DE GRUYTER DOL: 10.1515/ace-2015-0031 ARCHIVES OF CIVIL ENGINEERING
OPEN Vol. LXI ISSUE 3 2015

DE
G— © 2015 by A. Szychowski. This is an open access article distributed under
the Creative Commons Attribution-NonCommercial-NoDerivs license (http://creativecommons.org/licenses/by-nc-nd/3.0/)

BUCKLING OF THE STIFFENED FLANGE
OF THE THIN-WALLED MEMBER AT LONGITUDINAL
STRESS VARIATION
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Abstract

Buckling of the stiffened flange of a thin-walled member is reduced to the buckling analysis of the cantilever
plate, elastically restrained against rotation, with the free edge stiffener, which is susceptible to deflection.
Longitudinal stress variation is taken into account using a linear function and a 2™ degree parabola. Deflection
functions for the plate and the stiffener, adopted in the study, made it possible to model boundary conditions and
different buckling modes at the occurrence of longitudinal stress variation. Graphs of buckling coefficients are
determined for different load distributions as a function of the elastic restraint coefficient and geometric details of

the stiffener. Exemplary buckling modes are presented.

Keywords: thin-walled members, local buckling, distortional buckling, elastic restraint of the

edge, longitudinal stress variation

1. INTRODUCTION

Presently used thin-walled members with open sections are characterised by high slenderness of the
component walls (flanges, webs, etc.) Consequently, they are sensitive to local phenomena related
to the stability loss of compressed walls. For that reason, the free edge of the cantilever compressed
flange is often strengthened with the edge stiffener, resulting in an increase in the buckling critical

stress [1].
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Member is in uniform compression and a longitudinal stress variation occurs along the bar segment.
Thin-walled bar segment is defined as a distance between transverse stiffeners (ribs, diaphragms), or
Additionally, the section stability loss is also changed from local to distortional buckling mode, or
the interaction of both [2].

In many load cases that are important from the technical standpoint, the stiffened flange of the
supports that ensure the stiff section contour. A single or a double edge lip, or a welded stiffening
element (e.g., a flat bar having the same or greater wall thickness) can act as a stiffener. In practice,
such a flange can be analysed as a cantilever plate, elastically restrained against rotation, with the
other edge stiffener which is susceptible to deflection [3,4].

The problem of distortional buckling of the compressed cantilever plate with the free edge stiffener,
at the constant stress intensity along the length, was solved in study [1]. In this case, it was assumed
that the edge stiffener is symmetrical with respect to the plate middle line. For such a system,
constructed of the plate and the “beam stiffener”, an exact solution was obtained, as a result of
integration of the stability equations. Study [1] also presented the graphs of buckling coefficients (k)
and approximation formulas obtained with the use of the energy method. In study [4], the scope of
investigations presented in [1] was extended to include the case of the cantilever plate, elastically
restrained against rotation around the supported edge, for the same thickness of the plate and the
stiffener (z, = 7). Furthermore, as in study [1], the effect of the torsional stiffness of the stiffener
was disregarded.

Study [3] presented the results of investigations into the stability of cantilever plates with
longitudinal free (unstiffened) edge at longitudinal stress variation and limit conditions (pin support
and full fixity) on the other edge. The transverse edges were assumed to be simply supported. The
formulas were derived for the work done by external forces at the load producing longitudinal stress
distribution according to a linear function and a 2™ degree parabola.

The stiffened cantilever wall is, in most cases, elastically restrained against rotation by the other
internal wall (e.g., in the member web). In this case, the critical stress of local and distortional
buckling depends upon the slenderness of the cantilever wall, longitudinal stress variation, elastic
restraint coefficient and the stiffener geometry.

In studies [5,6], the problem of the distortional buckling of the cold-formed member was solved by
adopting the flexural-torsional stability loss model of the substitute thin-walled bar in the rotational-

elastic medium. The rotational spring stiftness (k¢), which accounts for the plate bending stiffness
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the of the web wall, was determined. The disadvantageous effect of compressive stress was
accounted for in an approximate way. In that case, the substitute bar section consisted of the plate
(compressed flange) and the edge stiffener (lip). In study [7], an interactive model of the buckling of
the stiffened flange and web was adopted, which accounted for the geometric stiffness of those
elements. The model employed in study [8] was similar to that in [5, 6]. The difference was that the
substitute rotational spring stiffness kg*<ky was determined on the basis of the translational
stiffness k, located at the centre of gravity of the plate — stiffener system. In this way, the effect of
the bending stiffness of the flange itself was additionally taken into consideration. In the studies
quoted above, constant stress distribution along the length of the thin-walled element was assumed.

