


Among them there the following optimization problems can be distinguished: the times of work 

execution and durations of activities should be determined in order to: 

� minimize the duration of the project with the total cost given or

� minimize the total cost of the project, which is not to exceed final deadline for its 

implementation.

This problem belongs to a group of a single objective optimization problem and until now it has 

been one of the most frequently considered in the context of operational research (in foreign 

literature it is described in terms of "time-cost trade-off" - in short - TCT). The problem of resource 

allocation (in case of TCT - costs) for a discrete time/cost dependency is NP-hard. To solve this 

problem in construction projects the most frequently used are approximate metaheuristic 

algorithms, with different degrees of accuracy in obtaining results, such as: genetic [3, 10], 

simulated annealing [1], ant colony [14, 19] or hybrid algorithm [18].  

In the second group there are projects realized in a flow organization system [6, 11, 12]. They rely 

on the implementation of a set of units or a single object partitioned into work zones. Such projects 

embrace for instance: multi-storey buildings, single-family housing developments or group of 

buildings, linear objects (highways, road networks, and pipelines).

The most commonly considered scheduling optimization criterion for projects implemented in this 

system is the duration of the entire project taking into account the decision variable -ability to 

change the sequence of execution of units [2, 12, 16]. There are few works in which the criterion 

considered for this system is the cost of the project which is understood as the sum of the cost of the 

works in the project and it takes into account the possibility of changing the order of execution of 

units [15, 17].

This paper proposes a model of flow organization system, in which the cost of works execution in 

the project is included, which will lead to solving discrete optimization problems with the time/cost 

dependency, similar to the one described in the above TCT problem. 

2. DESCRIPTION OF THE CONSIDERED MULTIUNIT PROJECT

The considered in the paper model assumes the acceptance of deterministic situations where the 

technical, technological and organizational conditions are known and accurate with an available bill 

of quantities. At any given time resources (working groups) are available to perform the work with 

the established performance and quality. There are no significant disruptions in the performance of 

work by the working groups. Relationships between jobs are expressed in a constant, for each unit, 
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sequence (order). It is a dependency encountered for buildings with a simple work technology such 

as in case of single-family houses. For these units works will be performed in a sequence, e.g. 

earthworks, foundations, walls with slabs, rafter framings, etc. In the presented model of a multiunit 

project, the partial overlap in the sequence of the works or the presence of the intervals between 

them is allowed. 

The above system can be found in performance practice, where, for example, the early 

commencement of works made before the end of the works of the previous type is allowed. The 

system also allowed for additional time required for the movement of the working groups between 

units, depending on the nature of the working group and the sequencing of units. This is 

an important parameter for the projects in which the undertaken construction works in are at a 

distance from each other [4].  

A separate problem is the choice of resources to be implemented in the project. It is assumed that 

any type of work can be done in a maximum three ways considering the duration and cost of the

work. Such a situation can be seen when the project developer has access to offers made by 

subcontractors for certain types of work. They will contain the declared duration and cost of the 

specific work throughout the whole project (i.e. on all units). The described resource selection issue

comes down to the choice of a method with which the project will be performed.

In connection with the above project description, in the presented model, optimization problem can 

be distinguished in which there are two, separate decision variables. The first is the allocation of

units, which is represented by a permutation of length equal to the number of units. The second is a

matrix of numbers representing the methods of works implementation (1 to 3) with dimensions 

equal to the number of works and the number of units in the project.

The optimization problem in the presented model will be a single objective optimization task, which 

will rely on minimizing of the cost of the entire project considering set limitation on the date of its 

execution. The above described optimization problem was not yet investigated in the literature on 

scheduling of construction projects. The paper proposes the solution using new algorithm created by 

the author. In steps of algorithm the simulated annealing algorithm will be applied. 

3. OPTIMIZATION MODEL OF MULTIUNIT PROJECT

In the considered flow organization model there are assumptions from permutation flow shop 

problem used with the criterion of time of execution of all tasks (problem FP--Cmax), which is 

studied in the theory of scheduling. On the basis of this problem a considered model has been 
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formulated which uses additional parameters and constraints. The model assumes that one type of 

work is performed by one working group selected from the team of working groups (group of 

subcontractors). The optimization model of the above described problem is as follows: 

Parameters: 

� The project consists of a set of building units Z = {Z 1, Z 2, Z 3,..., Zj, ..., Zn}.

