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On generalization of integral control
to a class of nonlinear uncertain systems

ZENON ZWIERZEWICZ

The paper concerns a new view on the problem of integral control in the context of non-
linear uncertain systems. It is demonstrated that a standard integral action applied to the linear
control system with so-called load disturbances, can be generalized to comprise a class of line-
arly parameterized nonlinear SISO systems with functional uncertainty. In this case the integral
action is turned out to be in fact an adaptation law of unknown parameters. It has been found
that the obtained proportional-integral controller’s variable gains are the basis functions of the
system unknown nonlinearity approximator.
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imator, functional uncertainty

1. Introduction

It is well known that integral control ensures asymptotic tracking and disturbance
rejection if the exogenous signals are constant or asymptotically approach constant limit.
This fact is proven for linear systems as well as for wide classes of nonlinear systems
(see e.g. [4] for details) in regional or semiglobal sense.

The main goal of this paper is to reinterpret the results of [10] (based on adaptive
control concepts) in the framework of integral control, thereby to indicate the connec-
tions and analogies between these two seemingly different approaches.

In the paper we consider a general tracking problem of the system influenced by
bounded disturbances. In order to obtain a tracking control synthesis we apply an integral
action on the system output.

In the first part we consider a standard linear system regulator problem where its
basic technique (e.g. pole location) for feedback controller design will be extended to
include linear, disturbed tracking systems. In the second part the integral control is pro-
posed for a class of partially known, nonlinear SISO systems. It has been demonstrated
that the obtained tracking and disturbance rejection results on the basis of Lyapunov the-
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ory, may be viewed and interpreted in terms of similar form integral action as that used
in the former linear case. In this view one may call it a generalized integral action.

2. Tracking via integral control – linear system case

In this section we recall a few facts related to tracking via integral control in the
linear systems context and in the layout suitable for further generalization to a class of
nonlinear systems. The formulation of an asymptotic tracking problem can be set as fol-
lows [6]. Let us consider a dynamical system (object, plant) described by the following
equations:

ẋxx = fff (xxx,uuu) (1a)

yyy = hhh(xxx) (1b)

where yyy, xxx, uuu are output, state and control vectors respectively and yyyd a desired output
trajectory. Find a control law for the input uuu such that starting from any initial state in a
region Ω, the tracking error yyy(t)−yyyd(t) tends to zero, while the state xxx remains bounded.

In this section we assume that the system (1) is of the form (2) i.e. it is linear, time-
invariant as well as subject of unknown, constant (or slowly-varying) load disturbances
www

ẋxx(t) = AAAx(t)+BBBuuuu(t)+BBBwwww (2a)

yyy(t) = CCCyxxx(t). (2b)

Assume also that yyyd is constant, desired trajectory.
The problem is to design feedback control law that force the system output yyy to

follow the desired trajectory yyyd in the presence of the load disturbances www. The task of
the controller is therefore twofold: while tracking yyyd it is also obliged to mitigate the
effect of steady disturbances.

In order to ensure tracking as well as compensating the effect of disturbances we use
the integral action as follows:

eee =
∫

(CCCyxxx− yyyd)dt (3)

which represents the integral of the tracking error yyy− yyyd . The augmented state model
is thus a combination of the plant state equation (2a) and the equation (3) written in
differential form:

[
ẋxx(t)
ėee(t)

]
=

[
AAA 000
CCCy 000

][
xxx(t)
eee(t)

]
+

[
BBB
000

]
uuu+

[
BBBwwww
−yyyd

]
. (4)

Let us consider now the system (4) without disturbances i.e. the system of the form
[

ẋxx(t)
ėee(t)

]
=

[
AAA 000
CCCy 000

][
xxx(t)
eee(t)

]
+

[
BBB
000

]
uuu (5)
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and define, following [8], system stabilizability as a feature equivalent to the existence
of a feedback control matrix K̂KK that asymptotically stabilizes the system. Assuming that
the extended system (5) is controllable (so completely stabilizable – see [8]) there exists
a feedback matrix K̂KK that stabilizes the system (asymptotically). Let apply this feedback
law to the system (4). We have then

[
ẋxx(t)
ėee(t)

]
=

[
AAA 000
CCCy 000

][
xxx(t)
eee(t)

]
−

[
BBB
000

]
K̂KKx̂xx+

[
BBBwwww
−yyyd

]
(6)

where

uuu =−K̂KKx̂xx =−[KKK,KKKI]

[
xxx
eee

]
=−KKKxxx−KKKIeee =−KKKxxx−KKKI

∫
(yyy− yyyd)dt. (7)

