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Robust output feedback Model Predictive Control
design

VOJTECH VESELÝ and DANICA ROSINOVÁ

The paper addresses the problem of designing a robust output/state model predictive con-
trol for linear polytopic systems without constraints. The new robust BMI stability condition
for given predictive and control horizon is derived which guarantees the parameter dependent
quadratic stability and guaranteed cost.The proposed condition is appropriate for centralized
and decentralized control design, as illustrated on example.
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1. Introduction

Model predictive control (MPC) has attracted notable attention in control of dynamic
systems. The idea of MPC can be summarized as follows, Camacho and Bordons [2],
Maciejovski [13], Rositer [19], and [4], [5], [6], [8], [20]:

• Predict the future behaviour of the process state/output over the finite time horizon.

• Compute the future input signals on line at each step by minimizing a cost func-
tion under inequality constraints on the manipulated (control) and/or controlled
variables.

• Apply on the controlled plant only the first vector of control variables computed
for chosen control horizon and repeat the previous step with new measured in-
put/state/output variables.

Therefore, the presence of the plant model is a necessary condition for the development
of the predictive control. The success of MPC depends on the degree of precision of the
plant model. In the most references the principal shortcoming of existing MPC-based
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control techniques is their inability to explicitly incorporate plant model uncertainty,
Kothare et al. [9]. Thus, the present state of robustness problem in MPC can be
summarized as follows:

• Analysis of robustness properties of MPC.
Zafiriou nad Marchal [22] have used the contraction properties of MPC to develop
necessary-sufficient conditions for robust stability of MPC with input and output
constraints for SISO systems and impulse response model. Polak and Yang [17]
have analyzed robust stability of MPC using a contraction constraint on the state.

• MPC with explicit uncertainty description.
Zheng and Morari [23], have presented robust MPC schemes for SISO FIR plants,
given uncertainty bounds on the impulse response coefficients. Some MPC con-
sider additive type of uncertainty, de la Pena et al [16] or parametric (structured)
type uncertainty using CARIMA model and linear matrix inequality, Bouzouita
et al. [1]. In Lovaas et al. [11], the unstructured uncertainty is used for open-loop
stable systems having input constraints. The robust stability can be established
by choosing the large value for the control input weighting matrix R in the cost
function. The authors proposed a new less conservative stability test for determi-
ning a sufficiently large control penalty R using bilinear matrix inequality (BMI).
The other technique- constrained tightening to design of robust MPC have been
proposed in Kuwata et al. [10]. The above approaches are based on idea of in-
creasing the robustness of the controller by tightening the constraints on the pre-
dicted states. The mixed H2/H∞ control approach to design of MPC has been
proposed by Orukpe et al [14]. Robust constrained MPC using linear matrix in-
equality (LMI) have been proposed by Kothare et al. [9], [3], [7], [21] where the
polytopic model or structured feedback uncertainty model have been used. The
main idea of Kothare et al. [9] is to use the infinite horizon control laws which for
state feedback guarantee nominal stability.

In this paper, the necessary and sufficient robust stability conditions for MPC have
been developed for a given predictive horizon and control horizon, using formulation
through the polytopic system with output feedback, the generalized parameter depen-
dent Lyapunov matrix P(α) is used to achieve robust stability. The proposed robust
MPC ensures parameter dependent quadratic stability (PDQS) and guaranteed cost. The
developed necessary and sufficient robust stability conditions for specific parameter de-
pendent Lyapunov function reduce to sufficient ones and for robust stability analysis of
MPC they are in the form of the set of LMIs. For robust MPC design which guarantees
PDQS with guaranteed cost, the developed necessary and sufficient robust stability con-
ditions for specific parameter dependent Lyapunov function reduce to sufficient ones in
the form of bilinear matrix inequality.
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The paper is organized as follows. Sec. 2 presents preliminaries and problem formu-
lation. In sec. 3, the main results are given and finally, in sec. 4 the simple example using
Yalmip BMI [12] solvers shows the effectiveness of the proposed method.

Hereafter, the following notational conventions will be adopted: given a symmetric
matrix P = PT ∈ Rn×n, the inequality P > 0(P­ 0) denotes matrix positive definiteness
(semi-definiteness). Given two symmetric matrices P, Q, the inequality P > Q indicates
that P−Q > 0. The notation x(t + k) will be used to define at time t k-steps ahead
prediction of a system variable x from time t onwards under specified initial state and
input scenario. I denotes the unity matrix of corresponding dimensions.

