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Abstract. An application of the Entropy Generation Minimization principle allows new formulation of the boundary and initial boundary-

value problems. Applying Euler-Lagrange variational formalism new mathematical form of heat conduction equation describing steady-state

processes have been derived. Mathematical method presented in the paper can also be used for any diffusion heat and mass transfer process.

Linear and non-linear problems with internal heat sources have been analyzed.
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Nomenclature

c – constants,

cp – specific heat capacity [kJ/kg·K],

i – internal,

k – heat conduction coefficient [W/m·K],

L0 – Wiedemann-Franz constant [W/A·K]2,

ṁ – mass flow rate [kg/h],

q̇ – heat flux [W/m2],

q̇v – intensity of internal heat source [W/m3],

ṡ – entropy flux [W/m2·K],

Ṡgen – entropy generation due to the process irre-

versibility [W/m3·K],

T – absolute temperature [K],

x, y – Cartesian coordinates,

Θ – transformed temperature,

Ω – domain,

∇ – operator nabla.

Indexes

He – helium,

in – entering,

o – environment,

out – leaving,

t – total,

x, y – partial derivatives with respects to x and y.

1. Introduction

According to the Second law of Thermodynamics the mea-

sure of energy dissipation in irreversible processes is entropy

generation, Ṡgen, and the Gouy-Stodola theorem states that

destroyed exergy δḂ is directly proportional to Ṡgen

δḂ = T0Ṡgen,

where T0 is surroundings temperature, and

Ṡgen =
diS

dτ

determines entropy production rate, resulting from irre-

versibilities of the processes taking place in the system, τ
– is time. The Second Law of Thermodynamics says that al-

ways and in each elementary domain of the thermodynamic

system

Ṡgen > 0

which means that entropy generation is path dependent and

should not be confused with the entropy as the state function.

It is basic feature of this function allowing optimization of

any physical and chemical process.

1.1. Steady-state processes. Classical boundary-value prob-

lems are usually formulated on the basis of the First Law of

Thermodynamics. When heat conduction coefficient depends

on temperature, k = k(T ), steady state temperature field re-

sults from the solution of a differential equation [1]

div [k(T )gradT (xi)] + q̇v(xi, T ) = 0, i = 1, 2, 3

with respect to the required boundary conditions, where k is

thermal conductivity coefficient and q̇v represents intensity of

internal heat sources.
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The different formulation of the classical boundary-value

problem is obtained when a heat conduction equation is de-

rived from the minimum entropy generation principle. Ac-

cording to the thermodynamics of irreversible processes [2]

entropy generation at steady state is at minimum. Introducing

expression for local entropy generation [2, 3]

Ṡgen(T, Txi
) ≡

diS

dτ
=

k(T )

T 2
(gradT )2 +

q̇v

T
, (1)

where T = T (xi) and Txi
denotes gradient components

∂T/∂xi, the problem can be formulated in the following way:

find such a function T = T (xi) which satisfying required

boundary conditions minimizes simultaneously integral

Ṡgen,t =

∫

Ω

Ṡgen(T, Txi
)dΩ (i = 1, 2, 3)

over the whole domain Ω. Here Ṡgen,t represents global en-

tropy production of the process.

Using variational calculus, the function T (xi), for which

Ṡgen,t reaches minimum, satisfies the Euler equation [4].

∂Ṡgen

∂T
−
∑

i

∂

∂xi

(

∂Ṡgen

∂Txi

)

= 0, (2)

where Ṡgen(T, Tx) is given by Eq. (1).

2. 1D Boundary value problem

Consider one dimensional (1D) problem of heat conduction in

plane wall without internal heat source with first kind bound-

ary conditions (Fig. 1). Local entropy generation is

Sgen(T, Tx) =
k(T)

T 2(x)

(

dT (x)

dx

)2

and its global value to be minimized is given by integral

Ṡgen,t =

1
∫

0

k(T )

T 2(x)

(

dT (x)

dx

)2

Adx,

where A is unit surface area perpendicular to the heat flux

vector (A = 1 m2). Assuming k =const, Euler Eq. (2) be-

comes in the final form

d2T

dx2
−

1

T

(

dT

dx

)2

= 0 T = T (x) (3)

and is different from classical Laplace heat conduction equa-

tion

d2T

dx2
= 0.

