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Infinite time horizon optimal current control of a stepper motor

exploiting a finite element model
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Abstract. An optimal control theory based method is presented aiming at minimizing the energy delivered from source and the power loss
in a stepper motor circuit. A linear quadratic current regulator with an infinite time horizon is employed and its appropriateness for this type
of a problem explained. With the purpose of improving the accuracy of the control system, the self and mutual inductances of windings are
calculated using a finite element model. The numerically computed results are verified experimentally.
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1. Introduction

Accurate and precise control of electric motors is an area of
active research worldwide. Efforts concentrate on finding so-
lutions which guarantee high immunity of the drive system
to external disturbances, such as a changing load, in terms of
realizing prescribed trajectories while minimising associated
errors in position, velocity or torque [1–4]. The literature cov-
erage in this field is immense, but some specific topics deserve
to be mentioned, in particular the optimal control theory [5,
6], sliding control methods [7–8], adaptive control employ-
ing neural networks techniques, fuzzy logic and genetic algo-
rithms [1, 9, 10]. Another common objective is to minimise
energy losses in conducting motor parts, as well as the ener-
gy delivered from the source itself. This can be achieved by
determining the optimal phase excitation switching angles, as
discussed for example in [11] and [12]. Optimal energy con-
trol might also utilise shape and amplitude modulation of the
excitation [13–16] or torque control enhancements by current
waveform optimisation [1, 17].

One of the best suited approaches to the optimal current
control involves using finite element magnetic field modelling
(FEM) which enables accurate determination of energy distri-
bution allowing optimal control theory with linear quadratic
current regulator to be employed [18, 19]. This is the focus
of this paper.

2. A coupled field-circuit model of the motor

In this paper a linear quadratic regulator is assumed to control
the reluctance stepper motor. The motor is modelled using the
time-stepping finite element technique. The formulation relies
on a strong coupling between magnetic field, driving circuitry
and mechanical motion equations yielding a complete descrip-
tion of the state of the motor at every time instance during the
numerical iterative process [9, 15, 18, 20]. In the field mod-
el the eddy current effect in the conducting regions of the

rotor and stator cores is taken into account. The electromag-
netic field can be expressed in terms of two state variables:
the magnetic vector potential A and the electric scalar poten-
tial V . The well-known Eq. (1) describes the magnetic field
due to the winding currents and eddy currents resulting from
rotation and transformation of the electromagnetic field

curl
1

µ
curl A − σ

[

v × curlA−
∂A

∂t
− gradV

]

= Jo. (1)

The sum of externally forced currents in the windings is repre-
sented by Jo, µ stands for permeability and σ for conductivity.
The term in the square brackets is the induced electric field.
The above field description is complemented by an equation
preserving current continuity in the conducting regions:

div [σ (v × curlA)] − div

[

σ
∂A

∂t

]

− div [σgradV] = 0. (2)

The equation describing the circuit supplying the motor may
be written as

d

dt

∮

ls

Adl = us − Ris, (3)

where s={1,2,3,4} denotes the phase number, R is the wind-
ing resistance of one phase, is is the phase current and us is
the supply voltage.

It is helpful to write Eqs. (1) and (2) in the integral form
∫

Ω

curl

(
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µ
curlA

)

dΩ −

∫

Ω

σ (v × curlA) dΩ

+

∫
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σ
∂A

∂t
dΩ +

∫
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σgradVdΩ =

∫

Ω

JodΩ,

(4)

∮

S

σ (v × curlA)dS−

∮

S

σ
∂A

∂t
dS−

∮

S

σgradVdS = 0. (5)

The above system may be solved iteratively by means of a time
stepping technique. To make this possible, field s need to be
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spatially discretized [18]. The numerical implementation of
the above formulation has been accomplished using the finite
element method. It utilizes 27-node, first order, cylindrical el-
ements to discretize the space. The magnetic vector potential
in a single element takes the form of linear combination:

A =

27
∑

i=1

NiAi, (6)

where Ni are the element shape functions and Ai are approx-
imations of the potential at elements’ nodes. The solution to
field Eqs. (1) and (2), i.e. unknown state space variables A

and V , may be calculated by minimising the corresponding
energy functional, the method well suited to systems with en-
ergy dissipation [15]. The above equations are well known but
are shown here for completeness.