2. Problem formulation and preliminaries

Consider a time invariant linear discrete-time system

x(t +1) = A(α)x(t)+B(α)u(t)
(1)

y(t) = Cx(t)

where x(t)∈ Rn,u(t)∈ Rm,y(t)∈ Rl are state, control and output variables of the system,
respectively; A(α),B(α) belong to the convex set

S =

{
A(α) ∈ Rn×n, B(α) ∈ Rn×m, A(α) =

N

∑
j=1

A jα j

B(α) =
N

∑
j=1

B jα j,α j ­ 0

}
(2)

N

∑
j=1

α j = 1.

Matrix C is known matrix of corresponding dimension.
The cost function to be minimized is

J =
∞

∑
t=0

J(t) (3)

where

J(t) =
N2+1

∑
k=1

xT (t + k−1)Qkx(t + k−1)+
Nu

∑
k=1

uT (t + k−1)Rku(t + k−1),

Qk ∈ Rn×n,Rk ∈ Rm×m are positive semidefinite (definite) and definite matrices, respec-
tively for all k; N2,Nu are prediction and control horizon, respectively.
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Let us denote

Q = diag{Qi}i=1,2...N2+1 ∈ Rn(N2+1)×n(N2+1),

R = diag{Ri}i=1,2...Nu ∈ RmNu×mNu ,
(4)

v(t)T = [u(t)T . . .u(t +Nu−1)T ] ∈ R1×mNu ,

z(t)T = [x(t)T . . .x(t +N2)T ] ∈ R1×n(N2+1),

then for (3) one obtains

J(t) = z(t)T Qz(t)+ v(t)T Rv(t). (5)

Predictive control algorithm with output feedback is given as follows

u(t + i−1) =
N2+1

∑
j=1

Fi jy(t + j−1) i = 1,2...Nu (6)

where Fi j is gain matrix of corresponding dimension. Recall, that y(t) is real system
output in time t and y(t + k) for k ­ 1 is predicted system output for time t + k. Assume
that in (6) matrix Fi j = 0 for Nu < i ¬ N2. Note that for decentralized control structure
the gain matrices Fi j have to be structured in corresponding way.

The problem studied in this paper is to design a robust output feedback model
predictive control for a given horizon which ensures guaranteed cost and parameter
dependent quadratic stability for the system (1) with control algorithm (6).

Definition 1 Consider the system (1). If there exists a control law u∗ and a positive
scalar J∗ such that the closed loop system ((1) and (6)) is stable and the closed loop cost
function value (3) satisfies J ¬ J∗, then J∗ is said to be the guaranteed cost and u∗ is
said to be the guaranteed cost control law for system (1).

3. Robust Model Predictive Control

For the given linear discrete-time system define the parameter dependent Lyapunov
function in the form

V (t) = [x(t)T . . .xT (t +N2−1)]P̃(α)[x(t)T . . .xT (t +N2−1)]T (7)

where

P̃(α) =




P(α) 0 . . . 0
0 P(α) . . . 0
0 0 . . . P(α)


 .
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Using denotation (4), the first difference of Lyapunov function is

∆V (t) = z(t)T D(α)z(t) (8)

where

D(α) =



−P(α) 0 . . . 0

0 0 . . . 0
0 0 . . . P(α)


 ∈ Rn(N2+1)×n(N2+1)

and P(α) ∈ Rn×n is a parameter dependent Lyapunov matrix [15]. Let us introduce the
following denotation for (6)

Ki = [Fi1C . . . FiN2+1C] ∈ Rm×n(N2+1) i = 1, . . . ,Nu (9)

and

K =




K1

K2

. . .

KNu



∈ RNum×n(N2+1) (10)

then (6) can be rewritten as
v(t) = Kz(t) (11)

and
J(t) = zT (t)(Q+KT RK)z(t). (12)

From LQ theory, see e.i. [18], the following lemma holds.

