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Exponential stability of networked control systems
with network-induced random delays

DU»SAN KROKAVEC and ANNA FILASOVÁ

In this paper, the problem of exponential stability for the standard form of the state con-
trol, realized in a networked control system structure, is studied. To deal with the problem
of stability analysis of the event-time-driven modes in the networked control systems the
delayed–dependent exponential stability conditions are reformulated and proven. Based on
the delay-time dependent Lyapunov-Krasovskii functional, exponential stability criteria are de-
rived. These criteria are expressed as a set of linear matrix inequalities and their structure can
be modified to use the bilinear inequality techniques.

Key words: networked systems, stability analysis, time-delay systems, linear matrix in-
equality, state feedback

1. Introduction

Recent advances in communication technology lead to an increased use of networked
control. Networked control systems (NCS) are control loops closed through a shared
communication network, where the network between control system components is used
to exchange the information and control signals. The advantage of such structure are
most of all simple installation, maintenance and system volume, and increased system
agility. However, due to communication channel insertion, induced delay and packet
dropout may seriously deteriorate the performance of the system, especially its stability.

During the previous decade, the stability problem of the networked control systems
with induced network delays has attracted a lot of attention. The main approach for
stability analysis relies on Lyapunov-Krasovskii functional and the linear matrix inequa-
lities (LMI) approach for constructing common Lyapunov function ( [7], [20] and the
reference therein). For the reason of such delays it is often assumed that the actuator and
the controller are sample driven, but once appears a delay overtopping given margin, the
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system may become unstable. The usual approach ignores in the controller design stage
the network delays and in the next design step there is analyzed stability, performance
and robustness of the system with respect to the effects and characteristics of network
delays and scheduling policy. Some progres review in this research field can be find
in [2], [3], [5].

This paper is concerned with the problem of the event-time-driven modes in the
networked control systems. Under these in a critical event the switched delay system
structure is occasioned, which may include an unstable autonomous system. The paper
actualizes, completes and extends the basic idea presented in [16] in coincidence with
[10] and [22] to obtain conditions for the exponential stability of such structure. The
network-induced time-varying delay upper bound is considered and main attention is
focused on LMIs which have to to be analyzed to verify exponentially stability of this
control structure. One indirect reason was to regularize the obtained LMIs. The presented
LMI approach is computationally efficient as it can be solved numerically (see e.g. [1],
[14]), and is based on the redefined Lyapunov-Krasovskii functional and on the Leibniz–
Newton formula [13] to eliminate some dead-time dependent terms. Since Lyapunov-
Krasovskii functional is used, sufficient conditions for exponential stability are obtained
to set the derivative of this functional be negative along all trajectories of the switched
system.

2. Problem description

Through this paper the task is concerned with stability analysis of NCS, where the
linear dynamic system is given by the set of equations

q̇qq(t) = AAAqqq(t)+BBBuuu(t) (1)

yyy(t) = CCCqqq(t) (2)

where qqq(t) ∈ ℜn, uuu(t) ∈ ℜr, yyy(t) ∈ ℜm are vectors of the state, input and measurable
output variables, respectively, and system matrices AAA ∈ℜn×n, BBB ∈ℜn×r and CCC ∈ℜm×n

are real matrices. It is supposed that the pair (AAA,BBB) is controllable, i.e.

rank
[

BBB AAABBB · · · AAAn−1BBB
]

= n (3)

and the stable closed-loop system with the linear memoryless state feedback controller
of the form

uuu(t) =−KKKqqq(t) (4)

was designed using any standard method, i.e. the controller gain matrix KKK ∈ ℜr×n is
known yet.

This control is closed through a shared network to make NCS so the signals from
sensors are transmitted in digital form to the controller input and the controller output
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signals are transmitted in digital form to actuators through this network, where data is
sent through the network in packets. It is straightforward to consider that the severity
of the network-induced delays is aggravated when data packet dropouts occur during a
network transmission. On another side it is supposed that delays in the chain "actuators-
system-sensors", localized on the same side of the network, can be neglected. The main
problem of the interest is to analyze the exponential stability of such NCS.

2.1. Event-time-driven system

Accepting a network delay-time, the event-time-driven system (1), (2) takes form

q̇qq(t) =





AAAqqq(t)−BBBKKKqqq(ik∆t), t ∈ 〈ik∆t + τk, jk)

AAAqqq(t), t ∈ 〈 jk, ik+1∆t + τk+1)
(5)

where (ik : k = 1,2, . . .) are some integers, ∆t is the sampling period, and τk ­ 0 is
the time delay, which denotes the time interval from the instant time ik∆t where sensors
notes the sample sensor data from the plat to the instant time when actuators transfer the
data to the plant.

It is supposed that the next condition is satisfied

jk =

{
ik+1∆t + τk+1, (ik+1− ik)∆t + τk+1 ¬ h
ik∆t +h, (ik+1− ik)∆t + τk+1 > h

(6)

where h is an upper bound of the intervening time. Event-time-driven mode means, that
the controller and the actuator data will be updated once a new packet comes, and this
new data can be held during the intervening time less then h. If at the end of this time
interval the new data packet has not yet come, the acting data will be set to zero, and will
stay zero until the new data package will come. It is naturally that this process starts in
the control mode. By this rule obtained the switched delay control system may include
an unstable subsystem.

