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Continuous-time dynamic system identification with
multisine random excitation revisited

JAROSŁAW FIGWER

The paper presents a new, revisited and unified approach to a linear continuous-time dy-
namic single-input single-output system identification using input and output signal samples
acquired with a deterministic constant or random sampling interval. The approach is based on
a specially designed identification experiment with excitation of the form of a continuous-time
multisine random excitation and digital processing of the corresponding signal samples obtained
without analogue antialiasing filtration in the case of disturbances satisfying or not satisfying
the Shannon’s sampling theorem. Properties of the proposed approach are discussed taking into
account nonlinearity of the excitation generation and data acquisition systems with a focus on
model identification in the case of input and output signal levels comparable with data acqui-
sition system accuracy. Methods reducing influence of the disturbances (including aliasing) as
well as nonlinearities of the excitation generation and data acquisition systems on identification
results are proposed, too.

Key words: continuous-time dynamic system identification, multisine random process,
system excitation, signal sampling and reconstruction

1. Introduction

Models of linear continuous-time dynamic systems are important in many areas of
research and engineering activities. Basic principles of their identification ( [1], [2], [6],
[31], [32], [33], [34], [35], [39], [41], [42], [43], [47], [56], [57], [58], [62], [63]) are not
very much different from these for the discrete-time linear dynamic system identifica-
tion case ( [46], [55], [59]). In the literature of linear continuous-time dynamic system
identification based on input and output signal samples a necessity of additional low-
pass analogue antialiasing filtration of continuous-time dynamic system input as well
as the corresponding output signals prior to their sampling with the constant sampling
interval is stated. It is argued that such analogue filtration allows to reduce an influence
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of disturbances not satisfying the Shannon’s sampling theorem on identification results.
It is also emphasized that these filters should be identical taking into account dynamic
characteristics to remove their influence on identification results (see e.g. [54], [55]).
When this very restrictive and unrealistic condition is not satisfied, like it takes place in
real-world applications of identification techniques in which additionally the same initial
conditions of these filters are necessary, there is no possibility to remove the influence
of these filters on identification results - a bias in obtained estimates may appear and
identification errors implied by aliasing may be amplified.

The main aim of this paper is to present a new, revisited and unified approach to non-
parametric and parametric linear continuous-time dynamic system identification with a
specially designed excitation of the form of a continuous-time multisine random excita-
tion ( [13], [15], [17]) and data processing based on input and output signal samples ac-
quired with a deterministic constant or random sampling interval ( [3], [4], [10]) without
prior analogue antialiasing input and output signal filtration ( [27]) taking into account
excitation signals generated directly from D/A converter equipped only with zero-order
hold filter. A focus on model identification in the case of input and output signal levels
comparable with data acquisition system accuracy is given. Different methods reduc-
ing influence of the disturbances (including aliasing) as well as nonlinearities of the
excitation generation and data acquisition systems on obtained identification results are
proposed, too.

The paper is organized as follows: (1) the linear continuous-time dynamic single-
input single-output system identification problem with disturbances satisfying or not
satisfying the Shannon’s sampling theorem as well as nonlinear excitation generation
and data acquisition systems is stated; (2) a new look at aliasing and an approach to non-
linear dynamic system modeling with excitations being wide-sense stationary random
processes are introduced; (3) the continuous-time multisine random excitation is defined
and generation of its real-world realizations is described; (4) identification experiment
with this excitation and initial processing of the corresponding continuous-time dynamic
system input and output signal samples are proposed; (5) the linear continuous-time
dynamic system frequency response and the corresponding transfer function parameter
estimation are discussed.

