molecules of NOx to nitrogen N2 and water H2O. Because

ammonia used in the process is both extremely detrimental

∗e-mail: adam.niewiadomski@p.lodz.pl

743



A. Niewiadomski and M. Kacprowicz

compound and relatively expensive, the appropriate dosage

for both ecological and financial reasons is crucial for the

architecture of the system. The amount of ammonia entered

to the reactor system is determined by opening the ammonia

valve. Valve control signals, in particular, the desired angles

of opening the valve are computed by a traditional controller

and supervised by a human operator, who makes his/her deci-

sions on the base of “NOx Flow” taken from exhaust gases, in

particular, from sensors located in the final part of the exhaust

(in the chimney), see Fig. 1.

The main scope of the research is to propose an intelligent

computer system based on fuzzy logic, that can replace, or,

at least, limit human participation in the process by applying

fuzzy logic and higher-order fuzzy logic systems, see Figs. 1

and 2.

Fig. 1. A general schema of Selective Catalytic Reduction filter sys-

tem. The red line bounds the part of the system, the fuzzy logic is

proposed to be applied

Fig. 2. A part of a general schema of SCR (see Fig. 1). Fuzzy

controller output adjusts the valve that is responsible for ammonia

injected to exhaust gases

2.2. Design of the higher order fuzzy controller for SCR.

We propose to use a fuzzy logic system (in the sense of Mam-

dani) to control the amount of ammonia (NH3) injected to

the reaction chamber. This decision is taken on the basis of

the input data of the level of NO and NO2. The input data

are fuzzified, then IF-THEN rules with fuzzy implication are

applied, and finally, the output fuzzy sets are defuzzified to

obtain a control value. The controller allows us to configure

the method for selecting rule that are fired. The input values

are derived from NO and NO2 sensors located at the output of

the SCR system, see “NOx Flow” and the symbol of chimney

in Fig. 1.

The sensors are read every 2 seconds. This period is se-

lected because of limits on emissions of nitrogen oxides and

on technical possibilities of controlling valves of the inflow

filter of ammonia. According to current regulations limit, the

total concentration of nitrogen oxides and dioxides is limited

to 400 mg/m3. The values of NOx concentration read from

sensors are fuzzified to linguistic expressions: Low, Medium,

High, Higher than acceptable. Interval-valued fuzzy sets rep-

resenting these labels in Experiment I are given in Fig. 6; anal-

ogous type-2 fuzzy sets represent the labels in Experiment II,

see Fig. 11. The output of the controller is the desired angle

of the ammonia valve opening, and is described by linguistic

labels: Low, Medium, High, Very High. Interval-valued fuzzy

sets representing these labels in Experiment I are depicted

in Fig. 7; type-2 fuzzy sets representing the same labels in

Experiment II are given in Fig. 12.

2.3. IF-THEN rules. The following sixteen rules are created

to specify a linguistic value of the output.

IF (NO IS Low) AND (NO2 IS Low) THEN Valve opening angle IS Low

IF (NO IS Low) AND (NO2 IS Medium) THEN Valve opening angle IS Low

IF (NO IS Low) AND (NO2 IS High) THEN Valve opening angle IS Medium

IF (NO IS Low) AND (NO2 IS Higher Than Acceptable) THEN Valve opening angle

IS High

IF (NO IS Medium) AND (NO2 IS Low) THEN Valve opening angle IS Low

IF (NO IS Medium) AND (NO2 IS Medium) THEN Valve opening angle IS Medium

IF (NO IS Medium) AND (NO2 IS High) THEN Valve opening angle IS High

IF (NO IS Medium) AND (NO2 IS Higher Than Acceptable) THEN Valve opening

angle IS High

IF (NO IS High) AND (NO2 IS Low) THEN Valve opening angle IS Medium

IF (NO IS High) AND (NO2 IS Medium) THEN Valve opening angle IS High

IF (NO IS High) AND (NO2 IS High) THEN Valve opening angle IS High

IF (NO IS High) AND (NO2 IS Higher Than Acceptable) THEN Valve opening angle

IS Very High

IF (NO IS Higher Than Acceptable) AND (NO2 IS Low) THEN Valve opening angle

IS High

IF (NO IS Higher Than Acceptable) AND (NO2 IS Medium) THEN Valve opening

angle IS Very High

IF (NO IS Higher Than Acceptable) AND (NO2 IS High) THEN Valve opening angle

IS Very High

IF (NO IS Higher Than Acceptable) AND (NO2 IS Higher Than Acceptable) THEN

Valve opening angle IS Very High

2.4. Type reduction and defuzzification. The last two ele-

ment of higher-order fuzzy logic controller are type-reduction

block and defuzzification block. Type-reduction is a trans-

formation of higher order fuzzy sets appearing on output

to traditional (type-1) fuzzy sets, that are then defuzzi-

fied.
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For the higher-order fuzzy controller based on interval-