The time – space discrete field equations are developed as
follows

CAt+∆t+
1

∆t
DAt+∆t+EVt+∆t =

1

∆t
DAt+Jt+∆t, (7)

FAt+∆t − ∆tHAt+∆t + ∆tGVt+∆t = FAt, (8)

where

[C]
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≈
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[H]
[

At+∆t
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≈

∮

S

σ
(

v × curlAt+∆t
)

dS.

The motor electric circuit equation in discrete notation takes
the form

1

∆t
QAt+∆t + RIt+∆t = Ut+∆t +

1

∆t
QAt, (9)

where

QAt+∆t =

[
∮

l1

Adl . . .

∮

l4

Adl

]T

and R

represents the diagonal matrix of the windings resistance.

In order to facilitate coupling between the field and circuit
equations, the phase current density vector J can be expressed
in terms of a linear combination of the phase current vector
I, yielding Jt+∆t = PIt+∆t. Thus the coupled model can be
expressed in matrix notation as
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(10)

where A and V represent vectors of unknown magnetic and
electric potentials at all nodes, respectively, I is a vector of
unknown currents in nodes surrounding the motor windings,
submatrices C, D, E, F, H, G have already been defined for
Eqs. (7) and (8), while Q and R in (9) and P (10) are matrices
related to winding currents.

3. Mechanical motion model

The mechanical motion is a result of an electromagnetic
torque acting on the rotor. The force may be derived using
the Maxwell stress tensor. To calculate global torque the in-
tegration is performed using the eggshell method [9, 18]

Tmag =

∮

S

(r · P ) dS. (11)

The motion of the stepper motor is analysed in a cylindrical
coordinate system using a well-known second order differen-
tial equation

J
d2ϕ

dt2
+ b

∣

∣

∣

∣

dϕ

dt

∣

∣

∣

∣

dϕ

dt
= Tmag, (12)

where J is the inertia, b the friction coefficient, winding cur-
rents.

Tmag the electromagnetic torque and ϕ the angular dis-
placement. Applying time discretization using Euler’s method
the following system of equation results





1 −∆t

0 1 + ∆t
b

J





[

ϕt+∆t

ωt+∆t

]

=





ϕt

ωt +
∆t

J
T t+∆t

mag



,

(13)
where ω denotes angular velocity.

Using an iterative method the rotor displacement is calcu-
lated at each time step and then transformed into discretized
space using the fixed grid technique, independent of rotor po-
sition. It is essential that space discretization creates equidis-
tant nodes in the direction of movement to preserve constant
mass of the moving body. Furthermore, the time axis needs
to be discretized in a way which guarantees single step rotor
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movements not to exceed the distance between neighbouring
space nodes. An online method for time step correction en-
sures this condition is fulfilled at each iteration. This approach
prevents stability loss during the solution of the field-circuit
Eq. (10).

4. Linear quadratic optimal control

The optimal control theory focuses on optimising a con-
trol law which transfers a dynamic system from some ini-
tial to some terminal state, by putting on the control law a
requirement to extremize an objective functional associated
with this system. The form of an objective functional de-
pends on the class of problem. For minimisation of energy
in the drive circuit, a linear quadratic performance index is
a reasonable solution. It helps finding optimal waveforms of
voltage excitation supplied to motor coils in terms of min-
imisation of energy delivered and power losses in windings
resistance [9, 11, 15, 18, 19, 21]. The assumed performance
index for control in infinite time horizon takes the following
form