2. Problem statement

In the presented discussion an asymptotically stable, linear, rational, time-invariant
continuous-time dynamic single-input single-output (SISO) system is considered, de-
scribed by the following differential equation:

dpy(t)
dt p +

p−1

∑
ν=0

aν
dνy(t)

dtν =
r

∑
ν=0

bν
dνu(t)

dtν + γ(t), (1)



CONTINUOUS-TIME SYSTEM IDENTIFICATION WITH MULTISINE EXCITATION REVISITED 135

where a0,a1, . . . ,ap−1, b0,b1, . . . ,br (p ­ r) are the linear continuous-time dynamic
SISO system parameters, t denotes continuous time, u(t) is the linear continuous-time
dynamic SISO system input, y(t) is the corresponding linear continuous-time dynamic
SISO system output and γ(t) is the disturbance being a continuous-time random process
with the expected value E {γ(t)} equal to 0 and finite variance (E

{
γ2(t)

}
< ∞). It is also

assumed that the disturbance γ(t) is uncorrelated with the input u(t).
The aim of identification is to determine estimates of the linear continuous-time

dynamic SISO system frequency response

K( jω) = ∑r
ν=0 bν( jω)ν

( jω)p +∑p−1
ν=0 aν( jω)ν

(2)

for frequencies ω from the range [0,ωmax] or (and) estimates of the linear continuous-
time dynamic SISO system parameters a0,a1, . . . ,ap−1, b0,b1, . . . ,br on the basis of line-
ar continuous-time dynamic SISO system input and output signal samples acquired du-
ring specially designed identification experiments ( [11], [12], [15], [29], [30]) in which
a continuous-time multisine random process ( [13], [15], [17]) is used as the excitation.
Additionally, it is assumed that:

• the linear continuous-time dynamic SISO system input and output signals are
additionally disturbed prior to their sampling by additive disturbances being
continuous-time random processes with expected values equal to 0 and finite va-
riances. These disturbances can be mutually correlated but they are uncorrelated
with the input signal u(t);

• there is no analogue antialiasing signal filtration prior to signal sampling;

• the linear continuous-time dynamic SISO system input and output signals are sam-
pled with the sampling interval being a deterministic constant value or a set of a
random variable realizations;

• all disturbances may satisfy or not satisfy the Shannon’s sampling theorem for the
expected value of sampling interval chosen;

• the excitation is generated using D/A converter equipped only with zero-order
hold filter - there is no special analogue reconstruction filter;

• nonlinearities of the excitation generation and data acquisition systems are taken
into account. These nonlinearities are especially important in the case of input and
output signal levels comparable with the data acquisition system accuracy.

The presented in the sequel new, revisited and unified approach to nonparametric
and parametric linear continuous-time dynamic system identification is based on a new
look at aliasing and an approach to nonlinear system modeling with excitations being
wide-sense stationary random processes ( [26]).
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3. A new look at aliasing

Let ξ(t) be a wide-sense stationary continuous-time random process with the ex-
pected value E {ξ(t)} equal to 0, finite variance (E

{
ξ2(t)

}
< 0) and power spectral

density Φξξ(ω) (ω∈ [0,∞)). Its realizations are denoted by the superscript r - i.e. ξr(t) is
the r-th (r = 1,2, . . .) realization of ξ(t). It is assumed for discussion in this section that
these realizations are sampled with the deterministic constant sampling interval µ.

The power spectral density Φξξ(ω) may be decomposed into the two components
Φξ1ξ1(ω) and Φξ2ξ2(ω) such that Φξ1ξ1(ω) = 0 (for ω > ωN), Φξ2ξ2(ω) = 0 (for ω¬ωN)
and:

Φξξ(ω) = Φξ1ξ1(ω)+Φξ2ξ2(ω), (3)

where ωN denotes the Nyquist frequency for sampling interval µ. The corresponding
time-domain decomposition is the following:

ξ(t) = ξ1(t)+ξ2(t). (4)

It is obvious that the components ξ1(t) and ξ2(t) are uncorrelated.
The above decomposition implies that the corresponding discrete-time random pro-

cess ξ(iµ) (i = −∞, . . . ,0,1, . . . ,∞) obtained by sampling the continuous-time random
process ξ(t) with the sampling interval µ is a sum of the two components ξ1(iµ) and
ξ2(iµ), i.e.:

ξ(iµ) = ξ1(iµ)+ξ1(iµ), (5)

where:

• ξ1(iµ) is the result of sampling the component ξ1(t) that satisfies the Shannon’s
sampling theorem for the sampling interval µ,

• ξ2(iµ) is the result of sampling the component ξ2(t) that does not satisfy this
theorem for the sampling interval µ - this component is called as aliasing.