� In order to carry out the project works the working groups perform one job of one type which

constitute the set B = {B 1, B 2, B 3, ..., Bk , ..., Bm}. 

� In each team of working groups Bk . B there are three working groups representing various

subcontractors (with different capacities and configurations): Bk = {Bk1, Bki, Bk3}, where 

i = 1 ... 3.

� Each object Zj. Z requires implementation of m works which form the set Oj = {Oj1, Oj2, Oj3, ..., 

Ojk , ..., Ojm}. 

� It is assumed that the work Ojk . Oj can be done by the working group Bki / Bk. The duration of 

the work Ojk performed by the group is pjki > 0. The set of possible durations of works from the 

set Oj performed by the working group Bki defines vector pi = [pj1, pj2, pj3, ..., pjk, ..., pjm],  where 

pjk  = [pjk1, pjki, pjk3]. Duration of works pjki are determined on the basis of workload and

workgroup size (number of workers) Bki performing the work Ojk.

� Similarly as the above, it is assumed that the work Ojk . Oj can be implemented by the working 

group Bki / Bk. The cost of realization of the work Ojk by the working group Bki defines 

a variable ujki 0 0. The set of possible costs of works uj from the set Oj is defined by the vector 

uj = [uj1, uj2, uj3, ..., ujk , ..., ujm], where ujk  = [ujk1, ujki, ujk3]. The cost of the work ujki is 

determined by the calculation of the cost of execution of the work Ojk by the working group Bki

located in the resources of the contractor. It may also be the cost offer of the execution of the 

work Ojk made by the subcontractor represented by the working group Bki. It is assumed that the 

time of execution of works pjki is convex, decreasing cost functions ujki. 

� There is the possibility of technological gaps between the works and the simultaneous operation 

of multiple working groups in the units assumed. Durations of intervals between a given work 

and the next work (sF
jk > 0) or the length of the simultaneous duration of a given work and the 

next work (sF
jk < 0) in the unit for a set of works Oj are given in vector sF

j = [sF
j1, sF

j2, sF
j3, ..., 

sF
jk, ..., sF

jm]. They are equivalent to couplings between working fronts, which are used in [11]. 

These times should be understood as the minimum constraints and can take on any value. In the 

further work there will be called couplings between units. 
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� Additional time required for the movement of the working groups between units, depending 

on the type of the working group and the sequencing of units is defined by the m matrices 

SS
k = [sS

gh] of size n x n, where g . [1..n], h . [1..n], k . [1..m].

Constraints: 

� The order of execution of the works resulting from work technology is assumed such that:            

Oj,k-1 Oj,k Oj,k+1  .

� It is assumed that each working group from the team Bk can perform only one job at a time. 

� It is assumed that the work Ojk . Oj is performed continuously by the working group 

Bki / Bk in time pjki > 0. 

� It is assumed that the constraint of time of completion of all the works in units takes on the 

value Ĉ : Cmax 1 Ĉ , where Cmax is the duration time of the entire project. 

Decision variables are the order π of execution of units, which, for each of the working group, is the 

same and takes the form of a permutation π = (π(1), π(2), π(3), ..., π(j), ..., π(n)) and a set of 

numbers of ways of work execution (from i=1 to i=3) in all units of the project is R = (R1, R2, R3,

..., Rj, ...,Rn), R.2, where Rj = (Rj1, Rj2, Rj3, ..., Rjk, ..., Rjm), Rjk –the number of ways of realization 

(from i=1 to i=3) of the work k in object j, 2 - the set of all possible ways to carry out the works in 

the project.

The value of the number i of the way of realization Rjk enables allocation of the working group Bki

from the team Bk to the work k in the object j. 

The form of the decision variable R uniquely identifies the allocation of working groups to 

realization of works in the units. Therefore, using the decision variable R there establishes not only 

the durations of individual works carried out in the units but also their cost. 

After the adoption of the decision variable R the durations of works pj from the set Oj is as follows:

pj = {pj1, pj2, pj3, ..., pjk , ..., pjm}, where pjk is the duration of the execution of the work k in the object 

j. Similarly, consequently with the adoption of the decision variable R the set of costs uj  of works 

from the set Oj  is as follows: uj = {uj1, uj2, uj3, ..., ujk , ..., ujm}, where ujk is the cost of implementing 

work k in object j. 
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Objective function will be the cost of the project at the assumed constraint of the date of its 

completion. 