We can rewrite (6) also in the form
[

ẋxx(t)
ėee(t)

]
=

[
AAA−BBBKKK −BBBKKKI

CCCy 000

][
xxx(t)
eee(t)

]
+

[
BBBwwww
−yyyd

]
. (8)

Constant forcing signal
[
(BBBwwww)T yyyT

d

]T and asymptotic stability of unforced system (5)
imply the stability of the overall system (8) which leads to the following steady state
equation [

AAA−BBBKKK −BBBKKKI

CCCy 000

][
xxx
eee

]
=

[
−BBBwwww

yyyd

]
. (9)

Assuming that the solution of the system (9) exists (well-known matrices rank
equality condition) we get the extended steady state vector

[
xxxT

∞ eeeT
∞
]T . From the

equation (9) we can read out that CCCyxxx = yyyd , so in the steady state we get yyy∞ = yyyd i.e.
the asymptotic tracking condition. Summing up we can formulate the following theorem.

Theorem 1 If the system (5) is controllable (so completely stabilizable) then the
feedback system (4), (7) (i.e. system (8)) realizes asymptotical tracking of the desired
constant trajectory yyyd in the presence of steady disturbances www.

The important fact from the implemental viewpoint is that no www measurements are
required. Note also that in the augmented system (8) the desired trajectory yyyd plays
the role of additional disturbance and formally there is no difference between www and
yyyd . In this sense there exists a duality i.e. the actual disturbances www (or their part)
might be as well treated as the desired trajectory. Note as well that if yyy = xxx (or more
generally if rank(CCCy) = dim(xxx)) and yyyd ≡ 000, the augmentation of the equation (2a) with
(3) is a formal ’trick’ which causes a shift of the steady state error ensuing here from
coordinates of the original state vector xxx to the coordinates of vector eee which represents



190 Z. ZWIERZEWICZ

a slack (or virtual) variable. In this context one may formulate [9] the following corollary.

Corollary If the system (5) is controllable, rank(CCCy) = dim(xxx)) and yyyd ≡ 000 then the
system’s (8) equilibrium state has the form

[
xxxT

∞ eeeT
∞
]T =

[
000 eeeT

∞
]T i.e. xxx∞ = 000.

Indeed, from the equation (9) we can infer that in the steady state ėee = CCCyxxx = 000. The
last equation yields (under our assumptions) an unique solution xxx∞ = 0 which implies
the thesis.

Remark 1 Since in the steady state is xxx = 000 therefore by writing (8) in the form

ẋxx = (AAA−BBBKKK)xxx−BBBKKKIeee+BBBwwww

it follows that BBBwwww−BBBKKKIeee = 000. This means that via the extra variable eee we can guarantee
the cancelation of disturbances.

This corollary is important especially in situations (see section 3.2), where the prob-
lem concerns asymptotic stabilization of the state vector. To solve this problem via the
output integration the output equation might be introduced entirely artificial with respect
to some extra assumptions.

3. Nonlinear tracking control synthesis

In this section a general tracking problem for nonlinear uncertain system (10) is
considered. As a first step towards tracking control synthesis the system is transformed
to the linear form with not necessarily constant disturbances (27). Next, after introduc-
tion of artificial outputs, the previous procedure of integration is applied leading to the
asymptotically stabilizing controller synthesis.

Consider an affine-in-control nonlinear SISO system of the form

ẋxx = ααα(xxx)+βββ(xxx) ·u (10a)

y = h(xxx) (10b)

where y, xxx, u denote output, state and control variables respectively, ααα and βββ are smooth
vector fields on ℜn and h : ℜn→ℜ is a smooth function. It is assumed that the functions,
ααα and βββ are unknown or may be estimated with a considerable inaccuracy.

By successive differentiation of y with respect to time it is possible to obtain [1], [5]
a direct input-output relation between u and y as follows

y(r) = f (xxx)+g(xxx)u (11)

where r denotes known system relative degree. The technique can be well systematized
and explained using the concept of Lie derivatives [3].
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The approach used in this paper assumes that the system (10) is functionally uncer-
tain [1], which means that its unknown nonlinear characteristics are approximated by
functional approximators (e.g. polynomials). However, from practical point of view, it
seems reasonable to use approximator-like structures where known model basis func-
tions contain some portion of the plant specific knowledge [11]. In other words, the
unknown functions ααα and βββ of the system (10a) are assumed to be the linear combina-
tions of some known model related functions αααi and βββiand which represent elementary
knowledge of the model.

One may prove the following [10] theorem.