2.2. Basic definitions

Let a nonlinear system, described by the vector differential equation

q̇qq(t) = f (qqq(t),uuu(t−τ), t) (7)

is controlled by the memory-free linear controller of the form

uuu(t−τ) = KKKqqq(t−τ) (8)

where 0<τ ∈ℜ, qqq(t) ∈ℜn, uuu(t−τ) ∈ℜr, KKK ∈ℜr×n is the control law gain matrix, f (·)
is piecewise smooth and globally Lipschitzian, and the origin is an equilibrium.
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If no control input uuu(t−τ) is imposed on the system, then the system is said to be in
the unforced (autonomous) mode described by

q̇qq(t) = f (qqq(t), t) (9)

and qqq(t) is said to be a solution (or state trajectory) of (9) over 〈t0, t1) if qqq(t0) = qqq0.

Definition 1 (Lyapunov Function [17]) The equilibrium 000 of system (9) is:
i. stable if there exists a continuously differentiable (C 1) function v(qqq, t) > 0 such

that v̇(qqq(t), t)¬ 0;
ii. uniformly stable if there exists a C 1 decreasing function v(qqq, t) > 0 such that

v̇(qqq(t), t)¬ 0;
iii. asymptotically stable if there exists a C 1 function v(qqq, t) > 0 such that v̇(qqq(t), t)

< 0;
iv. uniformly asymptotically stable if there exists a C 1 decreasing function v(qqq, t) > 0

such that v̇(qqq, t) < 0;
v. exponentially stable if there exist a C 1 function v(qqq, t) > 0 and positive real con-

stants α,β,γ, and p ­ 1 such that for all qqq(t) and t α‖qqq(t)‖p ¬ v(qqq(t), t) ¬
β‖qqq(t)‖p and v̇(qqq(t), t)¬−γ‖qqq(t)‖p.

If (9) is linear and time invariant, then with matrix AAA ∈ ℜn×n equation (9) can be
rewritten as

q̇qq(t) = AAAqqq(t). (10)

It is clear that the origin is always the equilibrium of system (10), and (10) is uniformly
asymptotically stable if and only if it is exponentially stable.

Definition 2 For linear time-invariant autonomous system (10), the following statements
are equivalent:

i. the autonomous system is asymptotically stable;
ii. the autonomous system is exponentially stable.

Let qqq(t, t0,φφφ) be a solution of (7) at time t with a initial data φφφ specified at time t0,
i.e. qqq(t0 +ϑ, t0,φφφ) = φφφ(ϑ) for ϑ ∈ 〈−τ,0〉. Because of the time-invariance of the system,
qqq(t, t0,φφφ) = qqq(t−t0,φφφ) for all t > t0, then the state of the system is qqq(t +ϑ) = qqqt(ϑ) for
ϑ ∈ 〈−τ,0〉 and its equilibrium solution is qqqt(ϑ)≡ 000.

Definition 3 For some τ > 0 the equilibrium solution 000 of system (7) is:
i. (uniformly) stable if there exists a positive definite continuous functional

v(qqqt(θ)) whose derivative v̇(qqqt(θ)) is negative semi-definite functional;
ii. (uniformly) asymptotically stable if there exists a positive definite upper-boun-

ded continuous functional v(qqqt(θ)), whose derivative v̇(qqqt(θ)) is negative definite
functional;
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iii. (uniformly) exponentially stable if there exist a positive definite continuous
functional v(qqqt(θ)) and positive real constants α,β,γ,δ such that α‖qqqt(θ)‖ ¬
v(qqqt(θ))¬ β‖qqqt(θ)‖, v̇(qqqt(θ))¬−γ‖qqqt(θ)‖, and |vqqqt(θ1))− v(qqqt(θ2))|¬
δ‖qqqt(θ1)−qqqt(θ2)‖.

Because of the time-invariance of the system equation, the above definitions in Definition
3. are in fact automatically uniform, but there exist no such equivalencies in the sense of
uniform equivalency for linear systems with delays like are given in Definition 2.

If (7) is linear and time invariant, then with matrix AAA ∈ ℜn×n, BBB ∈ ℜn×r (7) can be
rewritten as

q̇qq(t) = AAAqqq(t)−BBBKKKqqq(t−τ). (11)

Since into the control law (4) admit all state variables the are no relative states to some
specific state for the remainder of the system.

It can be naturally supposed that the linear controller (8) was designed so that the
controlled system (7), (8) free of delay (τ ≡ 0) is asymptotically stable. With this as-
sumption the controlled system be delay-dependent stable, if is unstable for some values
of τ > 0. The task of analyze of such controlled system is finding a bound on the delay
size which still ensures the stability property, while in the presented NCS formulation,
the task is to obtain such as large as possible sub-optimal (maximal allowable) one,
introducing the event-time-driven switching (controlled and autonomous) modes. Gen-
erally, for the time-varying delay case, delay-dependent stability means that the stability
property holds for any continuous (or piece-wise continuous) and bounded time-varying
delay function, with any positive and finite bound.

2.3. Basic preliminaries

Lemma 1 (Schur Complement) Considering matrices QQQ = QQQT , RRR = RRRT , SSS of appropriate
dimensions where detRRR 6= 0, then the following statements are equivalent:

[
QQQ SSS
SSST RRR

]
> 0⇔

[
QQQ−SSSRRR−1SSST 000

000 RRR

]
> 0⇔ QQQ−SSSRRR−1SSST > 0, RRR > 0. (12)

Proof. (e.g. see [1], [9]) Let the linear matrix inequality takes form
[

QQQ SSS
SSST RRR

]
< 0. (13)

Thus, using Gauss elimination it yields
[

III −SSSRRR−1

000 III

][
QQQ SSS
SSST RRR

][
III 000

−RRR−1SSST III

]
=

[
QQQ−SSSRRR−1SSST 000

000 RRR

]
(14)

where III is the identity matrix of appropriate dimension. Since

det

[
III −SSSRRR−1

000 III

]
= 1 (15)
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given transform doesn’t change the negativity of (13), i.e. yields (12).