valued fuzzy sets, the following method of type reduction is

applied [15]:

TRp(A) = {〈x, µ
A
(x)+p

(
µA(x)−µ

A
(x)

)
〉 : x ∈ X}, (1)

where p ∈ [0, 1]. In particular, this method for p = 0.5 is

applied in the interval-valued fuzzy controller described in

Section entitled “Experiment I”. On the other hand, in the

implementation of type-2 fuzzy controller presented in Sec-

tion “Experiment II, the type reduction operation on a fuzzy

set A in a discrete X = {x1, . . . , xN}, N ∈ N, is based on

the centroid [16]:

CA =

N∑
i=1

xiµA(xi)

N∑
i=1

µA(xi)

. (2)

Using Extension Principle, centroid of a type-2 fuzzy set

Ã = {(x, µ eA(x)) : x ∈ X} in X such that µ eA(xi) =∫
u∈Jxi

fxi
(u)/u, and Jx ⊆ [0, 1] is the set of all primary

memberships of xi to Ã, is given:

C eA =

∫

θ1∈Jx1

...

∫

θN∈JxN

[fx1
(θ1)

T∗ ...
T∗ fxN

(θN )]

/ N∑
i=1

xiθi

N∑
i=1

θi

,

(3)

where θ ∈ [Jx, J̄x], and T is a T -norm.

Defuzzification in both interval-valued and type-2 fuzzy

controllers is the Height Method:

y∗ =

m∑
i=1

yiµCi∗

m∑
i=1

µCi∗

, (4)

where y∗ is a real output value, µCi∗ is the value of i-th
fuzzy rule activation, and yi is an element of Y with the

highest membership.

3. Type-2 fuzzy implications:

Traditional vs. “engineering”

The inference process in type-2 fuzzy controllers is obviously

based on fuzzy implications and generalized rule modus po-

nens. Let Ã, Ã′ be type-2 fuzzy sets in X , and B̃, B̃′ – in Y .

B̃′ is evaluated as:

B̃′ = Ã′ ◦ (Ã → B̃). (5)

In typical fuzzy logic systems in the sense of Mamdani, fuzzy

implications are based on T -norms:

µA→B(x, y) = T (µA(x), µB(y)) . (6)

However, such an approach does not guarantee that the ”impli-

cation” can be seen as an extension of traditional implication

in classic logic. Mendel calls them “engineering implications”

to distinguish them from the implication in its traditional log-

ical meaning [13]. It is illustrated in Table 1.

Table 1

Minimum and product “implications” vs. classic implication. Both

T -norm-based implications produce 0, if the value of antecedent is 0, too.

This distinguishes them from the classic implication

µA(x) µB(y) min{µA(x), µB(y)} µA(x)µB(y) classic

0 0 0 0 1

0 1 0 0 1

1 0 0 0 0

1 1 1 1 1

On the other hand, some publications, e.g. [17], put strong

emphasis on compatibility of fuzzy implications with the clas-

sic implication. Conditions that must be fulfilled by operators

I : [0, 1]2 → [0, 1] to make them compatible with the classic

implication are now enumerated [17]:

∀a,b,c∈[0,1]

1. a ≤ c → I(a, b) ≥ I(c, b) ,

2. b ≤ c → I(a, b) ≤ I(a, c) ,

3. I(0, a) = 1 ,

4. I(a, 1) = 1 ,

5. I(1, 0) = 0 .

The most known fuzzy implications are presented in Ta-

ble 2.