Lemma 1 Consider the closed-loop system (1) with control algorithm (11). Control al-
gorithm (11) is the guaranteed cost control law for the closed-loop system if and only if
there exist matrices P(α),K such that the following condition holds

Be = ∆V (t)+ J(t) = zT (t)(D(α)+Q+KT RK)z(t)¬ 0. (13)

Moreover, summarizing (13) from initial time t0 to t → ∞, the following inequality is
obtained

−V (t0)+ J ¬ 0. (14)

Definition 1 and inequality (14) imply

J∗ = V (t0).

The main results of this paper are summarized in the following theorem.

Theorem 1 Consider the discrete-time system (1) with model predictive control algo-
rithm (11) and parameter dependent Lyapunov function (7) then the following statements
are equivalent:
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• Control algorithm (11) is the guaranteed cost control law with guaranteed cost
J ¬ J∗.

• There exist matrices

P(α) = P(α)T > 0,N ∈ R(N2+1)n×nN2 ,Fi1,Fi2, ...,FiN2+1, i = 1,2, ...,Nu

such that the following bilinear matrix inequality (BMI) holds

Bem = NG+GT NT +D(α)+Q+KT RK ¬ 0 (15)

where

G =




G1

G2

. . .

GN2



∈ RN2n×n(N2+1),

Gi =
[

Mi1 . . . Mii−1 Acii Mii+1 . . . MiN2+1

]
∈ Rn×n(N2+1),

Mi j = B(α)Fi jC j < i or j = i+2, . . . ,N2 +1 Mii+1 = B(α)Fii+1C− I,

Acii = A(α)+B(α)FiiC i = 1,2, . . . ,N2,

N =
[

N1 . . . NN2

]
∈ Rn(N2+1)×n(N2),

Ni =




NT
i1

NT
i2

. . .

NT
iN2+1



∈ R(N2+1)n×n),

Ni j ∈ Rn×n is unknown matrix with constant entries i = 1,2, ...,N2, j = 1,2, ...N2 +1.

As an example we show how concrete robust stability conditions can be obtained
from (15) with guaranteed cost for one and two steps ahead prediction control. For one-
step ahead model predictive control, inequality (15) can be rewritten as follows: N2 = 1,
Nu = 1,

N1 =

[
NT

11

NT
12

]
∈ R2n×n, G1 =

[
Ac11 M12

]
∈ Rn×2n,

N = N1, G = G1, Ac11 = A(α)+B(α)F11C, M12 = B(α)F12C− I,

D(α) =

[
−P(α) 0

0 P(α)

]
∈ R2n×2n, Q =

[
Q1 0
0 Q2

]
∈ R2n×2n,
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and R = R1. Robust stability condition with guaranteed cost is given by following BMI:
[

NT
11Ac11 +AT

c11N11 +Q1 +CT FT
11RF11C−P(α) (∗)T

MT
12N11 +NT

12Ac11 +CT FT
12RF11C K22

]
¬ 0 (16)

where
K22 = NT

12M12 +MT
12N12 +P(α)+Q2 +CT FT

12RF12C.

Control algorithm is given as follows

u(t) = F11Cx(t)+F12Cx(t +1) = F11y(t)+F12y(t +1).

For two step-ahead horizon N2 = Nu = 2 and for the case Qi = 0, i = 1,2,3, R1 = R2 = 0
the following equations and inequality are obtained

N1 =




NT
11

NT
12

NT
13


 , N2 =




NT
21

NT
22

NT
23


 , N =

[
N1 N2

]
,

G1 =
[

Ac11 M12 M13

]
, G2 =

[
M21 Ac22 M23

]
, G =

[
G1

G2

]
,

Ac11 = A(α)+B(α)F11C, M12 = B(α)F12C− I, M13 = B(α)F13C,

Ac22 = A(α)+B(α)F22C, M23 = B(α)F23C− I, M21 = B(α)F21C.

The respective control algorithm is

u(t) = F11Cx(t)+F12Cx(t +1)+F13Cx(t +2),

u(t +1) = F21Cx(t)+F22Cx(t +1)+F23Cx(t +2).