Lemma 2 (Null Complement) Let zzz(t) is an arbitrary vector, WWW is any nonzero matrix
of appropriate dimension and xxx(t) is a differentiable vector function, then

zzzT (t)WWW


xxx(t)− xxx(t− τ)−

t∫

t−τ

ẋxx(r)dr


 = 0. (16)

Proof. Since Leibniz–Newton formula

t∫

t−τ

ẋxx(r)dr = xxx(t)− xxx(t− τ) (17)

implies

xxx(t)− xxx(t− τ)−
t∫

t−τ

ẋxx(r)dr = 0 (18)

then yields (16), too.

Lemma 3 (Symmetric upper-bounds inequalities) Let f (xxx(r),s), xxx(r)∈ℜn, a∈ℜ, XXX > 0,
XXX ∈ℜn×n is a real positive definite and integrable vector function of the form

f (xxx(r),s) = xxxT (r)easXXXxxx(r) (19)

such that there exist well defined integrations as following

0∫

−b

t∫

t+s

f (xxx(r),s)drds > 0 (20)

t∫

t−b

f (xxx(r),r−t)dr > 0 (21)

with b > 0, b ∈ℜ, t ∈ 〈0,∞), then

0∫

−b

t∫

t+s

xxxT (r)easXXXxxx(r)drds­
0∫

−b

t∫

t+s

xxxT (r)drds(c−1
1 XXX)

0∫

−b

t∫

t+s

xxx(r)drds (22)

where
ccc1 =

1
a2 (1+abeab− eab) (23)
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and
t∫

t−b

xxxT (r)ea(r−t)XXXxxx(r)dr ­
t∫

t−b

xxxT (r)dr
(

c−1
2 eabXXX

) t∫

t−b

xxx(r)dr (24)

ccc2 =
1
a
(−1+ eab). (25)

Proof. (e.g. compare [5], [6].) Since for (19) it can be written

xxxT (r)easXXXxxx(r)− xxxT (r)easXXXxxx(r) = 0 (26)

and according to Schur complement (12) it is true that
[

xxxT (r)easXXXxxx(r) xxxT (r)
xxx(r) e−asXXX−1

]
= 0. (27)

Then the double integration of (27) leads to



0∫
−b

t∫
t+s

xxxT (r)easXXXxxx(r)drds
0∫
−b

t∫
t+s

xxxT (r)drds

0∫
−b

t∫
t+s

xxx(r)drds
0∫
−b

t∫
t+s

e−asXXX−1drds


­ 0. (28)

Using the equalities
t∫

t+s

e−asXXX−1dr =−se−asXXX−1 (29)

0∫

−b

−se−asXXX−1ds =
s
a

e−asXXX−1
∣∣∣
0

−b
−

0∫

−b

1
a

e−asXXX−1ds =
1
a2 (sa+1)e−asXXX−1

∣∣∣∣
0

−b
= cXXX−1

(30)
with c as given in (23), inequality (28) can be rewritten as




0∫
−b

t∫
t+s

xxxT (r)easXXXxxx(r)drds
0∫
−b

t∫
t+s

xxxT (r)drds

∗ cXXX−1


­ 0. (31)

It is evident that (28) implies (22).
Analogously using (27) it yields




t∫
t−b

xxxT (r)ea(r−t)XXXxxx(r)dr
t∫

t−b
xxxT (r)dr

∗
t∫

t−b
e−a(r−t)XXX−1dr


­ 0. (32)
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Since
t∫

t−b

e−a(r−t)XXX−1dr = −1
a

e−a(r−t)XXX−1
∣∣∣∣
t

t−b
=

1
a
(−1+ eab) = c2 (33)

the following can be obtained



t∫
t−b

xxxT (r)ea(r−t)XXXxxx(r)dr
t∫

t−b
xxxT (r)dr

∗ c2e−abXXX−1


­ 0 (34)

which implies (24). This concludes the proof.

Hereafter, ∗ denotes the symmetric item in a symmetric matrix.

3. Exponential stability of the switched system

Defining the delay-dependent Lyapunov–Krasovskii functional candidate as follows

v(qqq(t)) =

= qqqT (t)PPPqqq(t)+
t∫

t−h
qqqT (r)eα1(r−t)QQQqqq(r)dr +

0∫
−h

t∫
t+s

q̇qqT (r)eα1(s−t)RRRq̇qq(r)drds > 0
(35)

where PPP = PPPT > 0, QQQ = QQQT > 0, RRR = RRRT > 0, respectively, and evaluating derivative of
v(qqq(t)) with respect to t it can be obtained

v̇(qqq(t)) = q̇qqT (t)PPPqqq(t)+qqqT (t)PPPq̇qq(t)+qqqT (t)QQQqqq(t)+hq̇qqT (t)RRRq̇qq(t)−

−α1
t∫

t−h
qqqT (r)eα1(r−t)QQQqqq(r)dr−qqqT (t−h)e−α1hQQQqqq(t−h)−

−
t∫

t−h
q̇qqT (r)e−α1hRRRq̇qq(r)dr−α1

0∫
−h

t∫
t+v

q̇qqT (r)eα1(s−t)RRRq̇qq(r)drds < 0.