The buckling model chosen in the code [9] was that of flexural, axially compressed “substitute bar”,
which consisted of appropriate effective widths of the flange and the stiffener, after taking into
account the possible local buckling of those. In this computational model, the “substitute bar” sits
on the translational—elastic foundation having the module K, and is uniformly compressed along the

length.
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Figure 1. Compressed flange isolated from thin-walled bar segment

In study [10], the problem of the local buckling of axially compressed, non-symmetrically elastically
restrained (Cy; # Cy>) internal plate at longitudinal stress variation was solved.

To be able to solve many problems related to thin-walled member buckling under complex load
cases, it is necessary to have solutions for distortional stability loss of the cantilever plate with the
free edge stiffener, when the longitudinal stress variation is accounted for. Such solutions, however,
are not available.

In the present study, the stability loss of the flange of the thin-walled member with open section is

reduced to the buckling analysis of the cantilever plate with the other edge stiffened and susceptible
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to deflection. The plate is elastically restrained against rotation and longitudinal stress variation is
taken into consideration. The computational model containing the cantilever plate and the “beam

stiffener”, the same as in studies [1,4], is adopted in the present paper.

2. BOUNDARY CONDITIONS OF THE STIFFENED FLANGE

The following assumptions are made in the computational model: 1) the compressed flange of the
thin-walled member behaves as an cantilever plate, elastically restrained on one side, the other edge
of which is flexibly supported against deflection by the stiffener, 2) the origin of the local
coordinate system of the plate (x, y, z;) coincides with intersection of the maximally loaded
transverse edge with the elastically restrained longitudinal edge (see Fig.1), 3) transverse plate edges
and the stiffener ends on the segment transverse edges are simply supported, 4) deflections of the
plate free edge (vs=b;) are the same as those of stiffener, 5) stress of the possible local buckling of
the stiffener is much greater than the stress of distortional or local buckling of the flange. In the case
important from the technical standpoint, the compressed flange contains a stiffener of the same
thickness as the plate (#,=t,). The effect of the flange elastic restraint against rotation at y,=b;, i.e.
the effect of the stiffener torsional stiffness on the critical stress of the distortional buckling, is
therefore negligible [1] and can be disregarded. The present study demonstrates that in such a
situation, there is an advantageous effect of two-sided (non-symmetrical) restraint against rotation
on the local buckling critical stress. Furthermore, the advantageous effect of the stiffener torsional
stiffness on both local and distortional buckling critical stress is observed when #,>#,. In the present
study, similar to [1], it is assumed that the edge stiffener cross-section has the shape of a narrow
rectangle and the stiffener is symmetrical with respect to the middle plane of the plate. The stiffener
thickness 7, is equal to, or greater than that of the plate #, (see Fig.1.) The degree of the elastic
restraint against rotation of the longitudinal supported edge (ys = 0) is described by means of:
1) coefficient ¢, in accordance with [1], varying from O for the simple support to co for a built-in
edge, 2) index of fixity x, which according to [11,12] changed from 0 (for the simple support) to

1 (for a built-in edge ), as follows:
2.1 e=C,b, /D,

(22) x=1/(1+2D,/b,C,)
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where: Cp - rotational spring stiffness of the supported edge, which is equal to the bending moment
that occurs in the rotation by the unit angle, b; - plate (wall s) width, D, — plate flexural rigidity.

The following dependences hold between the coefficient ¢ and the index « [13]:

(2.3) k=¢/(2+¢)

(2.4) £=2x/(1-x)

The approximate estimation of the rotational spring stiffness Cy of the edge of the compressed

flange, elastically restrained in the web of the thin-walled bar, can be expressed as follows [8]:

D D
(2.5) c, :’M[]%J
h o

where: 7 = 2 for the section subjected to compression, # = 4 for the section subjected to bending (in
the web plane), D,, - plate flexural rigidity of the web, A, — web height between flange axes, o,,” —
distortional buckling stress, o.,,, — critical stress of the local web buckling for the critical length (/)
of the half-wavelength of the flange distortional buckling. It is assumed that deformations are
continuous and the bending moments on the edge of flange-to-web connection are equal. It should
be noted that the expression in parentheses in Eq. (2.5) accounts, in an approximate way, for the
disadvantageous impact of compressive stress in the web [8]. The critical stress in the stiffening
wall (o), see Eq. (2.5), corresponds to the length of the distortional buckling of the flange. The
critical stress can be estimated, in accordance with [14, 5, 6, 8], using the following formulas:

a) for the compressed web:

2.6) N
o t%'h\i lcr hw’
b) for the web bent in its plane:
Et?
@.7) G = 12—3(1 1.320% +1.97h* +12.061% 1)

cr’tw

On the basis of computations performed in the present study, it can be stated that for symmetrical

restraint (see Fig.1), the critical length of distortional buckling (for the range most frequently found
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in practice, i.e. for the fixity index 0 < k < 0.7) can be estimated, according to [5, 6], from the
formula:

I bzh 0.25
2.8) - 4'8[ . 3}

nt

K

where: n =1 for the section subjected to compression, » =2 for the section subjected to bending, and

I, = tLbL3/ 12 — moment of inertia of the stiffener.

Computations become iterative, because to calculate the rotational spring stiffness Cy, it is necessary
to know the critical stress ac,.D , which, according to Eq. (2.2), depends on «, and thus on Cy. The
process, however, is converging fast, and most often it is sufficient to perform only two or three

iterations.

3. DEFLECTION FUNCTIONS

The section flange is composed of the cantilever plate, elastically restrained on one side [13], and
the “beam stiffener”, which is susceptible to deflection [4]. To approximate the complex buckling
mode, the following formulas are used:

a) for the plate:

G.1) ws(xl\,,yl\,):tsi fl{(l—/c);:s+l{?] ]+iﬁp(?) Sm(lzlzx]

s s p=3

b) for the “beam stiffener”:

(32) Wi (x'V) =W (x“' Vs = b»\' ) = ts hz(ﬁz + iﬁpjsm[lilms J

i=1 K

where: £, b,— plate (wall s) thickness, width, /; — length of the plate and the stiffener, fi, f;, — free,
dimensionless parameters of the deflection function.

Deflection functions that are assumed make it possible to identify: 1) the distortional buckling mode
of the plate — stiffener system, 2) local buckling mode of the internal plate supported by the edge
stiffener being “insusceptible” to deflection, and 3) interactive mode of local and distortional

buckling.
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4. STRESS STATE IN THE SECTION FLANGE

In the stability analysis of the compressed flange, being a component of the thin-walled member
with an open section, in which the hypothesis on flat sections walls is accepted, normal stress

distribution (see Fig.1) can be presented as follows:
4.1) o, =0,6(x,)

where: gy — maximum compressive stress (positive) on the edge containing the origin of the local
system of coordinates (y,=0, see Fig.1), fi(x;) — function of the stress distribution along the plate
length. In the present study, the following cases of longitudinal stress distribution are taken into
consideration: 1) constant distribution (m; = 0), 2) linear distribution, and 3) non-linear distribution
in accordance with the 2™ degree parabola. In cases 2 and 3, the function fi(x,) in Eq. (4.1) can be

respectively presented as:

(4.2) Bi(x)=1-mx,[1,

(4.3) Bo(x)=1=myx} I}

where: m; - coefficient that characterises longitudinal stress variation in accordance with formula:
4.9) m, =1-0,/0,

Variation of normal stress along the cantilever plate length, according to Eq. (4.1), can be obtained
by generating shear stresses or longitudinal body forces (see Fig.1) with the distribution dependent
on the loading conditions of thin-walled bar. The way of replacing shear stresses by appropriate
distribution of body forces was described in study [15] for internal plates, and in [3] for cantilever
plates. When the thin-walled member is bent, e.g. with respect to the major axis of stiffness of a
typical C or Z section, at the height of the stiffener, non-uniform (linear) stress distribution occurs.
To simplify the calculations of the critical load, it is assumed from the distortional buckling
condition that mean stress acts in the stiffener: o,~(c,+0,)/2 (see Fig.1). In this case, stress

distribution in the stiffener can be written in accordance with Eq. (4.1).
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5. ELASTIC STRAIN ENERGY AND THE WORK DONE BY EXTERNAL

FORCES

In study [3], it was shown how to determine the total potential energy (U; = Vi, — L;) of the
compressed cantilever plate (without stiffened edge) when the deflection function is written as a
polynomial-sine series, e.g. in the form of Eq. (3.1). In this case, the elastic strain energy (¥ ;) can
be determined in the way proposed in study [16], and the function of external forces (L,) can be
determined from the sequence of formulas derived in [3].