Note, that as a receding horizon strategy is used, only u(t) is sent to the real plant control,
u(t +1) is used for output model prediction y(t +2). Note, that for model prediction [2]
one can use any (Ao,Bo,C) ∈ S from the uncertainty domain (2) for model described by
(1); model (Ao,Bo,C) ∈ S can be obtained by on-line identification, while the change of
model parameters is slower than system dynamics. Robust stability condition is given by
the following BMI 


g11 g12 g13

gT
12 g22 g23

gT
13 gT

23 g33


¬ 0 (17)

where

g11 = NT
11Ac11 +AT

c11N11 +NT
21M21 +MT

21N21−P(α),
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g12 = NT
11M12 +AT

c11N12 +NT
21Ac22 +MT

21N22,

g13 = NT
11M13 +AT

c11N13 +NT
21M23 +MT

21N23,

g23 = NT
12M13 +MT

12N13 +NT
21M23 +AT

c22N23,

g22 = NT
12M12 +MT

12N12 +NT
21Ac22 +AT

c22N21,

g33 = NT
13M13 +MT

13N13 +NT
23M23 +MT

23N23 +P(α).

Proof The proof is based on the fact that first three terms in (15) correspond to the first
difference od Lyapunov function (7) ∆V (t) on the solution of (1) with predictive control
law (6) and last two terms of (15) are connected with cost function to be minimized.
Then Lemma 1 implies that solution of (15) is guaranteed cost control law respective
to (14) with parameter dependent Lyapunov function P(α). Since Lemma 1 provides
necessary and sufficient condition for guaranteed cost control law for LQ problem
(1), (11), (12), Theorem 1 and namely BMI (15) is to provide necessary and sufficient
condition for guaranteed cost control law for robust predictive control (11). The proof
follows the same lines of argument of Lemma 1 [18]. For illustration we show that
Lemma 1 and inequality (15) are equivalent for the case N2 = Nu = 1.

Sufficiency. The proof is provided for the case of robust stability conditions. Since the
matrix L11 = [I −M−1

12 AT
c11] has full row rank, (16) implies that

L11{LHS(eq.(16))}LT
11 =−P(α)+AT

c11(M
−1
12 )T P(α)M−1

12 Ac11 ¬ 0. (18)

Because the closed-loop system with one step-ahead control law is

x(t +1) =−M−1
12 Ac11x(t)

the obtained result (18) proves the sufficient robust stability conditions.

Necessity. Suppose that there exists symmetric positive definite matrix P(α) that robust
stability condition (18) holds. Necessarily, there exists a scalar β > 0 such that

−P(α)+AT
c11(M

−1
12 )T PM−1

12 Ac11 ¬−β(AT
c11M−1

12 )T M−1
12 Ac11.

The above inequality may be rewritten as follows

AT
c11(M

−1
12 )T (P(α)+βI)M−1

12 Ac11−P(α)¬ 0. (19)

Applying Schur complement formula to (19)
[

−P(α) ∗

(−AT
c11(M

−1
12 )T (P(α)+βI))T −(P(α)+βI)

]
¬ 0. (20)

Taking N12 =−(M12)T (P(α)+β/2I) and NT
11 =−AT

c11(M
−1
12 )T M−1

12 β/2 after some ma-
nipulation one obtains

[
S11β (∗)T

(NT
11M12 +AT

c11N12)T S22β

]
¬ 0 (21)
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where
S11β = NT

11Ac11 +AT
c11N11−P(α)+β(AT

c11(M
−1
12 )T M−1

12 Ac11,

S22β = NT
12M12 +MT

12N12 +P(α).

When β→ 0 the inequality (16) is got, which proves the necessity. For guaranteed cost
the proof of theorem goes the same way as given above.

According to robust control references, there is no general and systematic way to for-
mally determine P(α) as a function of Acii. Such a matrix P(α) is called the parameter
dependent Lyapunov matrix (PDLM) and for a particular structure of P(α) defines the
parameter dependent quadratic stability (PDQS). For the case of P(α) = P the quadratic
stability conditions are obtained. Formal approach to determine P(α) for real convex
polytopic uncertainty can be found in many references e.i Peaucelle et al. [15] and refer-
ences cited therein. In the existing studies, however, the PDLFs employed are restricted
to those affine in the uncertain parameters in the form

P(α) =
N

∑
i=1

Piαi,
N

∑
i=1

αi = 1,

(22)
Pi = PT

i > 0, i = 1,2, ...,N.