Fig. 1. Plane wall system

For boundary conditions of the first kind, T (0) = T1 and

T (1) = T2, (see Fig. 2) solution to Eq. (3) is:

T (x) = T1

(

T2

T1

)x

. (4)

Using (4), it is easy to show that the law of energy conserva-

tion in a classical form is not satisfied as

div(q̇(x)) 6= 0,

where

q̇(x) = −k
dT (x)

dx
.

Fig. 2. Temperature distribution in the plane wall: 1 – classical so-

lution, 2 – entropy generation minimization

Further calculations leads to the next confusing result that

div

(

q̇(x)

T (x)

)

= div(ṡ) = 0.

Explanation comes directly from Eq. (3). Interpreting its sec-

ond term as the additional internal heat source

q̇v,a(x) = −
k

T

(

dT (x)

dx

)2

< 0
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it is easy to prove that the First Law of Thermodynamics is

satisfied and entropy increase of the whole process is positive

and equal to

Ṡgen = −

1
∫

0

q̇v(x)

T (x)
dx = k

(

ln
T2

T1

)2

> 0.

The same results have been obtained by Bejan [5] using differ-

ent mathematical approach. Comparison to the classical solu-

tion is given in Table 1. Numerical example for T2/T1 = 0.1
and k = 1.0 W/mK is shown in Fig. 2.

Table 1

Comparison of the results

Classical approach Entropy generation
minimization

Conduction

equation

d2T

dx2
= 0

d2T

dx2
−

1

T

�
dT

dx

�2

= 0

Minimized

function
k

1Z
0

�
dT

dx

�2

dx = 0 k

1Z
0

1

T 2

�
dT

dx

�2

dx = 0

Temperature

distribution

for first kind

boundary

conditions

T (x) = T1 − (T1 − T2)x T (x) = T1

�
T2

T1

�
x

Entropy

increase

of the whole

heat conduc-

tion process

σ1 = k(T1−T2)

�
1

T2

−

1

T1

�
σ2 = k

�
ln

T2

T1

�
2

In the case when heat conduction coefficient depends

on temperatures, the problem is formulated in the following

way [6]:

• local entropy generation rate

Ṡgen(x) =
k(T )

T 2(x)

(

dT (x)

dx

)2

,

where T = T (x),
• global entropy generation to be minimized

Ṡgen,t =

1
∫

0

k(T )

T 2(x)

(

dT (x)

dx

)2

dx → min

and Euler-Lagrange equation is

k(T )
d2T

dx2
+

(

1

2

dk

dT
−

k(T )

T

)(

dT

dx

)2

= 0

(for comparison-classical heat conduction equation)

k(T )
d2T

dx2
+

dk

dT

(

dT

dx

)2

= 0

or for more clear physical interpretation

k(T )
d2T

dx2
+

dk

dT

(

dT

dx

)2

−

(

1

2

dk

dT
+

k(T )

T

)(

dT

dx

)2

= 0.

(5)

Comparison of (5) with the classical form leads to the expres-

sion for additional internal heat source

q̇v,a(x) = −

(

1

2

dk

dT
+

k(T )

T

)(

dT

dx

)2

.