Theorem 2 If the functions ααα and βββ have the form

ααα(xxx) =
m1

∑
i=1

aiαααi(x), βββ(xxx) =
m2

∑
i=1

biβββi(x) (12)

(where ai, bi are real unknown parameters) then the scalar functions f , g of the system
(11) may be represented in the similar form:

f (xxx) =
n1

∑
i=1

θ1
i fi(xxx)+ f0(xxx), g(xxx) =

n2

∑
i=1

θ2
i gi(xxx)+g0(xxx) (13)

where θ1
i , θ2

i are unknown parameters and fi, gi (called here the model basis functions)
are known again through the αααi and βββi.

Since a rather complicated formulas for fi, gi (as functions of αααi and βββi) are not
principal here, we will omit them.

From practical modeling point of view it is important that the vector functions αααi
and βββi may have components which can be, to some extent, assumed arbitrarily (choice
of approximator may depend on our knowledge of the plant). In this respect the system
(10) is not only parametrically but also functionally uncertain [1], [10].

The control objective is to force the plant (10) output vector yyy = [y, ẏ, · · · ,y(r−1)]T to
follow a specified desired trajectory yyyd = [yd , ẏd, · · · ,y(r−1)

d ]T with the state vector xxx re-
maining bounded. It is assumed that reference output yd and its r derivatives are bounded
and known, the system zero dynamics is globally exponentially stable (minimum phase
condition) as well as the full state and output measurement are accessible. Under the
second of these assumptions the model (10), (12) can be transformed, via Theorem 2, to
its equivalent form (11), (13).

3.1. The case of exact model

It is assumed in this section that the nonlinear functions f and g of model (11) are
known and g(xxx) 6= 0, ∀xxx ∈Ω. A substitution of control law

u =
− f (xxx)+ v

g(xxx)
(14)
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in the system (11) results in exact cancelation of both nonlinearities ( f (xxx) and g(xxx))
which yields

y(r) = v. (15)

To find control v(t) stabilizing this linear system, a standard poles location technique can
be used. If v is chosen as

v = y(r)
d −µre(r−1)−·· ·−µ1e (16)

where yd denotes the reference input which y is required to track, e := y−yd denotes the
output tracking error and coefficients µi are chosen such that Γ(s) =: sr +µrsr−1 + · · ·+
µ1 = 0 is Hurwitz polynomial in the Laplace variable s, then the tracking error and its
derivatives converge to zero asymptotically, because the closed-loop dynamics reduce to
the equation

e(r) +µre(r−1) + · · ·+µ1e = 0 (17)

which, by virtue of the choice of coefficients µi is asymptotically stable.

3.2. The case with functional uncertainty

Let us consider now the case when functions f and g are unknown but have the
form (13) with θ1

i , i = 1, · · ·n1, θ2
i , i = 1, · · ·n2 unknown ’true’ parameters and the fi(xxx),

gi(xxx) known model basis functions. At time t the estimates of the functions f and g are
respectively given by:

f̂ (xxx) =
n1

∑
i=1

θ̂1
i (t) fi(xxx)+ f0(xxx), ĝ(xxx) =

n2

∑
i=1

θ̂2
i (t)gi(xxx)+g0(xxx) (18)

where θ̂1
i , θ̂2

i stands for the estimates of the parameters θ1
i , θ2

i , respectively at time t.
Since substitution in the system (11) the control law

u =
− f̂ (xxx)+ v

ĝ(xxx)
(19)

no longer guarantees exact cancelation and thereby a resulting system linearity (like in
the former case (14)), then to solve the formulated above tracking problem we derive at
first the error equation. Before doing that we introduce the following notations

f − f̂ =
n1

∑
i=1

(θ1
i − θ̂θθ

1
i ) fi(xxx) = θ̃θθ

1T
www1, (g− ĝ)u =

n1

∑
i=1

(θ2
i − θ̂2

i )gi(xxx)u = θ̃θθ
2T

www2 (20)

where
www1 = [ f1 f2 · · · fn1 ]

T , www2 = [g1 g2 · · · gn1 ]
T (21)

are model basis functions and

θ̃θθ
1
= [(θ1

1− θ̂1
1) · · ·(θ1

n1
− θ̂1

n1
)]T , θ̃θθ

2
= [(θ2

1− θ̂2
1) · · ·(θ2

n2
− θ̂2

n2
)]T (22)
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are vectors of parameters. Moreover θ̃θθ =
[
θ̃θθ

1T
θ̃θθ

2T ]T
, www =

[
wwwT

1 wwwT
2
]T .