Table 2

Fuzzy implications compatible with the classic implication

Name Implication

1 Kleene-Dienes max{1 − a, b}

2 Łukasiewicz min{1, 1 − a + b}

3 Reichenbach 1 − a + ab

4 Fodor
1, if a ≤ b

max{1 − a, b} , otherwise a > b

5 Rescher
1, if a ≤ b

0, otherwise a > b

6 Gödel
1, if a ≤ b

b, otherwise a > b

7 Yager
1, if a = 0

ba, otherwise a > 0

8 Zadeh max{min{a, b}, 1 − a}

9 Dubois-Prade

1 − a, if b = 0

b, if a = 1

1, otherwise

It must be added, that some of implications enumerated in

Table 2 do not satisfy one or more conditions 1–5. An exam-

ple is the Zadeh implication, that does not meet conditions 1

and 4, (see row 8).

3.1. Interval-valued fuzzy implications. The implications

applied in the interval-valued “version” of the designed

fuzzy controller are based on T -norm minimum. Let A,

B be interval-valued fuzzy sets in X , Y , respectively, µ
A

,

µA : X → [0, 1] are lower and upper membership functions

of A, respectively, and µ
B

, µB : Y → [0, 1] – analogous-

ly. Implications applied in the interval-valued FLS are in the

form of:

µA→B(x, y) =
[
T (µ

A
(x), µ

B
(y)), T (µA(x), µB(y))

]
. (7)
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For T = min we have:

µA→B(x, y)

=
[
min{µ

A
(x), µ

B
(y)}, min{µA(x), µB(y)}

]
.

(8)

An example of applying implication (8) for two of IF-

THEN rules:

IF (NO IS Low) AND (NO2 IS Low) THEN Valve opening angle IS Low

IF (NO IS High) AND (NO2 IS Low) THEN Valve opening angle IS Medium

presented in Section ”Design of the higher order...”, is illus-

trated in Fig. 3. Interval-valued fuzzy sets representing the

input, concentration level of nitrogen oxides, are depicted in

Fig. 6. Interval-valued fuzzy sets representing the output, the

ammonia valve opening angle, are depicted in Fig. 7.

Fig. 3. Fuzzy implication (8) for two of rules fired for chosen values

of NO and NO2. As the result of the inference (on the right), the

membership function constructed of membership functions of input

interval-valued fuzzy sets (on the left) is evaluated

Other implications for interval-valued fuzzy logic systems

are suggested in [7, 18].

3.2. New implications for a type-2 fuzzy logic system. In

this paragraph, some modifications of type-2 fuzzy implica-

tions are discussed. Let Ã, B̃ be type-2 fuzzy sets in X , Y ,

respectively, denoted as follows:

µ eA(x) =

∫

u∈Jx

fx(u)
/
u, (9)

µ eB(y) =

∫

v∈Jy

gy(v)
/
v, (10)

where Jx, Jy ⊆ [0, 1] are sets of all primary membership de-

grees of elements x in Ã, and of y in B̃, respectively. A gen-

eral form of extension of fuzzy implication for type-2 fuzzy

sets is given as follows:

µ eA→ eB(x, y) =

∫

u∈Jx

∫

v∈Jy

fx(u)
I∗

∗ gy(v)
/

u
I∗ v,

(11)

where I∗, I are type-1 fuzzy implications, e.g. min, product,

or any given in Table 2. For instance, for I∗ = product and

I = min, we have:

µ eA→ eB(x, y) =

∫

u∈Jx

∫

v∈Jy

fx(u)gy(v)
/

min{u, v}.
(12)

In the implementations described in the next section, dif-

ferent implications have been tested. Since the goal is to

achieve possibly the highest compatibility with expert’s opin-

ions, of the designed fuzzy logic system, new implication

operators are proposed. In fact, many known fuzzy “implica-

tions” do not meet the requirements of the classic implication

or even a T-norm. They usually do not meet all the conditions

1.–5. presented for engineering implications either [14]. How-

ever, they are applied to model or to reconstruct deduction

and/or inference. Therefore, the new implications proposed

in the paper are simply another attempt of reconstructing the

human way of thinking (to be more precise: human way of

inferring consequents from premises), not necessarily having

in mind all the formal conditions and requirements for this

inference need to be fulfilled (e.g. implication (15) is not a

T-norm, but is useful in the inference process, the result of

which are given in Table 4, row 7). Their basic forms are

presented by Eqs. (13)–(15):

IK1
(a, b) =





√
ab

a + b − ab
, if a 6= 0 ∨ b 6= 0

0, otherwise

, (13)

IK2
(a, b) = min

{
1,

sin
(
min{a, b}

)

cos
(
min{a, b}

)
}

, (14)

IK3
(a, b) =





ab

a + b
, if a 6= 0 ∨ b 6= 0

0, otherwise
, (15)

where a, b ∈ [0, 1]. These new implication operators imply

some new type-2 fuzzy implications; examples are given by

Eqs. (16)–(18). To be more specific, (13)–(15) define implica-

tion operation on primary membership degrees. T -norm min
is applied for secondary membership degrees.