(36)

3.1. Controlled mode

Theorem 1 If there exist matrices PPP > 0, QQQ > 0, RRR > 0, SSS ­ 0, VVV and scalars h > 0,
α1 > 0 such that

[
SSS VVV
∗∗∗ e−α1hRRR

]
=




SSS11 SSS12 VVV 1

∗∗∗ SSS22 VVV 2

∗∗∗ ∗∗∗ e−α1hRRR


 > 0 (37)
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


UUU11 UUU12 UUU13

∗∗∗ UUU22 UUU23

∗∗∗ ∗∗∗ UUU33


 < 0 (38)

where
UUU11 = AAAT PPP+PPPAAA+QQQ+VVV 1 +VVV T

1 +hSSS11 +α1PPP (39)

UUU12 =−PPPBBBKKK−VVV 1 +VVV T
2 +hSSS12 (40)

UUU22 =−VVV 2−VVV T
2 +hSSS22 + e−α1hQQQ (41)

UUU13 = hAAAT RRR (42)

UUU23 =−hKKKT BBBT RRR (43)

UUU33 =−hRRR (44)

then for Lyapunov-Krasovskii functional (35) along the controlled system trajectory it
holds

v(qqq(t)) < e−α1(t−t0)v(qqq(t0)), t0 = ik∆t. (45)

Proof. Since in this case the derivative of Lyapunov–Krasovskii functional takes form
(36), then it implies

v̇(qqq(t))+α1v(qqq(t)) = α1qqqT (t)PPPqqq(t)+ q̇qqT (t)PPPqqq(t)+qqqT (t)PPPq̇qq(t)+qqqT (t)QQQqqq(t)−

−qqqT (t−h)e−α1hQQQqqq(t−h)+hq̇qqT (t)RRRq̇qq(t)−
t∫

t−h
q̇qqT (r)e−α1hRRRq̇qq(r)dr < 0.

(46)
With known matrix KKK of the control law (5) it can be written

q̇qq(t) = AAAqqq(t)−BBBKKKqqq(t−h). (47)

Defining
wwwT (t) =

[
qqq(t)T qqqT (t−h)

]
(48)

sssT (t,r) =
[

qqqT (t) qqqT (t−h) q̇qqT (r)
]

=
[

wwwT (t) q̇qqT (r)
]

(49)

with (16) it holds

wwwT (t)VVV
[
qqq(t)−qqq(t−h)−

t∫

t−h

q̇qq(r)dr
]
+

[
qqq(t)−qqq(t−h)−

t∫

t−h

q̇qq(r)dr
]T

VVV T www(t) = 0 (50)

wwwT (t)VVV
[

1 −1
]

www(t)+wwwT (t)
[

1 −1
]T

VVV T www(t)−

−wwwT (t)VVV
t∫

t−h
q̇qq(r)dr−

t∫
t−h

q̇qqT (r)drVVV T www(t) = 0
(51)
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respectively, where
VVV T =

[
VVV T

1 VVV T
2

]
(52)

wwwT (t)VVV
[

1 −1
]

www(t)+wwwT (t)
[

1 −1
]T

VVV T www(t) = wwwT (t)UUU1www(t) (53)

UUU1 = VVV
[

1 −1
]
+

[
1

−1

]
VVV T =

[
VVV 1 +VVV T

1 −VVV 1 +VVV T
2

∗∗∗ −VVV 2−VVV T
2

]
. (54)

Using (48) it implies, too

qqqT (t−h)e−α1hQQQqqq(t−h) = wwwT (t)UUU2www(t) (55)

where

UUU2 =

[
000 000
∗∗∗ e−α1hQQQ

]
. (56)

Also it is possible to write

hq̇qqT (t)RRRq̇qq(t) = wwwT (t)

[
AAAT

−KKKT BBBT

]
hRRR

[
AAA −KKKBBB

]
www(t) = wwwT (t)UUU3www(t) (57)

UUU3 =

[
hAAAT RRR

−hKKKT BBBT RRR

]
(hRRR)−1

[
hRRRAAA −hRRRKKKBBB

]
(58)

and

α1qqqT (t)PPPqqq(t)+qqqT (t)PPPq̇qq(t)+ q̇qqT (t)PPPqqq(t)+qqqT (t)QQQqqq(t) = wwwT (t)UUU4www(t) =

= wwwT (t)

[[
AAAT

−KKKT BBBT

]
PPP

[
1 0

]
+

[
1
0

]
PPP

[
AAA −BBBKKK

]]
www(t)+

+wwwT (t)

[
1
0

]
(α1PPP+QQQ)

[
1 0

]
www(t)

(59)

UUU4 =

[
AAAT PPP+PPPAAA+α1PPP+QQQ −PPPBBBKKK

∗ 000

]
. (60)

On the other hand, for h > 0 and any semi-positive definite matrix SSS­ 0, it is true

hwwwT (t)SSSwww(t)−hwwwT (t)SSSwww(t) = hwwwT (t)SSSwww(t)−
t∫

t−h

wwwT (t)SSSwww(t)dr = 0 (61)
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where

SSS =

[
SSS11 SSS12

∗∗∗ SSS22

]
­ 0 (62)

which offer the possibility to combine elements in the integrals in (46), (51), and (62) as
follows

wwwT(t)SSSwww(t)+ q̇qqT(r)e−α1hRRRq̇qq(r)+ q̇qqT(r)VVV Twww(t)+wwwT(t)VVV q̇qq(r) = sssT(t,r)SSS•sss(t,r)
(63)