J(U) =
1

2

∞
∫

0

(IT QJI + UT PJU)dt, (14)

subject to the initial state I(0) =
[

i1(0) . . . in(0)
]T

and the electric system described as

L
d

dt
I + RI = U, (15)

where U, a vector of voltages applied to motor windings,
is the unknown optimal solution minimising the function-
al, I, a vector of windings currents, is the system state
vector, QJ and PJ denote positive definite matrices con-
taining weighting factors, L is a matrix of unsteady self
and mutual winding inductances, and R is a diagonal ma-
trix of winding resistances. In Eq. (14) the first integrat-
ed quadratic form corresponds to power dissipated in wind-
ings, the second one to power delivered from the current
source.

Due to unsteadiness the coefficients of matrix L need to
be calculated every time step
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

. (16)

Inductances depend on the magnetic flux penetrating the
coils and can be expressed via magnetic potential A as

Φk = z

∮

lk

Adl, where z is the number of turns and lk denotes

the length of a winding.

To find an optimal solution, U∗, the Pontryagin’s Mini-
mum Principle is employed, first introducing the Hamiltonian
defined as

H(U, I,Ψ) =
1

2

(

ITQJI + UT PJU
)

+ΨT (L−1U − L−1RI),
(17)

where L−1U−L−1RI is the state equation and Ψ is the co-
state and may be expressed as Ψ = ΓI, where Γ is a matrix
of time invariant feedback coefficients.

For U∗ to minimize the Hamiltonian, it must satisfy the

condition
∂H

∂U
= 0, hence

U∗ = −P−1
J L−1Ψ. (18)

Based on Pontryagin’s theory, Ψ and I are related through the
equation

dΨ

dt
= −

∂H

∂I
=

(

−QJ + L−1RΓ
)

I. (19)

Furthermore, differentiating Ψ in terms of time gives

dΨ

dt
= Γ

dI

dt
= ΓL−1U∗ − ΓL−1RI. (20)

Comparing the right hand sides of Eqs. (19) and (20), in-
serting the optimal control condition (18) and eliminating I,
results in a Riccati equation describing an LQ regulator

ΓL−1P−1
J L−1Γ + ΓL−1R + L−1RΓ− QJ = 0. (21)

The matrix Γ, obtained after solving the above equation, is
then used to derive the optimal control law as a function of I

U∗ = −P−1
J L−1Γ (I− NIref) , (22)

where the matrix N is a scaling matrix which enables finding
such an optimal control voltage U∗ which guarantees reaching
the prescribed current Iref. The matrix N is calculated under
steady state and equals

N = Γ−1LPJR + Y, (23)

where Y is an identity matrix.

5. The motor drive and its numerical model

The reluctance stepper motor assumed in this work has 4 phas-
es and 6 rotor poles. The cross section of the motor is present-
ed in Fig. 1. The power controller comprises a PWM genera-
tor, delivering the voltage control law calculated by LQR, and
a phase switching unit, with its diagram depicted in Fig. 2,
enabling the windings to be energized in a unipolar fashion.
In addition, the drive is equipped with a Hall sensor based
ACS 721 module for winding current measurements and an
incremental encoder, with resolution of 400 imp/rev, for rotor
displacement feedback.
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Fig. 1. Stepper motor cross section

Fig. 2. Phase power switching controller

Fig. 3. Discretised model of a stepper motor

The discretised model of a slice of the motor is presented
in Fig. 3. Its discretisation grid has 68 926 nodes. The nu-
merical model has 170 640 unknown variables, with 55 440
unknown Ar, 50 400 unknown Aφ, and 64 800 unknown Az ,
that is components of the vector potential. The biconjugate
gradients method (BiCG) accuracy is set to 1.0×10¬5. The
eddy current effect and the nonlinear B(H) relationship for the

silicon steel core of the rotor and stator are both taken into
account [15, 18, 20, 22].