The components ξ1(iµ) and ξ2(iµ) may have nonzero values of their power spectral den-
sities for the same frequencies but it follows from the spectral representation theorem
( [7], [17]) that taking into account ensemble averaging these two components are un-
correlated:

E {ξ1(iµ)ξ2 ((i− τ)µ)}= 0, (6)

where τ =−∞, . . . ,0,1 . . . ,∞. Additionally, E {ξ1(iµ)}= E {ξ2(iµ)}= 0.
The above interpretation of aliasing implies that a digital orthogonal filtration ( [50],

[51], [64]) is a tool that allows to reduce influence of aliasing on digitally processed data,
including identification results, in the case when there is no analogue antialiasing signal
filtration prior to signal sampling. Its applications results in estimates of the realization
ξr

1(iµ) values.
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It is also worth to note that continuous-time dynamic system model identification
without identical analogue antialiasing filters used prior to input and output signal sam-
pling in the case of disturbances not satisfying the Shannon’s sampling theorem for sam-
pling interval chosen results in reduction of only signal to noise ratio while comparing
with the corresponding model identification based on signal samples acquired with ap-
plication of these analogue filters.

4. Nonlinear system modeling

The second tool used in the sequel is an approach to nonlinear dynamic system
modelling with excitations being wide-sense stationary random processes ( [22], [24],
[26]). In this approach any nonlinear dynamic system (e.g. continuous-time excitation
signal reconstruction system using D/A converter with zero-order filter, data acquisition
system with the corresponding sensor and A/D processing unit) is approximated by a
linear dynamic system in which nonlinearity is represented by a disturbance ψ(t) at the
linear dynamic system output that is uncorrelated with the system input u(t) as well as
with the undisturbed linear dynamic system output y f (t). Properties of the disturbance
ψ(t) and undisturbed linear dynamic system output y f (t) differs from the discussed,
in the previous section, properties of components the ξ1(t) and ξ2(t). They may have
nonzero values of their power spectral densities for the same frequencies but they are
uncorrelated and after sampling with the sampling interval µ:

E {u(iµ)ψ((i− τ)µ)}= E
{

y f (iµ)ψ((i− τ)µ)
}

= 0, (7)

where i =−∞, . . . ,0,1, . . . ,∞ and τ =−∞, . . . ,0,1 . . . ,∞.
It follows from the above discussion that influence of unwanted nonlinearity on di-

gitally processed data may be reduced using the digital orthogonal filtration. This reduc-
tion can also be obtained by a data processing based on Wiener model identification with
instrumental variable estimation method ( [22], [24], [26]). The data processing, calcu-
lation of undisturbed linear dynamic system output y f (t) value estimates based on the
results of model identification, is a tool that allows to look from another point of view
on many digital signal processing problems like for example:

• identification problems implied by nonlinearities of digital measurement systems,
e.g. finite precision of quantizers used in D/A and A/D converters,

• continuous-time system identification with data coming from identification exper-
iments in which plant is excited directly from continuous-time excitation signal
reconstruction system based on D/A converter with zero-order filter without addi-
tional analogue signal reconstruction filtration,

• model identification in the case of input and output signal levels comparable with
data acquisition system accuracy,
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• model identification in the case of disturbances containing periodic components,

• estimation of input and output signal values in between multiplicities of D/A and
A/D converter quant,

• controllers working without expensive analogue antialiasing filters.