SSS• =

[
SSS VVV
∗∗∗ e−α1hRRR

]
=




SSS11 SSS12 VVV 1

∗∗∗ SSS22 VVV 2

∗∗∗ ∗∗∗ e−α1hRRR


 . (64)

Inequality (46), together with (50) and (61) can be written now in the form

v̇(qqq(t))+α1v(qqq(t))¬ wwwT (t)UUU•www(t)−
t∫

t−h

sssT (t,r)SSS•sss(t,r)dr < 0 (65)

where
UUU• = hSSS +UUU1 +UUU2 +UUU3 +UUU4. (66)

It is evident, that (65) is negative if

UUU• < 0, SSS• ­ 0. (67)

Using Schur complement property (66) can be partitioned as



UUU11 UUU12 UUU13

∗∗∗ UUU22 UUU23

∗∗∗ ∗∗∗ UUU33


 (68)

where
UUU11 = AAAT PPP+PPPAAA+VVV 1 +VVV T

1 +hSSS11 +α1PPP+QQQ (69)

UUU12 =−PPPBBBKKK−VVV 1 +VVV T
2 +hSSS12 (70)

UUU22 =−VVV 2−VVV T
2 +hSSS22 + e−α1hQQQ (71)

UUU13 = hAAAT RRR (72)

UUU23 =−hKKKT BBBT RRR (73)

UUU33 =−hRRR (74)

from which implies (37)–(44). Therefore, (65) gives

eα1t v̇(qqq(t))+ eα1tα1v(qqq(t)) < 0 (75)
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and integration of (75) from t0 to t results in

t∫

t0

(eα1rv̇(qqq(r))+ eα1rα1v(qqq(r)))dr = eα1rv(qqq(r))|tt0 = eα1tv(qqq(t))− eα1t0v(qqq(t0)) < 0

(76)
v(qqq(t)) < e−α1(t−t0)v(qqq(t0)) (77)

respectively, which implies (45). This concludes the proof.

3.2. Autonomous mode

Theorem 2 Given matrices PPP > 0, QQQ > 0, RRR > 0, and scalar α1 > 0, if there exist scalar
α2 > 0 and matrices WWW l, l = 1,2,3 such that




EEE −WWW 1 +WWW T
2 hd1RRR+WWW T

3 hWWW 1

∗ −e−α1hQQQ−WWW 2−WWW T
2 −WWW T

3 hWWW 2

∗ ∗ −d1RRR−d2QQQ hWWW 3

∗ ∗ ∗ −he−α1hRRR




< 0 (78)

where
EEE = AAAT PPP+PPPAAA+hAAAT RRRAAA+QQQ−α2PPP−h2d1RRR+WWW 1 +WWW T

1 (79)

di = (α1 +α2)c−1
i , i = 1,2, ccc1 =

1
α2

1
(1+α1heα1h−eα1h), ccc2 =− 1

α1
(1−eα1h) (80)

then for Lyapunov-Krasovskii functional (35) along the autonomous system trajectory it
yields

v(qqq(t)) < eα2(t−t0)v(qqq(t0)), t0 = jk. (81)

Proof. Using the autonomous system equation implying from (1) as

q̇qq(t) = AAAqqq(t) (82)

this follows after substitution into (36)

v̇(qqq(t))−α2v(qqq(t)) = qqqT (t)
(
AAAT PPP+PPPAAA+hAAAT RRRAAA+QQQ−α2PPP

)
qqq(t)−

−qqqT (t−h))e−α1hQQQqqqT (t−h))−
t∫

t−h
q̇qqT (r)e−α1hRRRq̇qq(r)dr− (α1+α2)v̇•(qqq(t)) < 0

(83)

where

v̇•(qqq(t)) =
0∫

−h

t∫

t+s

q̇qqT (r)eα1(s−t)RRRq̇qq(r)drds+
t∫

t−h

qqqT (r)eα1(r−t)QQQqqq(r)dr. (84)



EXPONENTIAL STABILITY OF NETWORKED CONTROL SYSTEMS 177

Using (22), (23) and (24) it yields

v̇•(qqq(t))­ v̇◦(qqq(t)) = v̇◦R(qqq(t))+ v̇◦Q(qqq(t)) =

=
0∫
−h

t∫
t+s

q̇qqT (r)drds (c−1
1 RRR)

0∫
−h

t∫
t+s

q̇qq(r)drds+
t∫

t−h
qqqT (r)dr (c−1

2 QQQ)
t∫

t−h
qqq(r)dr

(85)

where notations (80) was introduced. Since it can be written

0∫

−h

t∫

t+v

q̇qq(r)drdv =
0∫

−h

(
qqq(t)−qqq(t + v)

)
dv = hqqq(t)−

0∫

−h

qqq(t + v)dv = hqqq(t)−
t∫

t−h

qqq(r)dr

(86)
then

v̇◦R(qqq(t)) =


hqqq(t)−

t∫

t−h

qqq(r)dr




T

ccc−1
1 RRR


hqqq(t)−

t∫

t−h

qqq(r)dr


 (87)

and with notation

pppT (t) =
[

qqqT (t) qqqT (t−h)
t∫

t−h
qqqT (r)dr

]
(88)