More specifically, the minimum cost of the entire project is searched for (which is the sum of the 

cost of individual works) by the permutation π*.П and for the decision variable R*.2, for which: 

U(π*, R*) = 
ΠπR .2. ,

min U(π, R),      where U(π, R) = ��
� �

n

j

m

k
jku

1 1

, (1) 

П - the set of all possible permutations of a given project, n - the number of all working units, m –

the number of works required for the realization of each of the object, assuming that the deadline 

for completion of the entire project Cmax(π*, R*) does not exceed the indicative time limit imposed 

by the investor Ĉ : Cmax(π*, R*) 1 Ĉ .

The deadlines for the individual works for the decision variables π and R can be determined from 

the recursive formula: 

Ck, π(j) = max{Ck, π(j-1) + sS
k,π(j-1)π(j), Ck-1, π(j) + sF

k-1,π(j)} + pk,π(j) , (2) 

where: j = 1, ..., n, k = 1, ...., m, π(0) = 0, Ck,0 = 0, C0,j = 0.  

The duration of the entire project Cmax (time execution of all works in the units) for π*.П and for 

the decision variable R*.2 is:  

Cmax(π*, R*) = C m,π*(n) (3)

The deadlines for the performance of individual works and their cost can be found in time O(nm).

The number of possible solutions to the presented model is n!lmn, where l – is the number of 

possible ways to implement m works in n units of the project (with assumed l = 3). 
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Fig. 1. The graph for the described model of the project with the marked critical path 

The above presented model is NP-hard optimization problem. To solve the optimization task there 

is an individual algorithm proposed. This algorithm will use approximate metaheuristic simulated 

annealing algorithm.  

4. COMPUTATION EXAMPLE

The contractor, on behalf of the investor, has to realize a project which relies on the construction of 

n = 7 residential buildings (units). Each of them requires execution of m = 9 works carried out in a 

fixed order. The project will be implemented in full by the subcontractors. For each type of work 

the contractor has received three bids from the subcontractors for the construction of individual 

buildings which are shown in Table 1. Each of the tender offers includes the execution time of 

a given type of work in particular units expressed in working days and the cost of their 

implementation expressed in zlotys. Between the works realized in the technological order there are 

couplings between units that have been established on the basis of existing technological constraints 

which are shown in Table 2. The data concerning the time required due to the movement of the 

working groups between units (depending on the nature of the working group and the sequencing of 

units) are stored in the form of m = 9 matrix SS
k : SS

1 = SS
2 = sS

gh = 2, SS
3 = SS

4 = SS
7 = sS

gh = 1, SS
5 =

SS
6 = SS

8 = SS
9 = sS

gh = 0. 
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Table 1. Offers of the works execution in n = 7 buildings for m = 9 works submitted 

by subcontractors including the duration of the works and their cost 

CONTRACTORS (NUMBER/OFFER)
UNITS j=

1 2 3 4 5 6 7

Earthworks (k = 1)

1 Execution time [working days] 12 18 11 15 18 13 19
Execution cost [in thous. zl] 5,50 8,25 5,04 6,88 8,25 5,96 8,71

2
Execution time [working days] 10 22 12 11 19 14 17

Execution cost [in thous. zl] 6,60 6,75 4,62 9,38 7,82 5,53 9,73

3
Execution time [working days] 11 14 11 11 15 11 15

Execution cost [in thous. zl] 3,88 4,37 4,67 4,80 4,90 3,67 6,41

Foundations (k = 2)

1 Execution time [working days] 18 17 10 6 16 29 13
Execution cost [in thous. zl] 24,00 22,67 13,33 8,00 21,33 38,67 17,33

2
Execution time [working days] 14 12 8 8 18 36 16

Execution cost [in thous. zl] 30,86 32,11 16,67 6,00 18,96 31,15 14,08

3
Execution time [working days] 16 22 11 7 17 27 11

Execution cost [in thous. zl] 27,00 17,52 12,12 6,86 20,08 41,53 20,48

Walls, slabs (k = 3)

1 Execution time [working days] 40 21 35 34 12 57 19
Execution cost [in thous. zl] 65,50 34,39 57,31 55,68 19,65 93,34 31,11

2
Execution time [working days] 28 21 44 35 12 68 17

Execution cost [in thous. zl] 93,57 34,39 45,59 54,08 19,65 78,24 34,77

3 Execution time [working days] 50 16 36 27 13 43 16
Execution cost [in thous. zl] 52,40 45,13 55,72 70,11 18,14 123,73 36,95

