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Entropy generation minimization

in transient heat conduction processes

PART II – Transient heat conduction in solids

Z.S. KOLENDA∗ and J.S. SZMYD

AGH University of Science and Technology, Department of Fundamental Research in Energy Engineering,

30 Mickiewicza Ave., 30-059 Kraków, Poland

Abstract. Formulation and solution of the initial boundary-value problem of heat conduction in solids have been presented when an entropy

generation minimization principle is imposed as the arbitrary constraint. Using an entropy balance equation and the Euler-Lagrange variational

approach a new form of the heat conduction equation (non-linear partial difference equation) is derived.
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Nomenclature

c – constants,

cp – specific heat capacity [kJ/kg·K],

i – internal,

k – heat conduction coefficient [W/m·K],

L0 – Wiedemann-Franz constant [W/A·K]2,

ṁ – mass flow rate [kg/h],

q̇ – heat flux [W/m2],

q̇v – intensity of internal heat source [W/m3],

ṡ – entropy flux [W/m2·K],

Ṡgen – entropy generation due to the process irre-

versibility [W/m3·K],

T – absolute temperature [K],

x, y – Cartesian coordinates,

Θ – transformed temperature,

Ω – domain,

∇ – operator nabla,

τ - time,

ρ – density,

λ – Lagrange multiplier,

δ – difference.

Indexes

He – helium,

in – entering,

o – environment,

out – leaving,

t – total,

x,y – partial derivatives with respects to x and y.

1. Introduction

The transient heat conduction equation assuming minimiza-

tion of the entropy generation rate, Ṡgen,min, can be derived

in two ways – from the Euler-Lagrange variational principle

or direct minimization of the expression describing entropy

generation rate.

Euler-Lagrange transient heat conduction equation.

The function to be minimized is

Ṡgen =

∫

Ω

∞
∫

τ=0

k

T 2
∇T ◦ ∇Tdτ,

where k is thermal conductivity coefficient (assumed con-

stant), T = T (x, y, z, τ) – temperature field, τ denotes time

and Ω is the domain model consideration, with additional

condition
∫

Ω

∞
∫

τ=0

∂S

∂τ
dΩdτ = C, (1)

where S = S(Ω, τ) is entropy of the system and C is con-

stant. Condition (1) represents entropy change of the system

from initial to final equilibrium state. The problem can be

dealt with by means of Lagrange’s method of undetermined

multipliers as follows

Find function T (x, y, z, τ) which satisfying required ini-

tial and boundary conditions minimizes simultaneously inte-

gral

Ṡgen =

∫

Ω

∞
∫

τ=0

k

T 2
∇T ◦ ∇Tdτ ⇒ minimum

over the whole domain Ω provided that

∫

Ω

∞
∫

τ=0

∂S

∂τ
dΩdτ = C.
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To solve the problem a new function [1]

K =
k

T 2
∇T ◦ ∇T + λ

∂S

∂τ

is introduced where λ is the Lagrange multiplier. The ex-

tremals must satisfy the Euler-Lagrange equation

∂K

∂T
−

3
∑

i=1

d

dxi

(

∂K

∂Txi

)

= 0,

where Txi
denotes gradient components ∂T/∂xi, (xi =

x, y, z). Introducing from thermodynamics

dS

dτ
=
ρcp
T

∂T

∂τ

function K is

K =
k

T 2
∇T ◦ ∇T + λ

ρcp
T

∂T

∂τ
(2)

Varational calculus requires the function (2) must satisfy the

Euler-Lagrange equation

∂K

∂T
− ∂

∂x

(

∂K

∂Tx

)

− ∂

∂y

(

∂K

∂Ty

)

− ∂

∂z

(

∂K

∂Tz

)

= 0.

After calculations

k∇2T − k

T
∇T ◦ ∇T +

λ

2
ρcp

∂T

∂τ
= 0. (3)

From the fact that the third component of Eq. (3) does not

depend on the path of the process, value of λ can be chosen

arbitrary. Assuming λ = −2, Eq. (3) becomes in the final

form

a∇2T − a

T
∇T ◦ ∇T =

∂T

∂τ
, (4)

where a = k/ρcp is diffusion coefficient. Additional external

heat source q̇v,ad is described by the second term of Eq. (4)

and is

q̇v,a = − a

T
∇T ◦ ∇T.

2. Numerical example

Consider 1D classical initial-boundary problem given by: (in

dimensionless form)

• governing equations

∂2T

∂x2
=
∂T

∂τ
, T = T (x, τ), x ∈ (−1, 1) , (5)

• boundary conditions

T (1, τ) = T (1) = 1,

T (−1, τ) = T (−1) = 1,

• initial conditions

T (x, 0) = T (x) = e.

A general scheme is presented in Fig. 1. Analytical solution

can be easily obtained with separation of variables method

and is

T (x, τ) = 1 +
2

π

∞
∑

n=0

(−1)n

2n+ 1
exp

[

− (2n+ 1)2π2

4
τ

]

cos (2n+ 1)
π

2
x.

(6)

Fig. 1. Initial boundary value problem

When the entropy generation minimization approach is

applied, the initial-boundary value problem takes the form:

(dimensionless form)

• governing equations

∂2T

∂x2
− 1

T

(

∂T

∂x

)2

=
∂T

∂τ
,

T = T (x, τ), x ∈ (−1, 1) ,

• with boundary conditions

T (−1, τ) = 1,

T (1, τ) = 1,

• and initial conditions

T (x, 0) = T (x) = e.