2.1. Heat conduction coefficient depends on temperature

– nonlinear 1D solution. Assuming frequently used depen-

dence [2]

k(T ) = k1

(

T (x)

T1

)n

, (6)

where k1 = k(T1) and n is arbitrary constant, Euler-Lagrange

heat conduction equation takes the form

d2T

dx2
+

n − 2

2

1

T

(

dT

dx

)2

= 0. (7)

Assuming first kind boundary conditions, the solution of

Eq. (7) becomes in the form

T (x)
n/2
1 = T

n/2
1 −

(

T
n/2
1 − T

n/2
2

)

x. (8)

The local entropy generation rate

Ṡgen(x) =
4k1

n2

[

(

T2

T1

)n/2

− 1

]

= const

and is equal to its global value Ṡgen,t. For comparison, solu-

tion of the classical problem is

T (x)n+1 = T n+1
1 −

(

T n+1
1 − T n+1

2

)

x (for n 6= −1).

Local entropy generation

Ṡgen(x) =
k1

n + 1

1

T n
1

(

T n+1
2 − T n+1

1

)2
T (x)−(n+2)

and its global value

Ṡgen(x) =

1
∫

0

Ṡgen(x)dx =
k1

n+1

[

1−

(

T2

T1

)n+1
]

(

T1

T2
−1

)

.

Direct comparison gives

N =
Ṡgen,t

Ṡgen,min

=
n2

4(n + 1)

[1 − (T2/T1)
n+1

] (1 − T2/T1)

(T2/T1)
[

(T2/T1)
n/2

− 1
]2

which is in agreement with Bejan results [5]. Relationship

N = N

(

T2

T1
, n

)

is shown in Fig. 3. Using solution (8), additional internal heat

source intensity can be calculated from

q̇v,a =

1
∫

0

qv,a(x)dx = −

1
∫

0

(

1

2

dk

dT
+

k(T )

T

)(

dT

dx

)2

dx.

After integration, when relationship (6) is used

q̇v,a =
2k1

n
T1

[

(

T2

T1

)1+n/2

−

(

T2

T1

)n+1

− 1 +

(

T2

T1

)n/2
]

and is show in Fig. 4 as a function of n and T2/T1.
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Fig. 3. N vs n for different T2/T1

Fig. 4. q̇v vs n for different T2/T1

3. Practical examples

3.1. Helium boil-off minimization. Minimizing helium boil-

off rate during cooling of structural support of large supercon-

ducting magnet (Fig. 5), has been formulated and discussed

by Bejan [5]. Here, the problem is presented in different the-

oretical way. The problem is to design mechanical support in

such a way the helium boil-off rate ṁHe is minimized. This

is equivalent to minimizing q̇out. Neglecting low temperature

gradient values in y and z directions, the problem is similar

to the minimization of entropy generation for the plane wall

(see Fig. 1)

T (x) = T1

(

T2

T1

)x

x ∈ (0, 1) (9)

and

Ṡgen = k ln

(

T2

T1

)2

.

Fig. 5. Cooling of mechanical support (general scheme)

Cooling heat flow rate is exactly equal to the additional

heat source term in Eq. (3) equal to

q̇v,a(x) = −
k

T (x)

(

dT (x)

dx

)2

.

Using solution (9), q̇v(x) becomes in the form

q̇v,a(x) = −kT0

(

THe

T0

)x(

ln
THe

T0

)2

and after integration its global value is

q̇v,t = k (THe − T0) ln
THe

T0
< 0.

This can also be obtained from heat balance equation

q̇v,t = q̇out − q̇in,

q̇out = kTHe ln
THe

T0
,

q̇in = kT0 ln
THe

T0
.

To design cooling system, helium vapour is heated along the

length of the support.

From heat balance equation

ṁHecp,HedTHe = −kT0

(

THe

T0

)x(

ln
THe

T0

)2

dx

and
dTHe

dx
=

−kT0

ṁHecp,He

(

THe

T0

)x (

ln
THe

T0

)2

.
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After integration

THe(x) = −
kT0

ṁHecp,He

(

ln
THe

T0

)2
x
∫

0

(

ln
THe

T0

)x′

dx′. (10)

Finally, for boundary condition T = THe for x = 1

THe(x) = THe +
k

ṁHecp,He

[

T0

(

THe

T0

)x

− THe

]

.