(83) takes the form

−(α1 +α2)v̇•(qqq(t)) = pppT (t)TTT 1 ppp(t) =

=−(α1 +α2)pppT (t)







h
0

−1


ccc−1

1 RRR
[

h 0 −1
]
+




0
0
1


ccc−1

2 QQQ
[

0 0 1
]

 ppp(t)

(89)
where

TTT 1 =



−h2d1RRR 000 hd1RRR

000 000 000
hd1RRR 000 −d1RRR−d2QQQ


 , di = (α1 +α2)c−1

i , i = 1,2. (90)

With (88) it can be written

qqqT (t)
(
AAAT PPP+PPPAAA+hAAAT RRRAAA+QQQ−α2PPP

)
qqq(t)−qqqT (t−h))e−α1hQQQqqqT (t−h)) =

= pppT (t)TTT 2 ppp(t)
(91)

where

TTT 2 =




EEE◦ 000 000
000 −e−α1hQQQ 000
000 000 000


 , EEE◦ = AAAT PPP+PPPAAA+hAAAT RRRAAA−α2PPP+QQQ. (92)
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Null constraint (16) can be adapted into this solution in the next forms

pppT (t)WWW
[
qqq(t)−qqq(t−h)−

t∫

t−h

q̇qq(r)dr
]
+

[
qqqT (t)−qqqT (t−h)−

t∫

t−h

q̇qqT (r)dr
]T

WWW T ppp(t) = 0

(93)

pppT (t)WWW
[

1 −1 0
]

ppp(t)+ pppT (t)
[

1 −1 0
]T

WWW T ppp(t)−

−pppT (t)WWW
t∫

t−h
q̇qq(r)dr−

t∫
t−h

q̇qqT (r)drWWW T ppp(t) =

= pppT (t)TTT 3 ppp(t)− pppT (t)WWW
t∫

t−h
q̇qq(r)dr−

t∫
t−h

q̇qqT (r)drWWW T ppp(t) = 0

(94)

respectively, where
WWW T =

[
WWW T

1 WWW T
2 WWW T

3

]
(95)

TTT 3 = WWW
[

1 −1 0
]
+




1
−1

0


WWW T =




WWW 1 +WWW T
1 −WWW 1 +WWW T

2 WWW T
3

WWW 2−WWW T
1 −WWW 2−WWW T

2 −WWW T
3

WWW 3 −WWW 3 000


 . (96)

Therefore, inequality (83) together with (93) takes form

v̇(qqq(t))−α2v(qqq(t))¬ pppT (t)TTT 123 ppp(t)−

−pppT (t)WWW
t∫

t−h
q̇qq(r)dr−

t∫
t−h

q̇qqT (r)drWWW T ppp(t)−
t∫

t−h
q̇qqT (r)e−α1hRRRq̇qq(r)dr < 0

(97)

where
TTT 123 = TTT 1 +TTT 2 +TTT 3. (98)

Then it possible to denote

−
t∫

t−h
q̇qqT (r)e−α1hRRRq̇qq(r)dr− pppT (t)WWW

t∫
t−h

q̇qq(r)dr−
t∫

t−h
q̇qqT (r)drWWW T ppp(t)¬

¬ ṗppT (t)




0
0

−1


(−c−1

3 RRR)
[

0 0 −1
]

ṗpp(t)+

+pppT (t)WWW
[

0 0 −1
]

ṗpp(t)+ ṗppT (t)




0
0

−1


WWW T ppp(t) = v̇¦(t)

(99)

where
c3 = heα1h. (100)
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Completing the right side of (99) to square with notation

ZZZ =−c−1
3 RRR (101)

gives

v̇1(t) =−pppT (t)WWWZZZ−1WWW T ppp(t)+

+


ṗppT (t)




0
0

−1


ZZZ + pppT (t)WWW


ZZZ−1

[
WWW T ppp(t)+ZZZ

[
0 0 −1

]
ṗpp(t)

]
=

=−pppT (t)WWWZZZ−1WWW T ppp(t)+ θ̇θθ(t)

(102)

where

θ̇θθ(t) =


ṗppT (t)




0
0

−1


ZZZ + pppT (t)WWW


ZZZ−1

[
WWW T ppp(t)+ZZZ

[
0 0 −1

]
ṗpp(t)

]
. (103)

Since for ZZZ < 0 is θ̇θθ(t) < 0, it is obvious that

v̇(qqq(t))−α2v(qqq(t))¬ θ̇θθ(t)+ pppT (t)TTT •ppp(t) < 0 (104)

if
TTT • = TTT 1 +TTT 2 +TTT 3−WWWZZZ−1WWW T < 0. (105)

Using Schur complement property for WWWZZZ−1WWW T , i.e.

−WWWZZZ−1WWW T =

[
000 WWW
∗ ZZZ

]
=

[
000 WWW
∗ −h−1e−α1hRRR

]
=

[
000 hWWW
∗ −he−α1hRRR

]
(106)

and combining it with (90), (92), and (96), inequality (105) can now be rewritten as
follows

TTT • =




EEE −WWW 1 +WWW T
2 hd1RRR+WWW T

3 hWWW 1

∗ −e−α1hQQQ−WWW 2−WWW T
2 −WWW T

3 hWWW 2

∗ ∗ −d1RRR−d2QQQ hWWW 3

∗ ∗ ∗ −he−α1hRRR




< 0 (107)

EEE = AAAT PPP+PPPAAA+hAAAT RRRAAA+QQQ−α2PPP−h2d1RRR+WWW 1 +WWW T
1 (108)

from whose imply (78), (79). Therefore it also holds from (104)

e−α2t v̇(qqq(t))− e−α2tα2v(qqq(t)) < 0. (109)



180 D. KROKAVEC, A. FILASOVÁ

Integrating (109) from t0 to t results in the formula

t∫
t0

e−α2rv̇(qqq(r))dr−
t∫

t0
e−α2rα2v(qqq(r))dr = e−α2rv(qqq(r))|tt0 =

= e−α2tv(qqq(t))− e−α2t0v(qqq(t0)) < 0
(110)

from which implies (81). This concludes the proof.