Introducing new variable

θ (x, τ) = lnT (x, τ)

initial-boundary value problem becomes

∂2θ

∂x2
=
∂θ

∂τ
, θ = θ(x, τ) (7)

and
θ (0, τ) = 0,

θ (1, τ) = 0,

θ (x, 0) = 1.

Its analytical solution is [2]

θ(x, τ) = − 4

π

∞
∑

n=0

(−1)n

2n+ 1
exp

[

− (2n+ 1)2π2

4
τ

]

cos (2n+ 1)
π

2
x

(8)

and

T (x, τ) = exp (θ(x, τ)) .

Solutions (6) and (8) are presented in Figs. 2 and 3 respec-

tively. Difference

δT = T (x, τ)clasical − T (x, τ)Ṡgen
(9)
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Fig. 2. Solution of classical problem

Fig. 3. Solution with entropy generation minimization condition

Fig. 4. Temperature difference δT (x, τ ) according to Eq. (9)
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is shown in Fig. 4 where T (x, τ)clasical and T (x, τ)Ṡgen
are

solutions of classical and entropy generation minimization

initial-boundary value problems (5) and (7). Solutions (6)

and (8) allow to calculate entropy generation rates

Ṡgen,t = 2

1
∫

0

∞
∫

0

1

T 2

(

∂T (x, τ)

∂x

)2

dxdτ

and

Ṡgen,t = 2

1
∫

0

∞
∫

0

(

∂θ(x, τ)

∂x

)2

dxdτ .

Numerical calculations gives

• classical initial-boundary value problem

Ṡgen,cl = 0.332 (J/m3K),

• entropy generation minimization

Ṡgen,cl = 0.267 (J/m3K).

3. Example of general solution

3.1. Initial-boundary value problem when boundary con-

ditions depends on time.

• governing equations (dimensionless form)

∂2T

∂x2
− 1

T

(

∂T

∂x

)2

=
∂T

∂τ
,

T = T (x, τ), x ∈ (0, 1) ,

• boundary conditions

T (0, τ) = φ1(τ),

T (1, τ) = φ2(τ),

• initial conditions

T (x, 0) = f(x).

After transformation

θ (x, τ) = lnT (x, τ)

the problem is

∂2θ

∂x2
=

∂θ

∂, τ
,

θ (0, τ) = lnφ1(τ),

θ (1, τ) = lnφ2(τ),

θ (x, 0) = ln f(x)

and its solution is given with the use of Duhamel’s theo-

rem [2]:

θ(x, τ) = 2

∞
∑

n=0

exp
(

−n2π2τ
)

sin(nπx)





1
∫

0

ln f(x′)
π

2
sin(nπx′)dx′+

+nπ

τ
∫

0

exp
(

n2π2λ
)

{lnφ1(x) − (−1)n lnφ2(x)}





and

T (x, τ) = exp (θ(x, τ)) .

In such cases entropy generation rate calculation requires nu-

merical calculation.

3.2. Consider 2D initial-boundary value problem.

• governing equations (dimensionless form)

∂2T

∂x2
+
∂2T

∂y2
− 1

T

[

(

∂T

∂x

)2

+

(

∂T

∂y

)2
]

=
∂T

∂τ
,

T = T (x, τ), x, y ∈ (−1, 1) ,

• boundary conditions

T (x,−1, τ) = T (x, 1, τ)

= T (−1, y, τ) = T (1, y, τ) = 1,

• initial conditions

T (x, y, 0) = T0(x, y).

After introducing

θ (x, y, τ) = lnT (x, y, τ)

the problem takes the form

∂2θ

∂x2
+
∂2θ

∂y2
=
∂θ

∂τ

and

θ (x,−1, τ) = θ (x, 1, τ ) = θ (−1, y, τ) = θ (1, y, τ) = 0,

θ (x, y, 0) = θ0 (x, y) = lnT0(x, y).

The solution for θ is [3]:

θ (x, y, τ) = ψ(x, 1) · ψ(y, 1)erf
x

2
√
τ
,

where

ψ(x, 1) =
4

π

∞
∑

n=0

(−1)n

2n+ 1
exp

[

− (2n+ 1)2π2

4
τ

]

cos (2n+ 1)
π

2
x

and finally

T (x, y, τ) = exp (θ(x, y, τ)) .
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Solutions of many initial boundary-value problems can be

found in heat transfer literature, [2] and in monographs on

analytical solutions of non-linear partial differential equa-

tions [3].

4. Conclusions

The results illustrate a practical aspect of the Principle of

Entropy Generation Minimization [4] that:

“The entropy of a system can be reduced only if it is made

to interact with one or more auxiliary systems in a process

which impacts to these at least a compensating amount of

entropy”.

In the case of heat conduction processes interaction with

outside systems are realized by additional internal heat source

which becomes as the component of Euler-Lagrange equa-

tion. In this way it is possible to explain formation processes

of dissipative structures [5]. Additional heat source decreases

irreversibility ratio.

Analysis of the data presented in Fig. 4 (δT (x, τ)) points

out that the temperature changes with time are more inten-

sive (faster) when the source is included. It leads directly to

more effective consumption of driving energy and minimiza-

tion of natural resources. The method is directly connected

with exergy optimization.
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