It allows also to reduce influence of disturbances not satisfying the Shannon’s sampling
theorem on identification results.

5. System excitation

The proposed approach to linear continuous-time dynamic SISO system identifica-
tion is based on an excitation of the form of a continuous-time multisine random process
( [13], [15], [17]). This process is defined in the time-domain by a sum of N

2 + 1 (N is
even) harmonic continuous-time sines including a constant component:

υ(t) =
N
2

∑
n=0

An sin(Ωnt +φn), (8)

where Ω = 2ωmax
N denotes the fundamental frequency for the frequency range [0,ωmax],

n = 0,1, . . . , N
2 denotes consecutive harmonics of this frequency in the range [0,ωmax],

An are deterministic amplitudes of sine components, φn are phase shifts of which φ0 is
deterministic and the remaining phase shifts are random, independent and:

• uniformly distributed on [0,2π) for n = 1,2, . . . , N
2 −1,

• Bernoulli distributed B
(

1
2 ,

{
π
2 , 3π

2

})
for n = N

2 , i.e.:

P
{

φ N
2

=
π
2

}
= P

{
φ N

2
=

3π
2

}
=

1
2
, (9)

where P{X} denotes the probability of an event X .

Spectral properties of the continuous-time multisine random process υ(t) are defined
by the power spectral density Φηη(ω) (Φηη(ω) < ∞ for ω¬ ωmax) of a wide-sense sta-
tionary real-valued continuous-time random process η(t). It means that the deterministic
amplitudes An are chosen in a special way ( [11], [14], [17]):

• for n = 1,2, . . . , N
2 −1 as An = 2

√
Φηη(Ωn)

Nµ ,

• for n = 0, N
2 as An =

√
Φηη(Ωn)

Nµ ,
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where µ is a parameter interpreted in the sequel as the sampling interval.
Realizations υr(t) (r = 1,2, . . .) of the continuous-time multisine random process

υ(t) with defined spectral properties may be obtained numerically on the basis of re-
cursive synthesis and simulation of N-sample multisine random time series realizations
υr(ιµ) (ι = 0,1, . . . ,N − 1) with the multisine transformation ( [21], [23], [25]) aided
via the classical sinc interpolation used to calculate υr(t) values in between sampling
instants [28]. Such continuous-time random process reconstruction is useful for off-line
signal processing, e.g. simulation.

In the case of model identification the corresponding real-world realization ur(t)
(multisine random excitation - the linear continuous-time dynamic SISO system input)
of the wide-sense stationary multisine random process υ(t) may be reconstructed using
D/A converter working with the period T (T = αµ, α = 1,2, . . .) that is equipped only
with zero-order hold filter. The reconstruction procedure is the following:

ur(t) = ur(iT ) (10)

for t ∈ [iT,(i+1)T ), i = 0,1, . . ., and

ur(iT ) = υr(iαµ)+βΨr(iαµ), (11)

where:

• υr(ιαµ+qN) = υr(iαµ) for q = 0,1, . . .,

• β ∈ {1,2, . . .} is a parameter,

• Ψr(t) is a realization of the continuous-time random process Ψ(t) = ∆ and ∆ is the
uniformly distributed on [0,∆) random variable being the D/A converter quant.

It is also worth to mention that such continuous-time multisine random process re-
construction may be aided by quatization of the multisine random excitation mean value,
oversampling ( [8], [9]) or (and) a band-limited interpolation [49] but in the proposed
approach to linear continuous-time dynamic system identification they are not necessary
for precise model estimation and in the identification experiment discussed below these
methods are not used.