The energy of the elastic restraint against rotation (V) of the supported plate edge (at y, = 0) is

determined from formula:

5.1) VSAZ—CQJ\;KWS] }dxs
T2\

The energy of the stiffener in bending is calculated from formula:

B (42 2
(5:2) v, = Sl g,
T2 Wa )T

When it is necessary to account for the advantageous effect of torsional stiffness of the stiffener, the

torsional strain energy can be determined, according to [1], from the following formula:

o eegfee-gen) J-

where: 6 — stiffener rotation angle, C; — torsional rigidity, which, for stiffener having narrow

rectangular cross-section [1], can be estimated as follows:

1 E
C,=-b1;
.4 LT3 (1)

where: E — modulus of elasticity, v — Poisson’s ratio.

The work done by external forces in the stiffener at flexural buckling and longitudinal stress

variation is calculated from the formula:
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A, aw,
(5.5) Ly, _2;|:GOﬂi(xS)[dx J dx,

s

where: A; = #;,b; — stiffener cross-section area.
The work done by external forces in the stiffener at torsional buckling can be determined from

formula:

J ks do ’ gk o*w ’
5.6 =_70 : —_Y0 v s
(5.6) Lyy == b[o-gﬂl(xs)[ ] d, === { aoﬁ,(xs)[(axs ] ) 1 dx,

where: J, — polar moment of inertia of the stiffener (for rectangular section: Jy= 1,b(b,*+1;°)/12).

6. CRITICAL STRESS

The critical stress (o) of local or distortional buckling of axially compressed, elastically restrained
against rotation member flange with a stiffener is referred to the most compressed plate edge. The

critical stress is expressed with the following formula:
6.1) o =ko,

where: o - Euler’s stress for the plate in accordance with formula:

(62) -, zﬂzE( A ]
12(0-v?) b,

Plate buckling coefficients (k) is determined using the energy method. The total potential energy of

the plate — stiffener system was determined from the formula:
(6.3) U=V, V¥V, Vi =L =L, =L,

where: V;; — elastic strain energy of the plate in bending, according to [16], Vs, — energy of the
elastic restraint, from Eq. (5.1), V7, ; — elastic strain energy of the stiffener in bending, from Eq (5.2),
Vi, — elastic strain energy of the stiffener in torsion, from Eq. (5.3), Ly — work done by external

forces in the plate, in accordance with [3], L. 1, L;>» — work done by external forces in the stiffener,



158 A. SZYCHOWSKI

from Eq. (5.5) and Eq. (5.6).

The critical stress of the reliable buckling mode is calculated from the system of equations:
(6.4) ou, /of,, =0

reducing the stability problem to eigenproblem of determining eigenvalues and eigenvectors.

In the present study, computational program Ncr-plate-cantilever-sym-stiffener.nb developed with
Mathematica® software package is employed to determine coefficients k. The program makes it
possible to calculate the critical stress and coefficients k& and to present the calculation results in a
graphic form (e.g. graphs, buckling modes). The plate deflection function is adopted according to
Eq. (3.1), with py = 4, and with initial values of the fixity index. According to Eq. (2.2), the fixity
index varies from x=0, for simply supported edge, to k=1, for built-in edge. The stiffener deflection
function is adopted according to Eq. (3.2). Parameter iy, which in Eq. (3.1) and Eq. (3.2) specifies
the number of half-wavelengths of the sine function in the direction of axis x; is selected with regard
to the plate dimension ratio (y,=//b,) and the reliable buckling mode. On the basis of the analysis of
convergence of the results, analogous to the one presented in study [3], for the calculations of
stiffened plates in the range y,<20, b;/b>0.1 and 0<m<1, parameter iy can be taken from the interval
10<iy<20. The graphs of coefficients k presented in this study are plotted for £=205 GPa and v=0.3.
Table 1 shows how curve numbers in the graphs (Fig.2 and Fig.3) are assigned to coefficient ¢ and

index k.