Rafter framings, roofing (k = 4)

1 Execution time [working days] 13 10 14 8 8 12 17
Execution cost [in thous. zl] 35,50 27,31 38,23 21,85 21,85 32,77 46,42

2
Execution time [working days] 10 12 13 6 6 12 15

Execution cost [in thous. zl] 46,15 22,76 41,17 29,13 29,13 32,77 52,61

3 Execution time [working days] 13 10 18 9 9 9 16
Execution cost [in thous. zl] 35,50 27,31 29,74 19,42 19,42 43,69 49,32

Installations (k = 5)

1 Execution time [working days] 24 24 26 15 36 32 19
Execution cost [in thous. zl] 46,00 46,00 49,83 28,75 69,00 61,33 36,42

2
Execution time [working days] 22 29 34 13 42 34 21

Execution cost [in thous. zl] 50,18 38,07 38,11 33,17 59,14 57,73 32,95

3
Execution time [working days] 29 27 24 17 28 37 16

Execution cost [in thous. zl] 38,07 40,89 53,99 25,37 88,71 53,05 43,24
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Table 1. Offers of the works execution in n = 7 buildings for m = 9 works submitted 

by subcontractors including the duration of the works and their cost – continued 

CONTRACTORS (NUMBER/OFFER)
UNITS j=

1 2 3 4 5 6 7

Windows and doors (k = 6)

1 Execution time [working days] 10 16 4 10 5 4 16
Execution cost [in thous. zl] 38,00 60,80 15,20 38,00 19,00 15,20 60,80

2
Execution time [working days] 12 14 4 11 4 4 14

Execution cost [in thous. zl] 31,67 69,49 15,20 34,55 23,75 15,20 69,49

3 Execution time [working days] 7 13 4 9 6 3 13
Execution cost [in thous. zl] 54,29 74,83 15,20 42,22 15,83 20,27 74,83

Plastering, floors (k = 7)

1 Execution time [working days] 26 16 41 9 23 40 14
Execution cost [in thous. zl] 27,00 16,62 42,58 9,35 23,88 41,54 14,54

2
Execution time [working days] 22 12 47 9 26 49 16

Execution cost [in thous. zl] 31,91 22,15 37,14 9,35 21,13 33,91 12,72

3
Execution time [working days] 20 15 52 11 23 38 18

Execution cost [in thous. zl] 35,10 17,72 33,57 7,65 23,88 43,72 11,31

Fencing, driveways (k = 8)

1 Execution time [working days] 12 19 8 15 11 11 14
Execution cost [in thous. zl] 21,50 34,04 14,33 26,88 19,71 19,71 25,08

2
Execution time [working days] 13 24 9 12 8 11 12

Execution cost [in thous. zl] 19,85 26,95 12,74 33,59 27,10 19,71 29,26

3
Execution time [working days] 15 24 8 15 13 8 14

Execution cost [in thous. zl] 17,20 26,95 14,33 26,88 16,68 27,10 25,08

Tiling, painting, sanitary whiteware (k = 9)

1 Execution time [working days] 18 15 16 23 26 17 27
Execution cost [in thous. zl] 41,50 34,58 36,89 53,03 59,94 39,19 62,25

2
Execution time [working days] 15 18 13 27 26 16 28

Execution cost [in thous. zl] 49,80 28,82 45,40 45,17 59,94 41,64 60,03

3
Execution time [working days] 23 12 12 27 22 13 25

Execution cost [in thous. zl] 32,48 43,23 49,19 45,17 70,84 51,25 67,23

The number of possible solutions (schedules) in the illustrated example is: 

7!*37*9 = 5040*363 = 5,77*1033. The contractor has a deadline for the completion of the entire 

project amounting to 350 working days imposed by the investor. In connection with the established 

deadline the contractor will try to set a schedule for the execution of the works that minimizes the 

cost of used resources - among the contractors who submitted their bids. 
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Table 2. Couplings between units sF occurring between the works k and k+1 for n = 7 units

Works k=

Value sF [working days]

Units j=

1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

2 5 5 5 5 5 5 5

3 0 0 0 0 0 0 0

4 -5 -5 -5 -5 -5 -6 -5

5 -3 -3 -4 -3 -4 -2 -3

6 -1 -1 0 -1 -2 -2 -1

7 0 0 0 0 0 0 0

8 -11 -11 -9 -13 -13 -10 -16

5. METHOD FOR SOLVING OPTIMIZATION PROBLEM

The described optimization problem shown in the above example, belongs to NP-hard discrete 

optimization problem. The difficulty in solving such a problem is caused by the fact that there are

two different decision variables affecting the value of the objective function, which is the cost of the 

project. For searching the minimum cost of the project there is a proposed individual algorithm. 