6. Identification experiment and initial data processing

Identification experiment is designed based on a classical approach for multisine ex-
citations ( [11], [12], [15], [29], [30]): the start of data acquisition is delayed with respect
to the instant of putting the excitation at the linear continuous-time dynamic SISO sys-
tem input. It starts after all transients implied by initial conditions have decayed. Under
continuous-time dynamic SISO system steady-state conditions the multisine random ex-
citation real-world realization ur(t) is repeated m times. To estimate models, the linear
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continuous-time dynamic SISO system input and output signals are represented by the
following sets of their samples:

{
ŭr(0), ŭr(tr

1), . . . , ŭ
r(tr

mN−1)
}

, (12)
{

y̆r(0), y̆r(tr
1), . . . , y̆

r(tr
mN−1)

}
(13)

collected at discrete-time instants tr
i :

tr
i = tr

i−1 +T r
i , (14)

where for i = 0,1, . . . ,mN − 1 the corresponding T r
i is a deterministic constant value

(T r
i = µ) or the mN-sample set of realisations of a random variable with the expected

value µ and variance σ2 ( [3], [4], [10], [27]). It is worth to note that the ratio σ
µ is a

parameter allowing to control continuous-time signal sampling and aliasing - in the case
of σ

µ = 0 the signals are sampled with the deterministic constant interval T r
i = µ.

During identification experiment the sets (12) and (13) of input and output sig-
nal samples are collected for P real-world realizations ur(t) (r = 1,2, . . . ,P) of the
continuous-time multisine random process υ(t). It is worth to start inputting the conse-
cutive realizations ur(t) at the linear continuous-time dynamic SISO system input with
delays being realizations of a uniformly distributed random variable and add to each
sampled signal, prior to sampling, independent realizations of the random variable that
is uniformly distributed in the range covering the quant of A/D converter used.

Processing of signals sampled with the random sampling interval is not a simple
task especially in the case when a parametric model of linear continuous-time dynamic
SISO system identification is considered. In the sequel, to identify nonparametric and
parametric models of the linear continuous-time dynamic SISO system efficiently, the
mN-sample data sets (12) and (13) obtained with the deterministic constant or random
sampling interval are transformed into the following N-sample data sets:

{ũr(0), ũr(µ), . . . , ũr((N−1)µ)} , (15)

{ỹr(0), ỹr(µ), . . . , ỹr((N−1)µ)} . (16)

These data sets contain estimates of the linear continuous-time dynamic SISO system in-
put u(t) and output y(t) signal samples obtained with the deterministic constant sampling
interval µ for one repetition of the continuous-time multisine random process realization.
In the proposed revisited and unified approach to linear continuous-time dynamic SISO
system identification these N-sample data sets are calculated directly from the corre-
sponding mN-sample data sets (12) and (13) by using a transformation based on the
nonuniform finite discrete Fourier transform ( [10]). For the given mN-sample data set
(12) or (13) this transformation consists of the following two steps:

• in the first step a spectrum estimate of the continuous-time signal (input or out-
put) for frequencies Ωm (m = 0,1, . . . , N

2 ) based on the corresponding mN-sample
data sequence obtained with the random sampling interval is calculated using the
nonuniform finite discrete Fourier transform,
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• in the second step an estimate of N-sample sequence of the continuous-time sig-
nal samples obtained with the deterministic constant sampling interval µ is calcu-
lated using the inverse finite discrete Fourier transform of a discrete-time signal
spectrum synthesized on the basis of the calculated spectrum estimate from the
first step. This step uses numerical efficiency of fast Fourier transform algorithms
( [5]).

In the case when the linear continuous-time dynamic SISO system input and output sig-
nals are sampled with the deterministic constant interval T r

i = µ (i = 0,1, . . . ,mN − 1
and r = 1,2, . . . ,P) the above transformation is the corresponding mean value calcula-
tion, e.g.:

ũr(iµ) =
1
m

m−1

∑
l=0

ŭr(tr
i+lN). (17)

When the disturbances do not contain components periodic in the time window of
length Nµ [38], the obtained N-sample data sequences (15) and (16) for each realiza-
tion υr (r = 1,2, . . . ,P) are unbiased and consistent estimators of the corresponding
noise- and alias-free continuous-time input u(t) and output y(t) signal samples taken
with the deterministic constant sampling interval µ. Their variances decline with the in-
crease of the number m of processed N-sample data segments. It implies in this case
that the above transformation is also a tool that allows to reduce influence of aliasing
on identification results. It is also worth to emphasize that in the case of disturbances
containing components periodic in the time window of length Nµ this transformation
may be aided by the mentioned additional data processing based on Wiener model iden-
tification with instrumental variable estimation method as well as active noise control
techniques [18], [19], [20], [24], [37], [45], [52].