Table 1. Assignment of curve numbers from Figs 2 and 3 to the coefficient ¢ and index

Nr 1 2 3 4 5 6 7 8
€ 0 0.2 0.6 1.5 3 8 30 10°
K 0 0.091 0.231 0.429 0.6 0.8 0.938 1

Fig.2 shows graphs of coefficient k for the elastically restrained (curve number in accordance with
Table 1) cantilever plate (by/t,=35) with edge stiffener (b;/b,=0.2, #,/t;=1), at linear stress
distribution (m2;=1). The upper dotted line is used to separate the range (y,<2.5+3) of occurrence of
the interactive, local — distortional (LD) buckling mode from the basic range (2.5+3<y;), in which
distortional buckling is found (D). The lower broken line marks the graph of coefficient k that is
determined when the torsional stiffness of the stiffener is disregarded for x=0. Comparison of the
graphs (curve 1 — solid line versus broken line) indicates that for 7,/¢,=1, the effect of the stiffness of

the stiffener torsion on distortional buckling is minimal and, from the technical standpoint, can be
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disregarded [1,4]. With the growth of the fixity index «, coefficients k increase. However, when

parameter y, grows, coefficients k decrease.
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Figure 2. Graphs of coefficient k for different values of index x (Table 1) for m,=1

Fig.3 shows graphs of coefficient & for the elastically restrained (curve number in accordance with
Table 1) cantilever plate (b,/2,=60) with edge stiffener (b./b;=0.25, t,/t;=2), at non-linear stress
distribution (m»=1). The dotted line separates the ranges of occurrence of local buckling modes (L)
of the “internal plate” from those of distortional buckling (D) of the cantilever plate-stiffener
system. In this case, practically no occurrence of the interactive mode (LD) is found. Graphs of
coefficients k& at the buckling mode change (curve intersections with the dotted line) are
characterised by a typical “fault”. As in the previous figure, the bottom broken line marks the
coefficient £ that is determined when the torsional stiffness of the stiffener is disregarded for x=0.
Comparison of the graphs (curve 1 — solid line versus broken line) indicates that for #;/2,=2, the
effect of the stiffness of the stiffener torsion is significant for both local buckling (av. increase of
approx. 28%) and distortional buckling. The range of occurrence of the reliable buckling modes is
also changed, because taking into account the torsional stiffness enlarges the range (y;) of
distortional buckling occurrence (compare the coordinate of the curve 1 “fault” with the broken
line). Similar results are obtained for other figures (Figs. 2 + 6). Additionally, the comparison of the
graphs indicates that an increase in index x is accompanied by an increase in coefficients k of the
critical stress, for both local and distortional buckling. Increase in coefficients %, is much higher for
distortional buckling. Beyond the “fault”, however, coefficients £ decrease rapidly with the plate

length, especially for the low values of « (see curves no. 1,2,3,4 in Fig.3).
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Figure 3. Graphs of coefficient & for different values of index « (Table 1) for m,=1

Fig.4 shows graphs of coefficient & for the elastically restrained (¢=2, x=0.5) cantilever plate (b,/t,
=50) with the edge stiffener (b./b;=0.25; t;/t;=1.5) at linear stress distribution along the plate length,
according to Eq. (4.1) and Eq. (4.2) for m; = 0; 0.25; 0.5; 0.75 and 1. As in the previous figures, the
bottom broken line marks the graph of coefficient & that is determined when the torsional stiffness
of the stiffener is disregarded for m,=0. In this case, the comparison of the graphs indicates that for
1/t,=1.5, the advantageous effect of the stiffness of the stiffener torsion is also noticeable, especially
for local buckling. Dotted lines are used to separate the ranges of occurrence of local buckling (L),
local and distortional buckling interaction (LD), and distortional buckling (D). With an increase in
the value of parameter m, the range of occurrence of the interactive buckling mode (LD) is

enlarged.
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Figure 4. Graphs of coefficient £ for linear stress distribution and different values of m,;



BUCKLING OF THE STIFFENED FLANGE OF THE THIN-WALLED MEMBER... 161

The curves of coefficient k for m;=0 (Fig. 4) are garland in character, both in the range of local
buckling occurrence and in the distortional buckling range, which makes it possible to evaluate the
number of half-wavelengths of the reliable buckling mode. For longitudinal stress variation (72,>0),
with an increase in parameter m;, coefficients k increase and their graphs loose their garland
character. In this case, buckling half-wavelengths are formed along the plate length. Those are
varied in length and have decreasing amplitudes [13].