ĨK1
: µ eA→ eB(x, y)

=






∫

u∈Jx

∫

v∈Jy

min{fx(u), gy(v)}
/ √

uv

u + v − uv
,

if u 6= 0 ∨ v 6= 0

0, otherwise

,
(16)

IK2
: µ eA→ eB(x, y)

=

∫

u∈Jx

∫

v∈Jy

min{fx(u), gy(v)}
/

min
{
1,

sin
(
min{u, v}

)

cos
(
min{u, v}

)
}
,

(17)
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ĨK3
: µ eA→ eB(x, y)

=






∫

u∈Jx

∫

v∈Jy

min{fx(u), gy(v)}
/ uv

u + v
,

if u 6= 0 ∨ v 6= 0

0, otherwise

.
(18)

Two examples of inference, using type-2 fuzzy implica-

tions (16) and (18), are presented in Figs. 4 and 5, respectively.

Fig. 4. A sample type-2 fuzzy set represented by white-coloured

FOU is an antecedent of a rule. The type-2 fuzzy set represented by

blue-coloured FOU is the result of type-2 fuzzy implication (16)

Fig. 5. A sample type-2 fuzzy set represented by white-coloured

FOU is an antecedent of a rule. The type-2 fuzzy set represented by

blue-coloured FOU is the result of type-2 fuzzy implication (18)

The proposed implication operators and type-2 implica-

tions based on them are applied in the implementation of

type-2 fuzzy logic system described in Section “Experiment

II”. Their potential in computing outputs of a FLS is illustrat-

ed in Table 4.

4. Experiment I: Interval-Valued Fuzzy

Controller for SCR system

4.1. Data preparation and evaluation of output. The

interval-valued fuzzy controller evaluates the output: the am-

monia valve opening angle (see Fig. 2). Each angle is related

to a sample (input) represented by levels of concentration of

nitrogen oxides, see “NOx Flow” in Fig. 2. The controller

is tested six times: three times for 10 000 samples and three

times for 100 000 samples.

The results obtained the implemented type-2 fuzzy con-

troller are now compared to expert’s proposals. We take into

account two vectors: E – representing expert’s proposals of

ammonia valve opening angle, and C – representing the an-

gles evaluated by the controller. Both vectors are of the same

length n ∈ N. The vectors are compared using the min-max
method.

min - max(E, C) =

n∑
i=1

min{ei, ci}
n∑

i=1

max{ei, ci}
, (19)

where E = {e1, e2, ..., en}, C = {c1, c2, ..., cn}. Values of

min-max(E, C) represent similarity of vectors E and C. The

largest possible value of min-max(E, C) is 1 – it would mean

that vectors are identical, so the values proposed by the con-

troller are all equal to the values of ammonia valve opening

angle proposed by human experts. As it is mentioned above,

two values of n are taken into account: n1 = 10 000 samples

and n2 = 100 000 samples.

The input data (samples) are fuzzified to interval-valued

fuzzy sets presented in Fig. 6. The result of inference, the

output interval-valued fuzzy sets representing angles of the

ammonia valve opening, are illustrated in Fig. 7.

Fig. 6. Interval-valued fuzzy sets for linguistic values of input data

on NO and NO2 (in mg/m3)

Fig. 7. Interval-valued fuzzy sets for linguistic variable of output da-

ta which describe the valve opening angle to determine the amount

of ammonia (the y value represents the angle of valve opening in

percent)
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4.2. Firing rules for interval-valued fuzzy input. There are

different methods of selecting rules applied, in particular, to

select the most adequate rule from the rules that may be fired

for a given interval representing input data. The methods of

selecting rules are based on partial order relations for inter-

vals a = [a, a], b = [b, b]. Three methods of ordering intervals

are presented below [19]:

a < b ⇔ a ≤ b, (20)

a ≤o b ⇔ a ≤ b ∧ a ≤ b, (21)

a ≤m b ⇔ m(a) ≤ m(b) ∧ w(a) ≥ w(b), (22)

where m(a) according to [15] is the mid-point of a m(a)=a+a

2

and
w(a)=a−a

2 .