6. Numerical and experimental results

The linear quadratic current control applied to the described
stepper motor is assumed to minimise the following perfor-
mance index

J(U) =
1

2

∞
∫

0

UT Udt, (24)

which is a simplified version of (14). Finding the control law
U requires solving the Riccati Eq. (21) to find the matrix
Γ, whose coefficients are functions of motor mutual and self-
inductances. For the reasons of simulation accuracy the induc-
tance values are computed and compared with measurements.

The dependence of the self and mutual inductances on
rotor position is shown in Fig. 4, for all motor phases. The
values vary in a range of up to one order of magnitude. Fig-
ure 5 compares calculated and measured results for one of
the phases, demonstrating good agreement, with slight dif-
ferences due to inevitable simplifications in the FE model of
motor windings, where coils are assumed to be symmetrically
wound, have the same wire thickness for the entire length and
eddy current effects inside are neglected.

Fig. 4. Phase self-inductance (upper) and mutual inductance (right)
as a function of rotor position

838 Bull. Pol. Ac.: Tech. 62(4) 2014



Infinite time horizon optimal current control of a stepper motor exploiting a finite element model

Fig. 5. Comparison between calculated and measured inductance for
one phase

Since the inductances are not constant, the coefficients of
the matrix Γ, presented in Fig. 6, need to be calculated at
every rotor position to ensure sufficient accuracy of the opti-
mal control law

U∗ = −L−1Γ (I− NIref) . (25)

Fig. 6. Matrix Γ coefficients in relation to rotor position

The relevance of the optimal control approach is demon-
strated by a numerical calculation assuming Iref to be 1.6 A
and the time horizon of 100 ms. Figure 7 depicts the voltage
excitation applied by the LQR, with current in the first phase,
while Fig. 8 shows the rotor displacement.

Fig. 7. Voltage excitation and current in phase #1 for Iref = 1.6 A

Fig. 8. Rotor displacement for one phase excitation
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Fig. 9. Voltage excitation and current in phases 1, 2 and 3 for
Iref = 1 A

Fig. 10. Rotor displacement for sequence excitation of all three pha-
ses

The LQR tries to reach the reference current in the short-
est possible time, here in approximately 2 ms, thus the applied
voltage rises instantly to 100 V and then abruptly falls down
to 20 V. This, obviously, results in higher overshoot in motor
position response.

For the sake of practical implementation, the voltage was
limited to 25V and the reference current lowered to 1 A.
The time horizon for a single phase excitation was increased
to 125 ms and three phase switching was performed, which
gives 3 rotor steps, hence 45◦ of angular displacement. Fig-
ures 9 and 10 present the voltage sequence excitation for all
three phases with their associated currents and motor displace-
ments.

The numerical computation was confronted with an exper-
iment; Figs. 11 and 12 show the measurements of the winding
currents and rotor position, respectively.

Fig. 11. Measured current in all three phases for Iref = 1 A

Fig. 12. Measured rotor displacement for sequence excitation of all
three phases

Numerical and experimental results compare well in terms
of amplitudes, rising times and over-shootings. There are,
however, oscillations in the current waveforms, but these can
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be attributed to an aftermath of the utilised measuring tech-
nique. As far as position measurement is concerned, there are
vibrations in the end phase of position settling. This needs to
be dealt with by the encoder-motor coupling damping capa-
bilities and encoder resolution itself.

7. Conclusions

In this paper the optimal current control in an infinite time
horizon is discussed, and its applicability to the drive energy
consumption minimisation presented. The theory is verified
by a practical example of a stepper motor control system ex-
ploiting a finite element numerical model for inductance cal-
culations. The numerical results exhibit effectiveness of the
current optimal control. The calculations are compared with
experimental results and show very satisfactory agreement.

The effort will continue with focus on further research in
the area of optimal control, especially control in finite and
infinite time horizons of winding currents, rotor displacement
and electromagnetic torque, but also the minimisation of the
control errors themselves.
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