Exemplary buckling modes for the elastically restrained cantilever plate with the stiffener,
determined using the Ncr-plate-cantilever-sym-stiffener.nb software, are presented in Fig.5.
(geometric details, support and loading diagrams are included in this figure). The example
corresponds to coefficients & (curve m;=1 in Fig.4.) of the critical stress that is characterised by
different buckling modes. Fig.5a shows local buckling mode (on the range boundary L, y,=4.8). In
Fig.5b, a fully developed interactive mode (approximately in the middle of the range LD, y,=5.5)
can be seen, whereas in Fig.5c, the distortional buckling mode (on the range boundary D, y,=6.2) is

shown. Note that the edge stiffener is removed from Fig.5abc to make the buckling mode more

visible.
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Figure 5. Buckling modes in an exemplary cantilever plate with an edge stiffener

In this case, the comparison of buckling modes shows that: 1) the local mode (L) “consists” of two

basic buckling “half-wavelengths” that have radically different amplitudes (the “critical half-
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wavelength” having the maximum amplitude [13] is found on the edge side that is more loaded
x,=0), 2) the interactive mode (LD) is characterised by both “plate” and “beam” deflections, and 3)
the distortional mode (D) consists of one, gently asymmetrical half-wavelength of the buckling of
the cantilever plate with the stiffener (the maximum amplitude is found for the coordinate x,=120 <
310/2=155 mm).

Fig.6 shows graphs of coefficient & for the elastically restrained (¢=1.5; k=0.429) cantilever plate
(bs/t; =40) with the edge stiffener (7/t~=1) for different ratios b;/b=0.1-0.35 at linear stress
distribution (m;=1). Dotted lines are used to separate the ranges of occurrence of local buckling (L),
local and distortional buckling interaction (LD), and distortional buckling (D). In this case, the
comparison of the graphs indicates that an increase in the ratio 5;/b; is accompanied by an increase
in the coefficients of the critical stress of the reliable buckling mode. Additionally, it can be
observed that in the range of distortional buckling (e.g. y>10), a constant increment of the ratio
bi/bs (from 0.1 to 0.35 with an interval of 0.05) is accompanied by the constant increment of

coefficient k.
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Figure 6. Graphs of coefficient & for different b,/b; ratios

Fig.7 shows graphs of coefficient k for the elastically restrained (¢=3, x=0.6) cantilever plate (b,/t,
=50) with the edge stiffener (b,/b=0.3) for different ratios #;/t~=1+2.5 at non-linear stress
distribution (m,=1). Dotted lines mark the boundaries of ranges of the reliable buckling mode. In
this case, similar to Fig.3, practically no occurrence of the interactive mode (LD) is found. With an
increase in the stiffener thickness, the value of buckling coefficient grows, especially for the local
buckling of the internal plate. For instance, for y,=7.5 (local buckling), the increment of coefficient &

value between #;/¢=1 and 2.5 amounts to approx. 16%, and for y,=15 (distortional buckling), the
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increment is approx. 9%. As before, the lower broken line marks the coefficient k& determined when
the torsional stiffness of the stiffener is disregarded for 7;/z=1. In this case, the differences are

observed primarily in the local buckling range (L), and are of the order of 10%.
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Figure 7. Graphs of coefficient & for different #,/¢, ratios

Fig.8 shows graphs of coefficient k for the elastically restrained (¢=1, ¥=0.333) cantilever plate with
the edge stiffener (b,/b~0.15, #;/t~=1) for different slenderness of the plate b,/z,=20+60 at linear
stress distribution (72,=0.5). In the whole range y,, shown in Fig.8 (for individual slenderness
values), the distortional buckling mode occurs (D). The comparison of results shows that an
increase in the plate slenderness is accompanied by an increase in the advantageous effect produced
by the plate “support” on the stiffener, and also by an increase in the values of buckling coefficients.
It is obvious that the distortional buckling critical stress decreases due to a rapid drop of oz, related

to the growing plate slenderness (see Eq. (6.2)).
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Figure 8. Graphs of coefficient & for different slenderness of the plate by/%,
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7. CONCLUSIONS

