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Reachability of linear hybrid systems
described by the general model

TADEUSZ KACZOREK and KRZYSZTOF ROGOWSKI

The reachability of standard and positive hybrid linear systems described by the general
model is addressed. Necessary and sufficient conditions for the reachability of the standard
general model are established. Sufficient condition is given for the reachability of positive hy-
brid system described by the general model. The considerations are illustrated by numerical
examples.
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1. Introduction

In positive systems inputs, state variables and outputs take only non-negative values.
Examples of positive systems are industrial processes involving chemical reactors, heat
exchangers and distillation columns, storage systems, compartmental systems, water and
atmospheric pollution models. A variety of models having positive linear behavior can
be found in engineering, management science, economics, social sciences, biology and
medicine, etc.

Positive linear systems are defined on cones and not on linear spaces. Therefore, the
theory of positive systems is more complicated and less advanced. An overview of state
of the art in positive systems theory is given in the monographs [1, 5].

The most popular models of two-dimensional (2D) linear systems are the discrete
models introduced by Roesser [15], Fornasini and Marchesini [2, 3], and Kurek [14].
The models have been extended for positive systems. An overview of positive 2D system
theory has been given in the monograph [4] and of positive 2D systems in [5].

Positive 2D hybrid linear systems have been introduced in [7, 8, 5] and positive
fractional 2D hybrid linear systems in [9].The general model of hybrid systems have
been introduced in [11]. Comparison of different method of solution to 2D linear hybrid
systems has been given in [13]. Realization problem for positive 2D hybrid systems
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has been addressed in [10]. The pointwise completeness and pointwise degeneracy of
standard and positive hybrid linear systems have been investigated in [6].

In this paper the reachability of standard and positive hybrid linear systems described
by the general model is addressed. Necessary and sufficient conditions for the reacha-
bility of the standard general model are established. Sufficient condition is given for the
reachability of positive hybrid system described by the general model.

The structure of the paper is the following. In section 2 the general model of hy-
brid systems is presented and its solution and positivity theorem is recalled. Necessary
and sufficient conditions for the reachability of the standard hybrid general model and
sufficient condition for the reachability of positive hybrid systems are derived in section
3. The piecewise constant control and standard control of these systems are considered.
Concluding remarks are given in section 4.

In the paper the following notation will be used. The set of n×m real matrices will
be denoted by ℜn×m and ℜn = ℜn×1. The set of n×m real matrices with nonnegative
entries will be denoted by ℜn×m

+ and ℜn
+ = ℜn×1

+ . The n×n identity matrix will be
denoted by In and the transpose will be denoted by T .

2. General model of linear hybrid systems and its positivity

Consider the general model of linear hybrid systems described by the equations

ẋ(t, i+1) = A0x(t, i)+A1ẋ(t, i)+A2x(t, i+1)+B0u(t, i)+B1u̇(t, i)+B2u(t, i+1) (1a)

y(t, i) = Cx(t, i)+Du(t, i), t ∈ℜ+ = [0,+∞], i ∈ Z+ (1b)

where ẋ(t, i) = ∂x(t,i)
∂t , x(t, i)∈ℜn, u(t, i)∈ℜm, y(t, i)∈ℜp are the state, input and output

vectors and Ak ∈ℜn×n, Bk ∈ℜn×m, k = 0,1,2, C ∈ℜp×n, D ∈ℜp×m.
Boundary conditions for (1a) are given by

x(0, i) = xi, i ∈ Z+ and x(t,0) = xt0, ẋ(t,0) = xt1, t ∈ℜ+. (2)

Theorem 1 [11] The solution of the equation (1a) with boundary conditions (2) has the
form

x(t, i)=
∞
∑

k=0

∞
∑

l=0


Tk,i−l−1B0

t∫
0

(t−τ)k

k! u(τ, l)dτ+Tk,i−lB2
t∫

0

(t−τ)k

k! u(τ, l)dτ−Tk,i−l−1B1
tk

k! u(0, l)

+Tk,i−l
tk

k! x(0, l)−Tk,i−l−1A1
tk

k! x(0, l)




+
∞
∑

k=1

∞
∑

l=0

(
Tk,i−l−1B1

t∫
0

(t−τ)k−1

(k−1)! u(τ, l)dτ
)