To derive the error equations we transform (11) as follows

y(r)− v = f +gu− v (23)

and then using (19) we get

y(r)− v = f +gu− f̂ − ĝu = f − f̂ +(g− ĝ)u (24)

or finally
e(r) +µre(r−1) + · · ·+µ1e = f − f̂ +(g− ĝ)u. (25)

Via definition of a new state vector

eee =
[
e ė · · · e(r−1)

]T d f
= [e1 e2 · · · er]

T (26)

we can rewrite (25) in the following matrix form

ėee = AAAeee+bbbθ̃θθ
T

www (27)

where

AAA =




0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 1
−µ1 −µ2 · · · −µr−1 −µr




, bbb =




0
0
...
0
1




. (28)

This way the closed loop system (11), (16), (19) has been written in linear-like form (27).
Now, treating the second term on the right-hand side of (27) as disturbances one might
directly try to apply the technique described in section 2, provided that the disturbances
were constant. Despite the fact that it is not the case we will show that after introduction
of some (artificial) output the previous idea of integration works here as well. The proof
of the system stability will have to be yet delivered separately.

Now we define the output variables keeping in mind the former idea that after in-
tegration they should produce slack variables on which the errors due to uncertainties
cumulate. One way of defining such output variables (for the reasons to be seen later) is
to use the following formula

zzz =−εΓΓΓwww (29)

where ΓΓΓ > 0 is a diagonal weighting matrix (that determines further an adaptation rate –
see(42)) and

ε(t) = η1e1 + · · ·+ηr−1er−1 + er := Ψ(s) (30)

is defined later (see (35)).
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Treating the nonlinear term θ̃θθ
T

www (see (27)), representing the error due to uncertain-
ties, as disturbances we may notice that the system (27), (29) is analogous to the system
(2) of section 2, so the output integration technique can be applied.

As the counterpart of (3) we will write now the integral of (29) θ̃θθ =−∫
εΓΓΓwwwdt which

in the differential formulation has a form:

˙̃θθθ =−εΓΓΓwww. (31)

Observe that, similarly as eee in section 2, θ̃θθ, interpreted as the augmented system states,
plays the role of slack (or virtual) variables on which the errors of uncertainties cumulate.
Notice also that alternatively ([10], [7]) formula (31) may be viewed as the param-
eters adaptation law. Below, via Lyapunov method, we will prove the following theorem.

Theorem 3 The coupled system (27), (31) is stable whereas the subsystem (27) is
asymptotically stable.

Proof Since AAA is a stability matrix, there exists a positive definite matrix PPP such that

AAAT PPP+PPPAAA =−III (32)

where III is the identity matrix. We choose the following Lyapunov function

V (eee, θ̃θθ) = eeeT PPPeee+ θ̃θθ
T

ΓΓΓ−1θ̃θθ (33)

whose time derivative along the trajectories of (27), (31) is given by

V̇ = eeeT PPP(AAAeee+bbbθ̃θθ
T

www)+(eeeT AAAT +wwwT θ̃θθbbbT )PPPeee+2θ̃θθ
T

ΓΓΓ−1 ˙̃θθθ.

Using the fact that PPP = PPPT as well as that eeeT PPPbbb is a scalar yields

V̇ =−eeeT eee+2θ̃θθ
T
(eeeT PPPbbbwww+ΓΓΓ−1 ˙̃θθθ)¬ 0. (34)

To make it decreasing along these trajectories and thereby establish bounded eee and θ̃θθ,
one should put ˙̃θθθ =−γγγeeeT PPPbbbwww, which by denoting

ε(t) = eeeT PPPbbb (35)

leads to (31). However, to verify that eee → 0 as t → ∞ we use Barbalat’s lemma [6]. To
check the uniform continuity of V̇ it is enough to prove that the second derivative of V
i.e.

V̈ =−2eeeT ėee =−2eeeT (AAAeee+bbbθ̃θθ
T

www) (36)

is bounded. This in turn needs www, a continuous function of xxx to be bounded. Note
that if eee and yyyd are bounded, it is implied that yyy is bounded. These facts and assumed
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stable zero dynamics imply that the state xxx is bounded. Now (if we assume that g(xxx) is
bounded away from zero) it follows that www is bounded.

Remark 2 Note that, although eee converges to zero the system (27), (31) is not asymp-
totically stable because θ̃θθ is only guaranteed to be bounded.