The computational model employed in the study, in which the degree of the wall elastic restraint
and stress variation along the length of the thin-walled bar segment are taken into account, gives
more accurate determination of the critical stress of the reliable buckling mode. That especially
refers to cantilever plates with edge stiffener. For such plates, the reserves of the distortional critical
resistance (i.e. critical resistance resulting from the condition of distortional buckling), which
originate from the elastic restraint against rotation of the supported edge, are greater than for
internal walls, elastically restrained on two sides, with intermediate stiffener [1, 9].
The computational model is improved due to taking into account the torsional stiffness of the
stiffener and the work done by the axial force in the stiffener. That makes it possible to represent, in
a more accurate way, the actual stability behaviour of the thin-walled member section walls. The use
of adopted deflection functions for the cantilever plate and the stiffener in the study allows the
analysis of the distortional buckling of the plate — stiffener system, of the local buckling of the
“internal” plate supported by “inflexible” edge stiffening, and also of the interactive mode at
longitudinal stress variation. Additionally, deflection functions also make it possible to account for
the elastic restraint of the member section wall against rotation on both the edge supported by the
web and on the flexible support against deflection (on the “free edge”). An increase in the value of
index x, according to Eq. (2.2), and in parameter m; of the longitudinal stress distribution, according
to Eq. (4.4), results in an increase in coefficients of the critical stress of local and distortional
buckling in respective ranges y,. The same trend is found for an increase in the ratios: 1) b;/b, and
2) t,/t,, and for distortional buckling, for an increase in ratio: 3) by/t, (for the constant value of b,/b;).
In this third case, coefficient & grows, but the critical stress obviously decreases due to the reduction
in oy for the growing slenderness of the plate. Lower values of the coefficient £, at the same values
of parameters x, m and y,, are obtained for non-linear stress distribution along the plate length. None
of the graphs presented in this study (Figs. 2 - 4 and 6 - 8), except for curves m;=0 in Fig.4, are
typical garland curves, as it is the case for m=0 [1, 14, 4, 9]. Therefore, the graphs do not
unequivocally indicate the number of half-wavelengths of the reliable mode of local or distortional
buckling which are generated over the length of the thin-walled bar segment. That results from
longitudinal stress variation. Complex modes of buckling that occur in this case can be determined
with the Ncr-plate-cantilever-sym-stiffener.nb software. The comparison of coefficients k graphs
presented in this study indicates that, for short segments, the reliable mode of stability loss of the

stiffened flange can be local buckling of the “internal plate”. For longer segments, however, the
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reliable mode of stability loss is the distortional buckling of the plate — stiffener system. In many

cases, on the boundary of ranges (L and D), interactive buckling mode (LD) was also revealed.
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WYBOCZENIE POLKI USZTYWNIONEJ ELEMENTU CIENKOSCIENNEGO

PRZY WZDLUZNEJ ZMIENNOSCI NAPREZEN

Stowa kluczowe: ksztattowniki cienkoscienne, wyboczenie lokalne, wyboczenie dystorsyjne, sprezyste zamocowanie
krawgdzi, wzdhuzna zmiennos¢ naprezen

STRESZCZENIE:

Wspolczesnie stosowane elementy cienko$cienne o przekroju otwartym charakteryzuja si¢ duzymi smuktosciami
$cianek. W zwigzku z tym sa wrazliwe na zjawiska lokalne zwigzane z ich wyboczeniem. Z tego punktu widzenia,
krawedz swobodna Sciskanej $cianki wspornikowej wzmacnia si¢ czgsto usztywnieniem krawedziowym, powodujac
wzrost naprezen krytycznych i zmiane miarodajnej postaci wyboczenia. Usztywniona $cianka wspornikowa jest w
wigkszosci przypadkéw sprezyscie zamocowana przeciw obrotowi w $ciance przgstowej (np. w $rodniku ksztaltownika
cienkosciennego) i czgsto wystepuje w niej wzdtuzna zmiennos¢ naprezen.

W pracy utratg statecznosci polki elementu cienkosciennego o przekroju otwartym sprowadzono do analizy wyboczenia
sprezyscie zamocowanej przeciw obrotowi plyty wspornikowej z podatnym na ugiecie usztywnieniem drugiej krawedzi.
Jednocze$nie uwzgledniono wzdtuzng zmienno$¢ naprezen.