+
∞
∑

l=0
T0,i−l−1B1u(t, l)

−
∞
∑

k=0

(
Tk,iB2

t∫
0

(t−τ)k

k! u(τ,0)dτ+Tk,iA2
t∫

0

(t−τ)k

k! x(τ,0)dτ+Tk,i
tk

k! x(0,0)
)

+
∞
∑

k=1

(
Tk,i

t∫
0

(t−τ)k−1

(k−1)! x(τ,0)dτ
)

+T0,ix(t,0)

(3)
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where

Ti, j =





In for i = j = 0
A0Ti−1, j−1 +A1Ti, j−1 +A2Ti−1, j

= Ti−1, j−1A0 +Ti, j−1A1 +Ti−1, jA2
for i+ j > 0; i, j ∈ Z+

0 for k < 0 or l < 0

(4)

Definition 1 The general model (1) is called positive if x(t, i) ∈ ℜn
+ and y(t, i) ∈ ℜp

+,
t ∈ℜ+, i ∈ Z+ for any boundary conditions

xt0 ∈ℜn
+, xt1 ∈ℜn

+, t ∈ℜ+, xi ∈ℜn
+, i ∈ Z+ (5)

and all inputs u(t, i) ∈ℜm
+, u̇(t, i) ∈ℜm

+, t ∈ℜ+, i ∈ Z+.

Theorem 2 [11] The general model (1) is positive if and only if

A2 = Mn (6a)

A0,A1 ∈ℜn×n
+ , A = A0 +A1A2 ∈ℜn×n

+ (6b)

Bk ∈ℜn×m
+ , k = 0,1,2, C ∈ℜp×n

+ , D ∈ℜp×m
+ (6c)

where Mn is the set of n×n Metzler matrices (with nonnegative off-diagonal entries).

3. Reachability

Definition 2 The model (1) is called reachable at the point (t f ,q) if for any given final
state x f ∈ ℜn there exists an input u(t, i), 0 ¬ t ¬ t f , 0 ¬ i ¬ q which steers the system
form zero boundary conditions to the state x f , i.e. x(t f ,q) = x f .

Theorem 3 The model is reachable at the point (t f ,q) for t f > 0 and q = 1 if and only if
one of the following conditions is satisfied:

1. rank
[
B0,A2B0, . . . ,An−1

2 B0
]
= n ⇔ rank [Ins−A2,B0] = n ∀s ∈C

2. the rows of the matrix eA2tB0 are linearly independent over the field of complex
numbers C.

Proof Let B1 = B2 = 0. For i = 0 and zero boundary conditions from (1a) we have

ẋ(t,1) = A2x(t,1)+B0u(t,0)
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and

x f = x(t f ,1) =

t f∫

0

eA2(t f−τ)B0u(τ,0)dτ (7)

since x(0,1) = 0. From Sylvester formula we have

eA2t f =
n−1

∑
k=0

Ak
2ck(t f ). (8)

Substitution of (8) into (7) yields

x f =
n−1

∑
k=0

Ak
2B0

t f∫

0

ck(t f − τ)u(τ,0)dτ =
[
B0,A2B0. . . . ,An−1

2 B0
]




v0(t f )
v1(t f )

...
vn−1(t f )




(9)

where

vk(t f ) =

t f∫

0

ck(t f − τ)u(τ,0)dτ. (10)

The equation (9) has a solution vk(t f ) for k = 0,1, . . . ,n−1 and any given x f if and only
if the condition 1. is satisfied.

The equivalence of the condition 1. and 2. are known (see [12] pp. 131).

Theorem 4 The model (1) is reachable at the point (t f ,1) if and only if the matrix

R f =

t f∫

0

eA2τB0BT
0 eAT

2 τdτ, t f > 0 (11)

is positive defined (nonsingular), (see [12] pp. 130). Moreover, the input which steers the
system from zero boundary conditions to x f is given by

u(t,0) = BT
0 eAT

2 (t f−τ)R−1
f x f (12)

Proof If the matrix R f is invertible (nonsingular) then (12) is well defined. We shall show
that the input (12) steers the system from zero boundary conditions to x f . Substituting
(12) into (7) we obtain

x f = x(t f ,1) =

t f∫

0

eA2(t f−τ)B0BT
0 eAT

2 (t f−τ)dτR−1
f x f = x f (13)
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since t f∫

0

eA2(t f−τ)B0BT
0 eAT

2 (t f−τ)dτ = R f .