This algorithm will use the approximate simulated annealing (SA) algorithm which belongs to the 

group of metaheuristics. The SA algorithm has been proposed in the work of Kirkpatrick [9]. This 

algorithm uses analogous to the thermodynamic process of cooling the solid in order to introduce 

the trajectory of the search of the local extremum. States of solid matter are seen analogously as 

individual solution to the problem, whereas the energy of the body as the value of the objective 

function. During the physical process of cooling the temperature is reduced slowly in order to 

maintain energy balance.

The SA algorithm starts with the initial solution, usually chosen at random. Then, in each iteration,

according to established rules or randomly, there is the solution 3’ selected from the base 

neighbourhood 3. It becomes the base solution in the next iteration, if the value of the objective 

function is better than the current base solution or if it otherwise may become the base solution with

the probability of: p = exp(-,*/ Ti), where , = c(3’) – c(3), Ti – the temperature of the current 

iteration i, c – the objective function. In each iteration there are m draws from the neighbourhood of 

the current basic solution performed.
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The parameter called the temperature decreases in the same way as in the natural process of 

annealing. The most frequently adopted patterns of cooling are: 

� geometrical Ti+1 = �i Ti , 

� logarithmic Ti+1 = Ti / (1+ �i Ti),

where i = 0, ..., N - 1, T0 – the initial temperature, TN – the final temperature, N - number of 

iterations, �i – parameter. In the algorithm there are usually parameter values T0, TN, N adopted and 

parameter �i is calculated. The relationship T0 > TN should take place, whereas TN should be small, 

close to zero. Below, a general method of SA algorithm used to solve the flow shop problem is 

presented: 

Step 0. Determine the initial solution π0.Π. Substitute  πSA =  π0, k = 0, T = T0.

Step 1. Perform steps 1.1 - 1.3 x-times.  

Step 1.1. Substitute k := k + 1. Choose random** π.N(V, πk-1).

Step 1.2. If c(π’) < c(πSA) then substitute  πSA = π’.

Step 1.3. If c(π’) < c(πk-1) then substitute  πk = π’. Otherwise, accept solution π’ with a 

probability of p = exp((c(πk-1) - c(π’))/T, tj. πk = π’ , if solution π' was not accepted. 

Step 2. Change the temperature T according to a defined pattern of cooling. 

Step 3. If T > TN, return to step 1, otherwise STOP.

SA algorithms are used to solve many optimization problems, including flow shop problems 

considered in the context of discrete optimization problems [7, 13]. The SA algorithm was also used 

in solving optimization tasks in the scheduling of the construction projects (Time Coupling 

Methods – TCM) [5]. The results obtained using the SA algorithm are slightly worse than those 

obtained by using the tabu search algorithm and are better than those obtained using the genetic 

algorithm [5]. Due to the existence of two different decision variables for solving optimization task 

in the present model of multiunit project there is the solution of the optimization proposed using the 

following algorithm created by author of the paper: 

Let π.Π be any permutation determined at random (π* - the best solution found so far, at the 

beginning π*=π), let R be the set of numbers of ways to carry out the works found at random (R*

the best solution found so far, for the beginning R* = R), Ĉ  - limitation of the deadline imposed 

by the project investor, MaxIter the adopted maximum number of iterations of the algorithm.  

Step 1. Find the solution for the optimization task using SA metaheuristics (permutation *δ) of 

the minimizing the duration of the project satisfying the condition Cmax(δ, R) 1 Ĉ with R

adopted as a set of numbers of ways to carry out the works. 
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Step 2. Find the solution to the optimization problem using SA metaheuristics (the set of 

ρ numbers of* ways to implement the works) to minimize the cost of the project with the aim of 

sequencing of units expressed by the permutation δ and limitation of the project duration to the 

value Ĉ : Cmax(δ, ρ) 1 Ĉ .

Step 3. If U(δ, ρ) 1 U(π*, R*), then π* = δ, R* = ρ . Adopt R = ρ.  