W modelu obliczeniowym przyjgto nastgpujace zatozenia: 1) $ciskana potka ksztattownika cienko$ciennego zachowuje
si¢ jak jednostronnie spr¢zyscie zamocowana plyta wspornikowa z drugim brzegiem podatnie podpartym na ugigcie
,,belka” usztywnienia, 2) poczatek lokalnego uktadu wspotrzgdnych plyty (x,, v, z;) umieszczono na przecigciu (styku)
maksymalnie obciazonej krawedzi poprzecznej ze sprezyscie zamocowana krawedzia podtuzna (por.rys.l), 3)
poprzeczne krawedzie ptyty oraz konce ,,belki” usztywnienia na poprzecznych krawedziach segmentu sa swobodnie
podparte, 4) wystepuje zgodnos¢ ugigé swobodnej krawedzi plyty (y,=b,) z ugigciami usztywnienia, 5) naprezenia
ewentualnego wyboczenia lokalnego usztywnienia sg znacznie wigksze od naprezen wyboczenia dystorsyjnego lub
lokalnego potki.

Ponadto w pracy przyjeto, ze usztywnienie krawedzi swobodnej ma przekrdj waskiego prostokata i jest symetryczne
wzgledem plaszczyzny srodkowej plyty, a jego grubosé jest rowna lub wigksza od grubosci plyty.

Stopien sprezystego zamocowania przeciw obrotowi uzalezniono od sztywnosci obrotowej podtuznej krawedzi
podpartej (y,=0) i opisano za pomoca: 1) wspdtczynnika & zmieniajacego si¢ od 0 dla podparcia przegubowego do oo dla
pelnego utwierdzenia, oraz 2) wskaznika utwierdzenia x zmieniajacego si¢ od 0 (dla przegubu) do 1 (dla pelnego
utwierdzenia).

Do aproksymacji postaci wyboczenia ptyty wspornikowej i usztywnienia zastosowano funkcje zbudowane z podwojnych
szeregoéw wielomianowo - sinusowych. Tak przyjete funkcje ugie¢ umozliwity aproksymacje: 1) postaci wyboczenia
dystorsyjnego uktadu ptyta — usztywnienie, 2) postaci wyboczenia lokalnego plyty ,.przestowej” podpartej na
hiepodatnym” na ugigcie usztywnieniu krawedziowym, oraz 3) postaci interakcyjnej wyboczenia lokalnego i
dystorsyjnego na granicy przedziatow.

Zmienno$¢ naprezen normalnych na dlugosci plyty wspornikowej i usztywnienia uzyskano przez wprowadzenie
wzdhuznych sit masowych (por.rys.l) o rozkladzie dobranym w zaleznosci od sposobu obciazenia elementu

cienkosciennego.
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Plytowe wspotczynniki wyboczeniowe (k) wyznaczono metoda energetyczna. W tym celu opracowano w srodowisku
pakietu Mathematica® program obliczeniowy ,,Ncr-plate-cantilever-sym-stiffener.nb”. Program oblicza napr¢zenia
krytyczne i wspétczynniki k oraz umozliwia graficzng prezentacj¢ wynikow obliczen i réznych postaci wyboczenia.

Na rysunkach przedstawiono liczne wykresy wspotczynnika k w zaleznosci od 1) wskaznika k sprezystego utwierdzenia,
2) parametru m; wzdtuznego rozktadu napr¢zen wg funkcji liniowej lub paraboli 2. stopnia, 3) szerokosci i grubosci
usztywnienia oraz, 4) smuklosci plyty. Zamieszczono rowniez przyktadowe postacie wyboczenia lokalnego (L),
dystorsyjnego (D) i interakcyjnego (LD).

Zastosowany w pracy model obliczeniowy prowadzi do dokladniejszego wyznaczenia napr¢zen krytycznych
miarodajnej postaci wyboczenia. Ze wzrostem wskaznika x oraz parametru m; rosng wspotczynniki napr¢zen
krytycznych wyboczenia lokalnego i dystorsyjnego w miarodajnych przedziatach y, = //b,. Mniejsze wspdtczynniki k
przy tych samych warto$ciach parametrow «, m oraz y, uzyskano dla nieliniowego rozktadu napre¢zen na dhugosci ptyty.
Z poréwnania wykresow wspotczynnika k zamieszczonych w pracy wynika, ze dla segmentow krétkich miarodajna
postacia utraty statecznosci potki usztywnionej moze by¢ wyboczenie lokalne ,ptyty przgstowej”. Natomiast dla
segmentow dtuzszych miarodajng postacia utraty statecznosci jest wyboczenie dystorsyjne uktadu: ptyta — usztywnienie.

W wielu przypadkach, na granicy przedzialéw (L i D), ujawniono réwniez interakcyjng posta¢ wyboczenia (LD).