The proven stability of the coupled system (27), (31) (and asymptotical stability of
(27)) guarantees the tracking property as well as compensation of disturbances (here
nonlinearities) with reference to the system (11) or (which is the same) to the original
control synthesis problem (10). Observe that the second term on the right hand side

of (27) i.e. bbbθ̃θθ
T

www also tends to zero (compare Remark 1) so the introduction of extra
variables θ̃θθ leads, similarly to the linear case, to the cancelation of disturbances.

It is easy to notice that the combined system (27), (31) has in fact the form
{

ėee = ÂAAeee+bbbû
˙̃θθθ =−εΓΓΓwww

(37)

where the proportional-like control is

û =−KKKeee−KKKI θ̃θθ. (38)

In consequence we have {
ėee = (ÂAA−bbbKKK)eee−bbbKKKI θ̃θθ
˙̃θθθ =−ΓΓΓwwwbbbT PPPeee

(39)

or [
ėee(t)
˙̃θθθ(t)

]
=

[
ÂAA−bbbK −bbbKKKI

−ΓΓΓwwwbbbT PPP 0

][
eee(t)
θ̃θθ(t)

]
(40)

where

KKK = [µ1, · · · , µr], KKKI =−wwwT , and ÂAA =




0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 1
0 0 · · · 0 0




.

Notice that the term ΓΓΓwwwbbbT PPP in (40) makes sense only after being multiplied by eee(t).
As we can observe that the structure of (40) matches to the former, linear case (8). The
only difference consists in another mechanism of the disturbances rejection. In the first
case (8) the constant disturbances BBBwwww are just cancelled by an extra term BBBKKKIeee while

here the variable ’disturbances’ bbbθ̃θθ
T

www (see (27)) tends to zero by virtue of the proposed
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system structure. In the same way we can see that the defined above extended-state
proportional-like controller (38) fully corresponds to the formula (7) (when restricted to
the scalar control case).

Let us rewrite the controller (38) in the form

û = ulin +uapr =−KKKeee−KKKI θ̃θθ. (41)

The constant gains µi, in the original state, can be optimized (e.g. via LQR technique)
while the augmented state, variable gains KKKI =−wwwT depend on the choice of unknown
nonlinearity approximator structure. In this way the choice of approximator may be in-
terpreted as appropriate gains selection and is thereby an immanent part of the controller
synthesis process. Note that the term −KKKI θ̃θθ = wwwT θ̃θθ in (41) has a dual meaning, on one
hand it is an extra control uapr, on the other hand it is an error of nonlinearity approxi-
mation that while being zero makes also the control uapr equal to zero. In such a case a
full compensation of nonlinearity takes place so the system is completely linear.

The above considerations allow for an alternative view on the original control
system synthesis problem (10). The dynamic nonlinear controller (38), (or (41)) should
be conceived not as a nonlinear controller but rather as a parameter adaptation scheme.
This approach, from the adaptive control standpoint, can be summarized in the following
theorem [11].

Theorem 4 The closed-loop system (11), (19) and (16), after introduction of the param-
eter update law,

˙̃θθθ =−εΓΓΓwww or ˙̂θθθ = εΓΓΓwww (42)

yields bounded yyy(t) asymptotically converging to yyyd(t).

Note that the integrators (31) are interpreted here as the parameters adaptation laws
(42).

Although a practical realization of the considered above adaptive control system
((11), (19), (16) and (42)) might be illustrated as in Fig. 1. this scheme in fact implicitly
comprises also the proportional-like control (38) – an analogue of the classical linear
system feedback control of section 2.

Presented here point of view, in contrast to the adaptive control standpoint, reveals an
important feature of the parameters (the differences θ̃θθ). They are variables whose basic
role is accumulation of the errors due to disturbances (cancelation of nonlinearities).
In the adaptive control context this feature i.e. the fact that the variables θ̃θθ do not tend
to zero, has been considered as a drawback [11]; in the presented here ’integral action
standpoint’ it is a desired value.
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Figure 1. Model basis functions adaptive control scheme.

4. Conclusions

The problem of integral control in the context of nonlinear uncertain systems was
considered. In the first part it has been proven that the integral control in the feedback
loop of linear time-invariant plant, plus a standard control synthesis technique guarantee
asymptotical tracking of the desired trajectory in the presence of constant disturbances.
Duality between the disturbances and the desired trajectory input was observed. In the
sequel the integral control technique was generalized to include a class of nonlinear, li-
nearly parameterized SISO systems with uncertain parameters. It has been found out that
the controller variable gains are in fact the basis functions of the system unknown non-
linearity approximator. A part of the controller with these gains has also a dual meaning:
on one hand it is an extra control signal component, on the other hand it is an error of
nonlinearity approximation.
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