Thus, temperature of helium vapour at x = 0 is

THe(0) = THe +
k

ṁHecp,He

(T0 − THe) .

It shows that the cooling system should be designed on the

basis of Eq. (10).

3.2. Boundary-value problem with simultaneous heat

and electric current flow-nonlinear 1D solution. General

scheme of the 1D boundary value problem is shown in Fig. 6.

Entropy generation rate is given by expression [5, 6]

Ṡgen =

1
∫

0

[

k(T )

T 2

(

dT

dx

)2

+
i2ρ(T )

T

]

dx

T = T (x),

(11)

where i – electric current density, ρ(T ) and k(T ) electric

resistivity and thermal conductivity coefficient, respectively.

Minimization of entropy generation rate, given by Eq. (11)

leads to the Euler-Lagrange equation [4, 7]

d2T

dx2
+

[

1

2k(T )

dk(T )

dT
−

1

T

](

dT

dx

)2

+
i2

2k(T )

[

ρ(T ) − T
dρ(T )

dT

]

= 0

(12)

or in the general form

d2T

dx2
+ F1(T )

(

dT

dx

)2

+ F2(T ) = 0

where

F1(T ) =
1

2k(T )

dk(T )

dT
−

1

T
,

F2(T ) =
i2

2k(T )

[

ρ(T ) − T
dρ(T )

dT

]

.

Fig. 6. 1D boundary-value problem

Boundary-value problem is completed with the boundary

conditions
T (0) = T1,

T (1) = T2.

Specific form of the Euler-Lagrange equation when F1(T )
and F2(T ) are both not equal to zero, allows to obtain an

analytical solution. One of the methods is described below.

Introducing a new variable

u =
dT (x)

dx

and calculated

d2T

dx2
=

du

dx
=

du

dT

dT

dx
= u

du

dT
.

Thus, Eq. (12) simplifies to the form

du

dT
+ F 1(T )u = −F2(T )u−1

which is Bernoulli differential equation of the first order hav-

ing general solution in non-explicit form [6]
(

dT

dx

)2

=

[

+2

∫

F2(T )e2
R

F1(T )dT + c1

]

e−2
R

F1(T )dT.

Finally, the solution is

∫
{[

−2

∫

F2(T )e2
R

F1(T )dT + c1

]

e−2
R

F1(T )dT

}

−1/2

dT

= x + c2.

Other methods of solution of the Euler-Lagrange Eq. (12)

depend on the mathematical form of the functions F1(T )
andF2(T ). Assuming as previously frequently used depen-

dence [5]

k(T ) = k1

(

T (x)

T1

)n

,

where k1 = k(T1) and n are arbitrary constants, and from

the Widemann-Franz law for the relationship between ther-

mal conductivity and effective resistivity of pure metals

k(T )ρ(T ) = L0T, L0 = 2.45 · 10−8

(

W

AK

)2

the differential Euler-Lagrange Eq. (12) becomes in the form

dw

dT
+

(

1

2k(T )

dk

dT
−

1

T

)

T = −
i2

2

(

ρ(T )

k(T )
−

T

k(T )

dρ

dT

)

,

where

w(x) =
dT (x)

dx
.

After calculation

dw

dT
+

n − 2

2

1

T
= −

L0T
2n

k2
1

(2 − n)T−1

and its solution is

T (x) =

[

c1

4
n2(x + c2)

2 −
i2

2c1

L0T
2n
1

k2
1

]1/n

.