3.3. Derivatives

Using l’Hopital (Bernoulli) rule, it is evident that

lim
α1→0

d1 = lim
α1→0

f1(α1)
g1(α1)

= lim
α1→0

f
′′
1 (α1)

g′′1(α1)
= 2

α2

h2 (111)

lim
α1→0

d2 = lim
α1→0

f2(α1)
g2(α1)

= lim
α1→0

f
′
1(α1)

g′1(α1)
=

α2

h
(112)

where
f1(α1) = (α1 +α2)α2

1, g1(α1) = 1+α1heα1h− eα1h (113)

f2(α1) =−(α1 +α2)α1, g2(α1) = 1− eα1h (114)

respectively. These imply the next corollary

Corollary 1

• If for α1 = 0 there exist matrices PPP > 0, QQQ > 0, RRR > 0, SSS­ 0, VVV and scalar h > 0
such that

[
SSS VVV
∗∗∗ RRR

]
=




SSS11 SSS12 VVV 1

∗∗∗ SSS22 VVV 2

∗∗∗ ∗∗∗ RRR


 > 0 (115)




UUU11 UUU12 UUU13

∗∗∗ UUU22 UUU23

∗∗∗ ∗∗∗ UUU33


 < 0 (116)

where
UUU11 = AAAT PPP+PPPAAA+QQQ+VVV 1 +VVV T

1 +hSSS11 (117)

UUU12 =−PPPBBBKKK−VVV 1 +VVV T
2 +hSSS12 (118)

UUU22 =−VVV 2−VVV T
2 +hSSS22 +QQQ (119)

UUU13 = hAAAT RRR (120)

UUU23 =−hKKKT BBBT RRR (121)
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UUU33 =−hRRR (122)

then for Lyapunov-Krasovskii functional (35) along the controlled system trajec-
tory it yields

v(qqq(t)) < v(qqq(t0)), t0 = ik∆t. (123)

• Given matrices PPP > 0, QQQ > 0, RRR > 0 and scalar h > 0, if there exist scalar α2 > 0
and matrices WWW l, l = 1,2,3 such that




EEE2 −WWW 1 +WWW T
2 2α2RRR+hWWW T

3 hWWW 1

∗ −QQQ−WWW 2−WWW T
2 −hWWW T

3 hWWW 2

∗ ∗ −2α2RRR−α2hQQQ hWWW 3

∗ ∗ ∗ −hRRR




< 0 (124)

where
EEE2 = AAAT PPP+PPPAAA+hAAAT RRRAAA+QQQ−α2PPP−2α2RRR+WWW 1 +WWW T

1 (125)

then for Lyapunov-Krasovskii functional (35) and α1 = 0 along the autonomous
system trajectory it yields

v(qqq(t)) < eα2(t−t0)v(qqq(t0)), t0 = jk. (126)

Remark 1 It is evident that with α1 = α2 = 0 matrix (98) is a singular matrix and the
strategy starting with (99) cannot be applied. In this case it is possible to define the vector

rrrT (t) =
[

qqqT (t) qqqT (t−h)
t∫

t−h
q̇qqT (r)dr

]
(127)

and to adapt null constraint (16) into solution as follows

rrrT (t)HHH
[
qqq(t)−qqq(t−h)−

t∫

t−h

q̇qq(r)dr
]
+

[
qqqT (t)−qqqT (t−h)−

t∫

t−h

q̇qqT (r)dr
]T

HHHT rrr(t) = 0

(128)

rrrT (t)HHH
[

1 −1 −1
]

rrr(t)+ rrrT (t)
[

1 −1 −1
]T

HHHT rrr(t) = rrrT (t)TTT ◦3rrr(t) = 0
(129)

respectively, where
HHHT =

[
HHHT

1 HHHT
2 HHHT

3

]
(130)

TTT ◦3 = HHH
[

1 −1 −1
]
+




1
−1
−1


HHHT =




HHH1 +HHHT
1 −HHH1 +HHHT

2 −HHH1 +WWW T
3

∗ −HHH2−HHHT
2 −HHH2−HHHT

3

∗ ∗ −HHH3−HHHT
3


 .

(131)
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Thus, writing the next

t∫

t−h

q̇qqT (r)RRRq̇qq(r)dr ­
t∫

t−h

q̇qqT (r)dr(h−1RRR)
t∫

t−h

q̇qq(r)dr = rrrT (t)TTT 4rrr(t) (132)

where

TTT 4 =




000 000 000
∗ 000 000
∗ ∗ h−1RRR


 (133)

it is evident, that
v̇(qqq(t))¬ rrrT (t)TTT ◦rrr(t) < 0 (134)

where
TTT ◦ = TTT 2 +TTT ◦3−TTT 4 < 0. (135)

This remark implies the next corollary.