The use of the methods in evaluation is commented in

Table 3, in rows 2, 3, and 4, respectively.

4.3. Results. For each method of selecting rules described

by formulae (20), (21), and (22), the interval-valued fuzzy

controller is tested. The type-reduction operation is based on

(1). The best results of each test are collected in Table 3. The

best results – the largest similarity of E and C vectors are

bold.
Table 3

Values of min-max(E, C) similarity of outputs computed by

interval-valued fuzzy controllers to expert proposals

min-max(E, C) Remarks

1. 0.9298 Type-1 FLS, cf. [1], see Fig. 8

2. 0.9454 IVFLS, firing rules with (20)

type-reduction via (1), see Fig. 9

3. 0.9454 IVFLS, firing rules with (21)

type-reduction via (1), see Fig. 10

4. 0.9445 IVFLS, rules fired with (22), type-red. via (1)

type-reduction via (1)

Fig. 8. Angles of the ammonia valve opening evaluated by the type-1

FLS [1] (blue line) and angles proposed by a human expert (green

line) Table 3, row 1

Fig. 9. Angles of the ammonia valve opening evaluated the interval-

valued FLS (blue line) and angles proposed by a human expert (green

line). IF-THEN rules are fired via (20). Table 3, row 2

Fig. 10. Angles of the ammonia valve opening evaluated the interval-

valued FLS (blue line) and angles proposed by a human expert (green

line). IF-THEN rules are fired via (21). Table 3, row 3

As we may conclude from Table 3, the variants of fuzzy

logic system based on interval-valued fuzzy sets provides bet-

ter results than type-1 FLS presented in [1]. The value of

min-max(E, C) for the interval-valued FLS is 0.9454, see

Table 3, rows 2 and 3, while the same value for type-1 FLS

is smaller. That means the ammonia valve opening angles in

the SCR system evaluated by interval-valued fuzzy controller

are closer to human expert opinions than those evaluated by

the type-1 fuzzy controller described in [1]. It must be un-

derlined, that the difference between min-max(E, C) values

for type-1 FLS and interval-valued FLS is about 0.015, so it

may seem to be very small. However, we must be aware that

an average company producing nitrogen oxides emits about

8 100 Mg (eight thousand and one hundred tones) of toxic

NO2 to the atmosphere per year [20]. That means that the

difference 0.015 implies 121 Mg (one hundred and twenty

tones) of toxic gases emitted to the atmosphere each year,

that is more than 10 000 kg per month. Hence, we conclude

that replacing type-1 FLS with interval-valued FLS is worth

taking into account.

The results of fuzzy logic systems designed for control-

ling angles of the ammonia valve opening are also illustrated

in Fig. 8, 9, and 10. The angles evaluated by fuzzy controllers

are on the blue lines, and angles proposed by a human expert

– on the green lines. The more the green line is covered by

the blue line, the more similar are results of FLSs to expert

proposals.

5. Experiment II: Triangular Type-2

Fuzzy Controller for SCR system

5.1. Data preparation and evaluation. Similarly to the tests

of the interval-valued: fuzzy controller, see Section “Experi-

ment I”, the task for the type-2 fuzzy controller is to evaluate

ammonia valve opening angles as close to a human expert

proposals as possible. Besides, the same datasets are taken in-

to account as input: the type-2 fuzzy controller is tested three

times for 10 000 samples and three times for 100 000 samples.

Furthermore, the results are compared to expert proposals us-

ing the min-max method (19) again.
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5.2. Implementation details. Type-2 fuzzy logic controller

is based on triangular secondary membership functions of

type-2 fuzzy sets representing input in Fig. 11, and output

linguistic values in Fig. 12.

Fig. 11. Type-2 fuzzy sets representing linguistic values of input data

on NO and NO2 (in mg/m3)

Fig. 12. Type-2 fuzzy sets representing linguistic values of output

data: angles of the ammonia valve opening (in percent)

New implication operators (13)–(15) and type-2 fuzzy im-

plications based on them (16)–(18) are applied in IF-THEN

rules. Besides, some known implications (e.g. min, Larsen

and Łukasiewicz) are also applied and results evaluated with

them are compared to those evaluated with newly proposed

methods.