Calculation results for n = var, with boundary conditions

T (0) = T1 at x = 0, T (1) = T2 at x = 1 when
i2

2

L0T
2n
1

k2
1

=

1.0 are presented in Table 2 and were obtained from equation

T (x) =

[

c1

4
n2(x + c2)

2 −
1

c1

]1/n

.
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Table 2

Boundary value problem solution

n −3 −2 1 2 3

C1 473.03 121.10 −0.333 3.02 1.778

C2 −3.07 · 10−2
−4.12 · 10−2 4.91 −0.669 −0.625

4. 2D boundary value problem

Consider 2D boundary-value problem without an internal heat

source when k =const. Global entropy generation is

Ṡgen,t =

1
∫

0

1
∫

0

Ṡgen,t (x, y) dxdy

=

1
∫

0

1
∫

0

k

T 2 (x, y)

[

(

∂T

∂x

)2

+

(

∂T

∂y

)2
]

dxdy

and its minimization requires the Euler-Lagrange equation to

be satisfied

∂Ṡgen

∂T
−

∂

∂x

(

∂Ṡgen

∂Tx

)

−
∂

∂y

(

∂Ṡgen

∂Ty

)

= 0.

After calculation, Euler-Lagrange heat conduction equation is

∂2T

∂x2
+

∂2T

∂y2
−

1

T

[

(

∂T

∂x

)2

+

(

∂T

∂y

)2
]

= 0 (13)

where T = T(x,y).

Equation (13) must be satisfied with imposed boundary

conditions. Solution can be easily obtained by transformation

θ(x, y) = lnT (x, y). (14)

In such a case, heat conduction Eq. (14) takes the form

∂2θ

∂x2
+

∂2θ

∂y2
= 0, (15)

where θ = θ(x, y), and entropy generation rates are given by

– local

Ṡgen,t(x, y) = k

[

∂2θ

∂x2
+

∂2θ

∂y2

]

,

– global

Ṡgen(x, y) = k

x2
∫

x1

y2
∫

y1

[

∂2θ

∂x2
+

∂2θ

∂y2

]

dxdy.

(16)

The boundary-value problem given by Eq. (15) and arbitrary

formulated boundary conditions can be solved with any meth-

ods available in heat conduction literature, eg. [1].

4.1. Example of solution. Consider boundary-value problem

of heat conduction in square with first kind boundary condi-

tions (Fig. 7), where T (x, y) is dimensionless temperature

T (x, y) =
u(x, y)

u0

and u(x, y) and u0 represent temperature (in K) and reference

temperature (in K), respectively. Boundary-value problem is:

• governing equation

∂2T

∂x2
+

∂2T

∂y2
−

1

T

[

(

∂T

∂x

)2

+

(

∂T

∂y

)2
]

= 0,

T = T (x, y),

(17)

• boundary conditions

T (x, 0) = T (0, y) = T (1, y) = 1,

T (x, 1) = f(x).

Fig. 7. 2D boundary-value problem

Introducing transformation θ(x, y) = lnT (x, y) Eq. (17)

becomes

∂2θ

∂x2
+

∂2θ

∂y2
= 0

with boundary conditions

θ(x, 0) = θ(0, y) = θ(1, y) = 1,

θ(x, 1) = ln f(x).

The solution is [4]

θ(x, y) =

∞
∑

n=1

An
sinh(nπy)

sinh(nπ)
sin(nπx),

where

An = 2

1
∫

0

ln f(x) sin(nπx)dx.

For f(x) = V0 =const. the solution becomes

θ(x, y) = lnT (x, y)

=
4 lnV0

π

∞
∑

n=1,3,...

1

n

sinh(nπy)

sinh(nπ)
sin(nπx).

Entropy generation rate is then calculated from Eqs. (16).
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5. Conclusions

Minimization of entropy generation in heat conduction

processes is always possible by introducing an additional in-

ternal heat source

q̇v,a = −
k

T
∇T ◦ ∇T.

For the linear problem (k =const.), and

q̇v,a = −

(

1

2

dk(T )

dT
+

k(T )

T

)

∇T ◦ ∇T

when the thermal conductivity coefficient depends on temper-

ature (k = k(T )).
As Bejan stated [5] “Entropy Generation Minimization is

the method of thermodynamic optimization of real system that

owe their thermodynamic imperfections to heat transfer, fluid

flow and mass transfer irreversibilities”.