Step 4. If the Completion_Condition is satisfied, then STOP 

      else go to Step 1. 

The above algorithm is designed to search the space of solutions contained in n! possible schedules 

solving, in the found permutation and the task of minimizing the cost of the entire project. As a 

result, its operation provides the minimum value of the cost of the project from the entire search 

trajectory taking into account the imposed limitation concerning the duration of the project. The 

algorithm terminates with the condition of completion, which relies on performing MaxIter of its

iterations. 

In step 2, the task of minimizing the duration of the project is being solved. The following 

assumptions concerning the form and the parameters of the SA algorithm included in the step 2 

were adopted: 

� neighborhood Nπ contains permutations generated from π with the use of "insert" move, 

� Boltzmann function of acceptance was adopted, 

� geometric cooling scheme was adopted, i.e. Ti+1 = �Ti and T0 = 60, �*�*4+55, the number of 

considered solutions at a set temperature - 0.5 n,

� maximum number of iterations of the algorithm SA in Step 2 - 50 n.

In step 3, the task to minimize the cost of projects with limited duration value is being solved. The 

following assumptions concerning the form and parameters of the SA algorithm included in the step 

3 were adopted: 

� neighborhood NR contains sets of numbers of ways for the works execution generated from 

R by a move which relies on changing of the randomly selected number of ways of work 

implementation by the randomly selected value +1 or –1,

� Boltzmann function of acceptance was adopted, 

� geometric cooling scheme was adopted, i.e. Ti+1 = �Ti oraz T0 = 60, �*�*4+55, the number of 

solutions considered at a fixed temperature - 2 n,

� maximum number of iterations of the SA algorithm SA in step 3 - 20000. 

Due to the adopted limitation - the duration of the project – the sequence of solving problems was 

determined in the order as given in the above algorithm: in step 1, the task is solved to minimize the 
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duration of the project and then in step 2, the task is solved to minimize the cost of the project. Such 

a sequence of solving optimization problems will move the algorithm in the area of feasible 

solutions which meet the adopted limitation. The implementation of the presented algorithm for the 

considered model was made in Mathematica system. The optimization problem in the presented 

calculation example is based on the search for a schedule that minimizes the cost of subcontractors 

used by reducing the execution time of the works up to 350 days. This object is achieved by means 

of software created for the completion of the algorithm (step 4) after 1000 iterations. The cost of the 

project for initial solution (first iteration) amounts to 1970,01 thousand PLN (duration of the project 

– 347 days).  

Fig. 2. The search trajectory for the optimal schedule in the calculation example 

The lowest cost of the project was achieved in 448 iterations of the algorithm and it amounts to 

1908.96 thousand PLN (duration of the project – 350 days) for the following decision variables: 

π = (3, 5, 1, 7, 2, 6, 4) and 

R = (R1, R2, R3, R4, R5, R6, R7), where: 

R1 = (1,1,1,1,3,1,1,3,3), R2 = (1,3,2,2,3,1,1,1,2), R3 = (1,2,2,3,2,2,3,1,1), R4 = (2,1,2,1,3,1,1,1,1), R5

= (1,1,1,3,2,3,2,1,1), R6 = (1,2,2,2,2,3,1,1,1),  

R7 = (1,1,3,3,1,1,2,1,1). 

The cost of the project was improved by 3,1 % compared to the initial solution. Algorithm was 

coded in Mathematica system and executed on a PC with Intel Core i3-2100 processor. 

Computation time was about 30 hours. The long time of computation is caused by the inability of 

algorithm compilation in the Mathematica system. The increase in the number of iterations 

performed more than 1000 in algorithm did not result in lower cost of the project. The trajectory of 

exploration of the optimal schedule in the example is shown in Fig. 2. The algorithm can be used to 
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search for the optimal solution for larger tasks than those presented in the example. The condition 

for the use of algorithm to solve them is to create a new software implementation coded, eg. in the 

C++. It allows compiling commands and procedures, significantly accelerating the search for 

solutions optimization tasks. 