Remark 1 Reachability is independent of the matrices A0, A1, B1, B2.

Remark 2 To simplify the calculation we may assume that u(t,0) is piecewise constant
(is the step function).

Example 1 Consider the general model (1) with the matrices

A2 =

[
1 0
1 2

]
, B0 =

[
1
0

]
(14)

and arbitrary remaining matrices of the system.
Applying the condition 1. of Theorem 3 we obtain

rank [B0,A2B0] = rank

[
1 1
0 1

]
= 2 (15a)

and

rank [Ins−A2,B0] = rank

[
s−1 0 1
−1 s−2 0

]
= 2 ∀s ∈C. (15b)

Therefore, the system (1) with matrices (14) is reachable for q = 1 and t f > 0. Assuming
t f = 2 and

x f =

[
2
1

]
(16)

from (12) and (11) we may find the input that steers the system form zero boundary
conditions to the desired state (16)

u(t,0) = BT
0 eAT

2 (t f−τ)R−1
f x f = 0.5519e2−t −0.0953e4−2t .

The plots of state variables for q = 1, t f ∈ [0,2] and input for q = 0 and t f ∈ [0,2] are
shown in Fig. 1.

Let us assume, that input of the system is piecewise constant, i.e.

u(t,0) =

{
u1 for 0¬ t < t1
u2 for t1 ¬ t ¬ t f

(17)

where u1, u2 are constant values.
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Figure 1. State variables and input of the system.

Taking into account (14) and (16) for (9) we obtain

[
v0(t f )
v1(t f )

]
= [B0,A2B0]

−1x f =

[
1 1
0 1

]−1 [
2
1

]
=

[
1
1

]
. (18)

From (10) for (17) we have

[
u1

u2

]
=




t1∫
0

c0(t f − τ)dτ
t f∫
t1

c0(t f − τ)dτ

t1∫
0

c1(t f − τ)dτ
t f∫
t1

c1(t f − τ)dτ




−1
[

1
1

]
. (19)

Using (8) it is easy to show that

c0(t) = 2et − e2t , c1(t) = e2t − et . (20)

Using formula (19) we may compute values of the system input for arbitrary t1 and t f
(0 < t1 < t f ).

For t1 = 1 and t f = 2, we obtain
[

u1

u2

]
=

[
−0.0481
1.2948

]
.

The plots of state variables and input for q = 1 and t f ∈ [0, 2] are shown in Fig. 2.
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Figure 2. State variables and piecewise constant input of the system.

Definition 3 The positive system (1) is called reachable at the point (t f ,q) if for any
given final state x f ∈ ℜn

+ there exists a nonnegative input u(t, i) ∈ ℜm
+, 0 ¬ t ¬ t f ,

0 ¬ i ¬ q which steers the system form zero boundary conditions to the state x f , i.e.
x(t f ,q) = x f .

Theorem 5 The positive model (1) is reachable at the point (t f ,1) if the matrix

R f =

t f∫

0

eA2τB0BT
0 eAT

2 τdτ, t f > 0 (21)

is a monomial matrix. The input that steers the system in time t f from zero boundary
conditions to the state x f is given by the formula (12).

Proof If R f is a monomial matrix, then there exists the inverse matrix R−1
f ∈ ℜn×n

+ and
the input (12) is well defined and nonnegative for 0 ¬ t ¬ t f . Similarly as in proof of
theorem 4, it can be shown that the input (12) steers the system from zero boundary
conditions to nonnegative final state x f ∈ℜn

+.

The considerations for the controllability to zero of the general model (1) are similar.

4. Concluding remarks

The reachability of standard and positive hybrid linear systems described by the
general model (1) have been considered. Necessary and sufficient conditions for the
reachability of the general model (1) have been established (Theorem 3). The sufficient
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condition for the reachability of positive general model have been established in Theo-
rem 5. The piecewise constant and standard input control are considered and illustrated
by numerical examples. An open problems are the observability of standard and positive
general model of hybrid systems and an extension of these considerations for fractional
hybrid linear systems.
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