5.3. Results. The results evaluated by the presented imple-

mentation of a type-2 fuzzy logic system are now com-

mented. They are collected in Table 4. Row 1. of the table

presents the min-max(E, C) value (similarity of results ob-

tained by FLS to the expert knowledge) for the type-1 fuzzy

logic system presented in [1]. Row 2 presents the value for

the best result provided by the interval-valued fuzzy logic

system described in Section “Experiment I”. Rows 3 and 4

show the min-max(E, C) that describes performance of type-

2 FLSs using known implication operators, min in row 3 and

Łukasiewicz in row 4. The values are not significantly larg-

er than those provided by the interval-valued FLS. The best

results – the largest values of min-max(E, C) are provid-

ed by type-2 fuzzy logic systems based on newly proposed

implication operators (16) and (18). Especially, the type-2

FLS with implication (16), row 5, provides results signifi-

cantly higher than the best of interval-valued FLSs presented

in Section “Experiment I”. Similarly to the results of Experi-

ment I, the difference between min-max(E, C) values shown

in rows 5 and 2, i.e. 0.004, can be evaluated as 40 Mg (forty

tones) of toxic substances per year. The difference between

performance of the type-1 FLS presented in [1] and from the

type-2 FLS with implication ĨK1
introduced in this paper is

0.9493−0.9298 = 0.0195, and it is equivalent of 160 Mg (one

hundred and sixty tones) of NO2 emitted to the atmosphere

per year.
Table 4

Values of min-max(E, C) similarity of outputs computed by type-2 fuzzy

controllers to expert proposals

min-max(E, C) Remarks

1. 0.9298 Type-1 FLS, cf. [1], see Fig. 8

2. 0.9454 The best result of interval-valued FLS

see Table 3 and Fig. 10

3. 0.9477 Type-2 FLS with the min implication

(see Fig.13)

4. 0.9445 Type-2 FLS with the Łukasiewicz

implication

5. 0.9493 Type-2 FLS with implication eIK1

(16), see Fig. 14

6. 0.9475 Type-2 FLS with implication eIK2
(17)

7. 0.9484 Type-2 FLS with implication eIK3

(18), see Fig. 15

Fig. 13. Angles of the ammonia valve opening evaluated the type-2

FLS (blue) and proposed by a human expert (green). Type-2 infer-

ence: the min implication. Compare Table 4, row 2

Fig. 14. Angles of the ammonia valve opening evaluated the type-2

FLS (blue) and proposed by a human expert (green). Type-2 infer-

ence: implication IK1
. Compare Table 4, row 5

Fig. 15. Angles of the ammonia valve opening evaluated the type-2

FLS (blue) and proposed by a human expert (green). Type-2 infer-

ence: implication IK3
. Compare Table 4, row 7
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6. Summary and future work

This paper describes new applications of higher order fuzzy

logic systems to control Selective Catalytic Reduction Sys-

tems in chemical industry. The goal is to support decisions

made by a human expert using dedicated fuzzy controllers.

This is a continuation and enhancement of our previous work

presenting a type-1 fuzzy logic system managing data on air

pollution [1]. The idea of applying traditional fuzzy logic sys-

tems to control air filters is now extended to an application

of higher-order fuzzy logic systems. We test interval-valued

fuzzy controllers and type-2 fuzzy controllers. The results of

comparison of the system output (proposed parameters of ad-

justing the filter) to data given by the expert are better than in

case of type-1 fuzzy logic system, see Table 4. In the nearest

future, two further issues on applying fuzzy logic systems to

control the air pollution are undertaken. The first, an applica-

tion of learning methods to dynamic correction of fuzzy sets.

The second issue, possible extensions of functionality of the

proposed type-2 FLS is discussed in case of the variability of

data on concentration of gases in the air, is enhanced.

All tests and results show that using higher-order fuzzy

controllers despite increase allow for significant improvement

of the results and in consequently for better modeling of the

human perception of reality. These conclusions lead to the fi-

nal conclusion that further research on applications of higher-

order FLSs to manage data on the environment pollution, and

additionally, complying with official legal requirements, are

reasonable and worth continuing.
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