6. CONCLUSION

Multiunit projects are special cases of construction projects, in which discrete optimization 

problems may occur. These problems are usually NP-hard due to the fact that they may be qualified 

as the permutation flow shop problems. Application of the additional parameter for works in the 

presented model – namely, the cost of works implementation enabled a significant increase in the 

number of possible solutions (schedules). The introduction of choices for the implementation of the 

selected works of the working group chosen from the team of three working groups revealed the 

existence of an additional decision variable, i.e. a set of numbers indicating the ways of works 

execution in all units of the project (apart from the sequencing of units). This resulted in the 

creation of the discrete optimization problem with two different decision variables - the cost 

criterion and constraint and the time of the project realization. To solve this problem an algorithm 

was created which searches the solution space, in which a metaheuristic simulated annealing 

algorithm was used. The results obtained using the SA algorithm are slightly worse than results 

obtained using the tabu search algorithm and are better than those obtained using the genetic 

algorithm [5]. The presented model of the multiunit project can be used when determining the 

optimal work schedule of subcontractors’ works in construction companies using the flow 

organization system of work. 
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HARMONOGRAMOWANIE PRACY ZASOBÓW W PRZEDSIĘWZIĘCIU WIELOOBIEKTOWYM

Z ZASTOSOWANIEM KRYTERIUM KOSZT / CZAS 

Słowa kluczowe: harmonogramowanie przedsięwzięć budowlanych, symulowane wyżarzanie, flow shop, optymalizacja, 
wybór wykonawców

STRESZCZENIE: 

Ze względu na możliwości planowania przedsięwzięcia budowlane można podzielić na dwa podstawowe rodzaje: 

przedsięwzięcia typu „kompleks operacji” oraz takie, które mogą być zorganizowane zgodnie z zasadami metody pracy 

równomiernej, czyli w systemie pracy potokowej [3]. W systemach pracy potokowej najczęściej rozważanym kryterium 

optymalizacji harmonogramów przedsięwzięć realizowanych w tym systemie jest czas trwania całego przedsięwzięcia 

[1, 5, 6]. W referacie przedstawiony jest model systemu pracy potokowej, w którym są uwzględnione koszty realizacji 

robót w przedsięwzięciu, co będzie prowadzić do rozwiązywania zagadnienia optymalizacji dyskretnej z zależnością 

czas/koszt. Dla rozpatrywanego w referacie modelu zakłada się przyjęcie sytuacji deterministycznej. Zakłada się, że 

każdy rodzaj robót można wykonać na maksymalnie trzy sposoby przyjmując dla każdego sposobu czas trwania i koszt 

realizacji roboty. Zagadnienie wyboru zasobów sprowadza się do wyboru sposobu wykonania robót w przedsięwzięciu. 

W modelu przedsięwzięcia można wyróżnić problem optymalizacyjny, w którym można zawarte są dwie, oddzielne 

zmienne decyzyjne. Pierwsza z nich to kolejność realizacji obiektów (działek roboczych), która jest reprezentowana 

przez permutację o długości równej liczbie obiektów. Druga z nich to macierz numerów sposobów realizacji robót (od 1 

do 3) o wymiarach równych liczbie robót i liczbie obiektów w przedsięwzięciu. Problem optymalizacyjny w modelu 

jest zadaniem optymalizacji jednokryterialnej, które będzie polegało na minimalizacji kosztu całego przedsięwzięcia 

przy założonym ograniczeniu dotyczącym terminu jego realizacji. Rozpatrywany model systemu pracy potokowej jest 

NP-trudnym zagadnieniem optymalizacyjnym i wykorzystuje założenia permutacyjnego problemu przepływowego z 

kryterium czasu wykonywania wszystkich zadań (problem FP--Cmax), który jest rozważany w teorii szeregowania 

zadań. W związku z istnieniem dwóch różnych zmiennych decyzyjnych dla rozwiązania zadania optymalizacyjnego w 

przedstawionym modelu proponuje się opracowany przez autora referatu algorytm, który wykorzystuje metaheurystykę

symulowanego wyżarzania [2, 4]. Algorytm ten ma na celu przeszukanie przestrzeni rozwiązań zawartych w n!

możliwych harmonogramów, rozwiązując dla znalezionej permutacji zadanie minimalizacji kosztu całego 

przedsięwzięcia. W referacie podano przykład obliczeniowy optymalizacji harmonogramu przedsięwzięcia 

budowlanego polegającego na realizacji grupy budynków mieszkalnych. Przedstawiony model przedsięwzięcia 

wieloobiektowego może znaleźć zastosowanie podczas ustalania optymalnego harmonogramu pracy podwykonawców 

firm budowlanych przy zastosowaniu potokowego systemu pracy.
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