The wide overview applications are – optimization of heat

exchangers, insulation system, optimization of thermodynam-

ic cycles, solar-thermal power generation and many others

(see [5]).

Appendix 1.

Methods of solution of Euler-Lagrange

heat conduction equations

– 1D problem, k = const., without internal heat source

The heat conduction equation

d2T

dx2
−

1

T

(

dT

dx

)2

= 0, T = T (x). (A1)

Introducing

w(x) =
dT

dx
.

Equation (A1) is reduced to the separable first order ordinary

differential equation

dw

dT
−

w

T
= 0

and its solution is

T (x) = c1e
c2x,

where c1 and c2 are calculated from boundary conditions.

Simpler way of solution is based on the fact that expression

for the entropy generation rate

Ṡgen(x) =
k

T 2

(

dT

dx

)2

, T = T (x), (A2)

does not depend directly on the independent coordinate x. In

such a case the Euler-Lagrange equation becomes [4]

Ṡgen − Tx
∂Ṡgen

∂Tx
= const.

where Tx is equal to ∂T/∂x. Using Eq. (A2), we obtain

k

T 2

(

dT

dx

)2

= C

which can be easily solved.

– Simultaneous heat and electric current flow

• General nonlinear solution

The entropy generation rate is

Ṡgen =
k

T 2

(

dT

dx

)2

+
i2ρ(T )

T
T = T (x)

which leads to the Euler-Lagrange equation [3, 7]

d2T

dx2
+

[

1

k(T )

dk(T )

dT
−

1

T

](

dT

dx

)2

+
i2

2k(T )

(

ρ(T ) − T
dρ(T )

dT

)

= 0.

(A3)

Introducing from definition

F1(T ) =
1

k(T )

dk(T )

dT
−

1

T
,

F2(T ) =
i2

2k(T )

(

ρ(T ) − T
dρ(T )

dT

)

.

Equation (A3) becomes

d2T

dx2
+ F1(T )

(

dT

dx

)2

+ F2(T ) = 0.

Which after introducing a new variable

u(x) =
dT (x)

dx

takes the form of the Bernoulli differential equation

du

dT
+ F1(T )u = −F2(T )u−1.

Its solution is

u2 exp

(

2

∫

F1(T )dT

)

= −2

∫

F2(T ) exp

(

2

∫

F1(T )dT

)

dT + c1.

The final solution for T (x) is given indirectly from
∫

dT

u(T )
= x + c2,

where c1 and c2 are calculated from boundary conditions.

3D boundary-value problems – general nonlinear solu-

tions

The problem is formulated as follows:

– find such a function T (xi), (i = 1, 2, 3), which satisfying

boundary conditions minimizes simultaneously integral

Ṡgen,t =

∫∫∫

Ω

Ṡgen(T, Txi
)dΩ ⇒ min

over the whole domain Ω′′.

Using the Euler-Lagrange equation

∂

∂T

(

Ṡgen(T, Txi
)
)

+

3
∑

i=1

d

dxi

(

∂

∂Txi

Ṡgen(T, Txi
)

)

= 0,
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where

Ṡgen (T, Txi
) =

3
∑

i=1

[

k(T )

T 2
∇T ◦ ∇T +

q̇v

T

]

and q̇v is intensity of internal heat source. After calculation,

Euler-Lagrange heat conduction equation takes the form

∇2T +

[

1

k(T)

dk(T)

dT
−

1

T

]

∇T ◦ ∇T

+
1

2k(T)

(

q̇v − T
∂q̇v

∂T

)

= 0,

T = T (xi) (i = 1, 2, 3).

(A4)

Introducing from definition

F1(T) =
1

k(T)

dk(T)

dT
−

1

T
,

F2(T) =
1

2k(T)

(

q̇v − T
∂q̇v

∂T

)

.

Equation (A4) can be written in the shorter form

∇2T + F1(T)∇T ◦ ∇T + F2(T) = 0.

A method of solution depends on the mathematical form of

the functions F1(T) and F2(T).
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