Corollary 2

• Given matrices PPP > 0, QQQ > 0, RRR > 0 and scalar h > 0 satisfying (115) through
(122), if there exist matrices HHH l, l = 1,2,3 such that




EEE00 −HHH1 +HHHT
2 −h(HHH1−HHHT

3 )
∗ −QQQ−HHH2−HHHT

2 −h(HHH2 +HHHT
3 )

∗ ∗ −hRRR−h2(HHH3 +HHHT
3 )


 < 0 (136)

where
EEE00 = AAAT PPP+PPPAAA+hAAAT RRRAAA+QQQ+HHH1 +HHHT

1 (137)

then for Lyapunov-Krasovskii functional (35) and α1 = 0, α2 = 0 along the au-
tonomous system trajectory it holds

v(qqq(t)) < v(qqq(t0)), t0 = jk. (138)

Remark 2 Solving all matrix inequalities together, i.e. (37), (38), as well as (78), it
can be obtained the average decay degree α?

2 for which the switched networked control
system is exponentially stable.

It is evident, that other modifications can be obtained setting QQQ = 000, RRR = 000, respec-
tively.
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4. Illustrative example

The numerical example is provided below to illustrate the main results. It is assumed
that the parameters of the system (1), (2) are

AAA =




0 1 0
0 0 1
5 −1 −3


 , bbb =




0
0
1


 , ccc =




1
2
1




T

.

The system is unstable and defining the desired closed-loop system matrix eigenvalue
spectrum

ρ(AAA−gggkkkT ) = {−0.5, −5.0 −10.0}
the feedback gain vector kkkT which stabilize this system was designed as follows

kkkT =
[

30.0000 56.5000 12.5000
]
.

Solving (37), (38), (78) for LMI matrix variables PPP > 0, QQQ > 0, RRR > 0, SSS > 0, VVV , WWW by
Self–Dual–Minimization (SeDuMi) package for Matlab [14], with the average design
parameters of the Lyapunov–Krasovskii functional (35) initialization

α1 = 0.45, α2 = 2.0, h = 0.038

the problem was solved as feasible with matrices

PPP =




0.0083 0.0037 0.0009
0.0037 0.0054 0.0012
0.0009 0.0012 0.0004


 , QQQ =




0.0011 0.0017 0.0003
0.0017 0.0027 0.0005
0.0003 0.0005 0.0001




RRR =




0.0021 0.0017 0.0005
0.0017 0.0051 0.0008
0.0005 0.0008 0.0002




SSS =




1.8548 2.5422 0.8341 −0.6326 −0.5222 −0.2227
2.5422 3.5916 1.1673 −0.8149 −0.7193 −0.3032
0.8341 1.1673 0.3822 −0.2737 −0.2393 −0.1014

−0.6326 −0.8149 −0.2737 0.2659 0.2277 0.0873
−0.5222 −0.7193 −0.2393 0.2277 0.2709 0.0874
−0.2227 −0.3032 −0.1014 0.0873 0.0874 0.0326



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VVV =




−0.0445 −0.0597 −0.0172
−0.0599 −0.0790 −0.0235
−0.0199 −0.0271 −0.0078

0.0090 0.0146 0.0033
0.0075 0.0178 0.0032
0.0030 0.0056 0.0012




, WWW =




−0.0735 −0.0360 −0.0132
−0.0353 −0.1375 −0.0201
−0.0132 −0.0202 −0.0057

0.0745 0.0367 0.0134
0.0355 0.1406 0.0206
0.0131 0.0204 0.0058

−0.0335 −0.0624 −0.0129
−0.0248 −0.0987 −0.0166
−0.0031 −0.0120 −0.0022




.

It is evident that QQQ 6= 000 regularizes the solution.
One can apply this in the structure, where (37), (38) are used for initialization and

obtained matrices PPP > 0, QQQ > 0, RRR > 0, SSS > 0, VVV are included in the optimization with
respect to α2 → α2min based on (78).

5. Concluding remarks

The significance of NCS problems is tied to the recent ample interest in designing
control strategy for networked systems. This paper motivations imply the next facts:

- For applications within the scope of large-scale distributed and networked systems
the network induced time-delay is by nature time-varying and sometimes randomized.
Generally, if a the delay τ is unknown but constant, then the energy of qqq(t−τ) is the same
as the energy of qqq(t), and a simple but conservative delay-independent stability criterion
can be used for stability analyze. When the delay parameter is time-varying, stability
analysis is more involved since systems with time-varying delays are comparatively less
stable than those with constant time delays, and it is obvious that stability criteria for
system with constant time delays cannot be easily generalized for time-varying delay
systems.

- It is known that delay-independent Lyapunov-Krasovskii functional to be very con-
servative since it considers the delay as a norm bounded uncertainty and implies in a fact
the delay part does not help for the stabilization. Therefore it was interesting to develop
criterion based on the more sophisticated Lyapunov-Krasovskii functional.

We observe that the used criterion gives better stability margins without an improve-
ment of the computational complexity of the optimization problem to be solved. Al-
though deriving these conditions may not be a trivial matter, once they are available,
using them is as simple as changing LMIs structure in program routines. Note, a sim-
ple quadratic function can be used to analyze the autonomous mode, but without direct
connection to the controlled mode.

Therefore, the main objective of this paper was to present a method of determining
the delay-dependent stability criteria for event–time–driven modes in the networked con-
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trol system. In particular, with used Lyapunov–Krasovskii functional, there were intro-
duced the additional design parameters to regularize LMI feasibility results and to obtain
the size of the available margins under which the system can stay stable. The presented
procedure was developed in such a way that simpler LMI structures can be derived di-
rectly from.
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