To decrease the conservatism of (22) arising from affine PDLF, more recently, the use of
polynomial PDLF has been proposed in different forms. In this paper we use the PDLM
given by (22). Note that above BMIs (15), (16) and (17) are affine with respected to
α. Substituting (2) and (22) to (15), (16) and (17) for the polytopic model predictive
control system, the robust parameter dependent quadratic stability with guaranteed cost
conditions are obtained in the form of corresponding BMIs. Note that for concrete P(α)
necessary and sufficient conditions in Theorem 1 reduces to sufficient ones.

4. Example

The proposed MPC design procedure based on Theorem 1 is illustrated in this sec-
tion: one step-ahead predictive controller respective to decentralized PI structure is de-
signed for the uncertain system. The considered system is of 3rd order with 2 inputs and
2 outputs (i.e. decentralized controller with 2 PI loops). The nominal 3rd order system
is augmented into 5th order to include integration parts of both PI controllers and finally
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the 5th order system is converted for a chosen sampling period to discrete one:

A0 =




.6 .0097 .0143 0 0
0.012 0.9754 0.0049 0 0
−.0047 0.0101 0.46 0 0
0.0488 0.0002 .0004 1 0
−.0001 0.0003 0.0488 0 1




,

B0 =




0.0425 0.0053
0.0052 0.010
0.0024 0.0474
0.0011 0.00010

0 0.0012




, C =




1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,

uncertainty matrices

Au =




0.0012 0 0 0 0
0 0.0023 0 0 0
0 0.0001 0.0032 0 0

0.0001 0 0 0 0
0 0 0 0




, Bu =




0.21 0
0 0.21
0 0
0 0
0 0



∗0.001.

The corresponding convex polytope (2) is given by its vertices:

A1 = A0 +Au, A2 = A0−Au, B1 = B0 +Bu, B2 = B0−Bu.

The cost function is

J(t) = xT (t)Q1x(t)+ x(t +1)T Q2x(t +1)+u(t)T Ru(t).

The one-step ahead predictive control law is :

u(t) = F11y(t)+F12y(t +1) = F11Cx(t)+F12Cx(t +1)

where control gain matrices F11 and F12 correspond to output feedback for present and
one-step ahead predicted future outputs respectively. Matrix F11 has decentralized con-
trol structure: two PI control loops for two real proces output feedback; F12 is full matrix
respective to one step-ahead predictive output feedback taken from predictive model.

Two forms of Lyapunov function are considered and compared:

• quadratic stability case with Lyapunov function matrix P(α) = P, where BMI (16)
is solved simultaneously for both vertices with the same matrix P,
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• affine parameter dependent Lyapunov function

P(α) = α1P1 +α2P2,α1 +α2 = 1

where (16) is solved simultaneously for matrices P1 and P2 respective to vertices
A1 and A2.

To solve BMI (16), Yalmip with PENBMI solver has been used. Computed results for
both cases are summarized as follows: Case Q1 = 0.5I, Q2 = 5I, R = 0.1Ir.

Quadratic stability:

F11 =

[
−1.217 0 −2.4052 0

0 −1.1441 0 −0.5007

]
.

F12 =

[
0.1531 −0.4077 −3.1907 1.2205
−3.0652 −1.3169 −1.2004 −3.25

]
.

Maximal absolute value of eigenvalue for polytopic system is maxi Eig(Acii) = 0.9798
and guaranteed cost is maxi Eig(Pi) = 494.35.

Parameter dependent quadratic stability:

F11 =

[
−8.8007 0 −1.2016 0

0 −16.4102 0 −20.6045

]
,

F12 =

[
39.0631 10.0902 13.1678 2.7348
−23.8798 19.8237 −14.1435 20.2016

]
.

Maximal absolute value of eigenvalue for polytopic system is maxi Eig(Acii) = 0.9854
and guaranteed cost is maxi Eig(Pi) = 490.9. Dynamic behavior of closed-loop nominal
system is in Fig 1 and Fig 2.

5. Conclusion

The paper addresses the problem of designing a parameter dependent quadratic sta-
bility static output/state feedback for N2 step ahead model predictive control for linear
polytopic systems without constraints. The new robust stability conditions for N2 step
ahead model predictive control are given in Theorem 1. The simple example using
Yalmip BMI solvers shows the effectiveness of the proposed method.
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0 50 100 150 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y1
y2

   Parameter  dependent stability case

Figure 1. Outputs versus time in [s] for quadratic stability case.
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Figure 2. Outputs versus time in [s] for parameter dependent quadratic stability.
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