Though the discussion in this section concerns a case of the period of D/A converter
being multiplicity of the sampling interval µ results presented are also true for the case
of A/D converter working with the random sampling interval characterized by expected
value that may be greater than µ.

7. Frequency response estimation

It is assumed in this section that the data sets (15) and (16) are used directly without
additional processing based on Wiener model identification, orthogonal filtration and ac-
tive noise control to estimate frequency response of the linear continuous-time dynamic
SISO system.

The linear continuous-time dynamic SISO system frequency response can be esti-
mated for the r-th data sets (15) and (16) by using, for example, the following empirical
transfer function estimator ( [11], [29], [30], [46]):

K̂r( jΩn) =
Ỹ r( jΩn)
Ũ r( jΩn)

, (18)
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where frequencies Ωn ∈ [0,ωmax] (n ∈
{

0,1, . . . , N
2

}
) and:

• Ỹ r( jΩn) is N-sample the finite discrete Fourier transform of ỹr(iµ):

Ỹ r( jΩn) = µ
N−1

∑
i=0

ỹr(iµ)e− jΩµni, (19)

• Ũ r( jΩn) is the N-sample finite discrete Fourier transform of ũr(iµ):

Ũ r( jΩn) = µ
N−1

∑
i=0

ũr(iµ)e− jΩµni. (20)

Properties of the estimator (18) follow directly from the definition of empirical trans-
fer estimator used for the case of continuous-time dynamic system identification ( [15]),
properties of multisine random processes [17] and the fact that N-sample finite discrete
Fourier transforms of ũr(iµ) and ỹr(iµ) inherit statistical properties of the corresponding
N-sample data sequences (15) and (16). It can be proven that:

• in the case of disturbances not containing components periodic in the time window
of length Nµ (e.g. ∆ = 0) the estimator (18) is consistent one under m→ ∞ and:

lim
m→∞

K̂r( jΩn) = K( jΩn) a.s.; (21)

• in the case of disturbances containing components periodic in the time window of
length Nµ the estimator (18) is not consistent one but the following estimator

K̂( jΩn) =
1
P

P

∑
r=1

K̂r( jΩn), (22)

have the property:
lim
P→∞

K̂( jΩn) = K( jΩn) a.s. (23)

• in the case of input and output signal levels less than quant of the A/D converter
used the above estimators are not consistent ones but

lim
β→∞,P→∞

K̂( jΩn) = K( jΩn) a.s. (24)

Application of correlation method of data processing ( [12], [16], [18]) allows to
calculate the linear continuous-time dynamic SISO system frequency response estimate
K̂r( jω) for frequencies ω ∈ [0,ωmax] as:

K̂r( jω) =
Φ̂ỹrυr( jω)
Φ̂ũrυr( jω)

(25)



CONTINUOUS-TIME SYSTEM IDENTIFICATION WITH MULTISINE EXCITATION REVISITED 143

or

K̂r( jω) =
Φ̂ỹr ũr( jω)
Φ̂ũr ũr( jω)

, (26)

where Φ̂ũr ũr( jω) is the power spectral density estimate obtained using ũr(iµ) and
Φ̂ỹrυr( jω), Φ̂ũrυr( jω), Φ̂ỹr ũr( jω) are cross power spectral density estimates obtained
using N-sample sequences ỹr(iµ), υr(iµ) and ỹr(iµ), respectively. They are calcu-
lated using the corresponding auto (R̂ũr ũr(τµ)) and cross correlation function estimates
(R̂ỹrυr(τµ), R̂ũrυr(τµ), R̂ỹr ũr(τµ)), e.g.:

Φ̂ỹrυr( jω) = µ
τ=M

∑
τ=−M

R̂ỹrυr(τµ)e− jωµτ, (27)

where M is a parameter. If M →∞ and N →∞ in such a way that M
N → 0 then estimator

(25) is consistent and
lim

M,N→∞
K̂r( jω) = K( jω) a.s. (28)

for all frequencies ω ∈ [0,ωmax]. This property have also estimators (25) and (26) in the
case when disturbance influencing measurements of u(t) have no components periodic
in the time window of length Nµ. It is obvious that in the case of correlation method of
data processing the properties (23) and (24) also hold.

It is worth to mention that increase of the number m of each continuous-time mul-
tisine random excitation realization repetitions or (and) increase of the number P of
collected data sequences for different continuous-time multisine random excitation re-
alizations are the next tools that allow to reduce influence of disturbances (including
aliasing) on identification results.

The additional processing of the data sets (15) and (16) based on Wiener model
identification, orthogonal filtration or active noise control not influence the properties
of discussed above frequency response estimators. It is also worth to emphasize in this
place that results presented in this section for frequency response estimation of rational
systems are also true for nonrational plants [53].

8. Transfer function estimation

The identified frequency response K̂( jω) is a starting point to calculate the corre-
sponding transfer function estimate K̂(s) using approximation methods. Properties of
the parameter estimates (â0, â1, . . . , âp−1, b̂0, b̂1, . . . , b̂r) obtained depend highly on pro-
perties of approximation algorithm used (see e.g. [62], [61]). Without estimation of the
frequency response the N-sample linear continuous-time SISO system input and output
signal estimates ũr(iµ) and ỹr(iµ) (i = 0,1, . . . ,N−1 and r = 1,2, . . .P) may be used to
calculate the corresponding values of input and output signals derivatives or integrals



144 J. FIGWER

at time instants iµ ( [15]) that are necessary to estimate the unknown system parame-
ters using for example instrumental variable estimation method ( [56], [62]). A good
tool to control an influence of disturbances on results of the parameters estimation is a
disturbance adjustment ( [11], [29], [30]). Obtained identification results may be also
enhanced using a method of identification results variance reduction ( [36]).

9. Conclusions

In the paper, a new, revisited and unified approach to linear continuous-time dynamic
system identification with a specially designed excitation of the form of a continuous-
time multisine random excitation and digital data processing based on signal sampling
with a deterministic constant or random sampling interval was proposed. Properties of
the excitation and data processing algorithms allow to identify precisely nonparametric
as well as parametric models of linear continuous-time dynamic systems without ana-
logue antialiasing input and output signal filtration nevertheless disturbances satisfying
or not satisfying the Shannon’s sampling theorem and to reduce an influence of the ex-
citation generation and data acquisition system nonlinearities on identification results. A
focus on model identification in the case of input and output signal levels comparable
with data acquisition system accuracy was given.

It is also worth to emphasize that in the presented discussion only finite variance
of disturbances is assumed. Its power spectral density may be not bounded – periodic
disturbances are taken into account. It is a class of disturbances that is more general that
this discussed in classical books on system identification (e.g.: [1], [2], [40], [44], [46],
[48], [59], [60], [62]) and the corresponding publications based on them.

The approach presented in this paper is a tool that allows to enhance properties
of existing measurement systems and introduce superposition principle in a nonlinear
world. It is also a background for a new generation of digital measurement systems,
like for example very precise spectrum and system analyzers, as well as discrete-time
controllers working without expensive analogue antialiasing filters. Special cases of the
presented discussion are a closed-loop system identification and the discrete-time model
identification.
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