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Decomposition of the pairs (A,B) and (A,C) of positive
discrete-time linear systems

TADEUSZ KACZOREK

A new test for checking the reachability (observability) of positive discrete-time linear
systems is proposed. Conditions are established under which the unreachable pair (A,B) and
the unobservable pair (A,C) of positive discrete-time system can be decomposed into reachable
and unreachable parts and observable and unobservable parts, respectively. It is shown that the
transfer matrix of the positive system is equal to the transfer matrix of its reachable (observable)
part.
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1. Introduction

In positive systems inputs, state variables and outputs take only non-negative values.
Examples of positive systems are industrial processes involving chemical reactors, heat
exchangers and distillation columns, storage systems, compartmental systems, water and
atmospheric pollution models. A variety of models having positive linear behavior can
be found in engineering, management science, economics, social sciences, biology and
medicine, etc. An overview of state of the art in positive linear theory is given in the
monographs [2, 3]. The notions of controllability and observability and the decomposi-
tion of linear systems have been introduced by Kalman [7, 8]. Those notions are the basic
concepts of the modern control theory [1, 6, 9, 10, 5]. They have been also extended to
positive linear systems [2, 3]. In this paper the idea of Kalman’s decomposition theorem
will be extended to positive discrete-time linear systems. Conditions will be established
for the decomposition of the pair (A,B) into reachable and unreachable parts and of the
pair (A,C) into observable and unobservable parts.

The paper is organized as follows. In section 2 the basic definitions and theorem
concerning reachability and observability of positive discrete-time linear systems are
recalled. New test for checking the reachability of positive discrete-time linear systems is
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proposed in section 3. The main result of the paper is given in section 4 and 5. In section
4 the conditions for decomposition of the pair (A,B) into reachable and unreachable
parts are proposed and in section 5 the conditions for decomposition of the pair (A,C)
into observable and unobservable parts. Concluding remarks are given in section 6.

2. Preliminaries

The set of n×m real matrices will be denoted by ℜn×m and ℜn := ℜn×1. The set of
m×n real matrices with nonnegative entries will be denoted by ℜm×n

+ and ℜn
+ := ℜn×1

+ .
The set of nonnegative integers will be denoted by Z+ and the n× n identity matrix by
In.

Consider the linear discrete-time systems

xi+1 = Axi +Bui, i ∈ Z+

yi = Cxi +Dui
(1)

where xi ∈ ℜn, ui ∈ ℜm, yi ∈ ℜp are the state, input and output vectors and A ∈ ℜn×n,
B ∈ℜn×m, C ∈ℜp×n, D ∈ℜp×m.

Definition 1 The system (1) is called (internally) positive if and only if xi ∈ ℜn
+, and

yi ∈ℜp
+, i ∈ Z+ for every x0 ∈ℜn

+, and any input sequence ui ∈ℜm
+, i ∈ Z+.

Theorem 1 [2,3] The system (1) is (internally) positive if and only if

A ∈ℜn×n
+ , B ∈ℜn×m

+ , C ∈ℜp×n
+ , D ∈ℜp×m

+ . (2)

Definition 2 The positive system (1) is called reachable in q steps if there exists an
input sequence ui ∈ℜm

+, i = 0,1, . . . ,q−1 which steers the state of the system from zero
(x0 = 0) to any given final state x f ∈ℜn

+ i.e. xq = x f .

Let ei, i = 1, . . . ,n be the ith column of the identity matrix In. A column aei for a > 0
is called the monomial column.

Theorem 2 [2,3] The positive system (1) is reachable in q steps if and only if the reacha-
bility matrix

Rq = [ B AB ... Aq−1B ] ∈ℜn×qm
+ (3)

contains n linearly independent monomial columns.

Theorem 3 [2,3] The positive system (1) is reachable in q steps only if the matrix

[ B A ] (4)
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contains n linearly independent monomial columns.

Definition 3 The positive systems (1) is called observable in q steps if it is possible
to find unique initial state x0 ∈ ℜn

+ of the system knowing its input sequence ui ∈ ℜm
+,

i = 0,1, . . . ,q−1 and its corresponding output sequence yi ∈ℜp
+, i = 0,1, . . . ,q−1.

Theorem 4 [2,3] The positive systems (1) is observable in q steps if and only if the
observability matrix

Oq =




C
CA

...
CAq−1



∈ℜqp×n

+ (5)

contains n linearly independent monomial rows.

Theorem 5 [2,3] The positive system (1) is observable in q steps only if the matrix
[

C
A

]
(6)

contains n linearly independent monomial rows.

3. New test for checking the reachability of positive linear systems

In this section a new test for checking the reachability of the pair

A = [ A1 A2 ... An ] ∈ℜn×n
+ , B = [ B1 B2 ... Bm ] ∈ℜn×m

+ ,

Ai =




a1i
...

ani


 , i = 1, ...,n; B j =




b1 j
...

bn j


 , j = 1, ...,m;

(7)

will be proposed.
First we assume that m = 1 and B = B1. Let B1 be a monomial column with positive

entry bi1 . In the new test for checking the reachability of the pair (7) a crucial role will
play the following procedure of finding a sequence of linearly independent monomial
columns (compare with [4]).

Procedure

The monomial column B1 with bi1 > 0, i1 ∈ (1, . . . ,n) is the first element of the sequence.
If the column Ai1(= ABi1) is monomial and linearly independent (ai2i1 > 0, i1 6= i2) then
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it belongs to the sequence B1, Ai1 . If the column is not monomial or i1 = i2 it does not
belong to the sequence and the procedure stops. In this case the pair (7) is not reachable.
If the column Ai2(= AAi1 = A2Bi1) is monomial and linearly independent of the columns
B1 and Ai1 (ai3i2 > 0, i3 6= i2, i3 6= i1) then it belongs to the sequence B1, Ai1 , A12 .

Continuing the procedure we may find the sequence of linearly independent mono-
mial columns

B1,Ai1 , . . . ,A1k . (8)

The positive linear system (1) or equivalently the pair (7) is reachable in q = n steps if
and only if the sequence (8) contains n elements (k = n−1).

Therefore, the following theorem has been proposed.

Theorem 6 The single-input positive system (1) is reachable in n steps if and only if
using Procedure it is possible to find n linearly independent monomial columns (8) for
k = n−1.

Example 1 Check the reachability of the pair

A =




0 0 1
1 0 2
0 2 0


 , B =




1
0
0


 . (9)

For the pair (9) the sequence (8) has the form

B1 =




1
0
0


 , Ai1 = A1 = AB1 =




0
1
0


 , Ai2 = A2 = A2B1 =




0
0
2


 . (10)

The sequence (10) contains three linearly independent monomial columns and the pair
by Theorem 6 is reachable in q = n = 3 steps.

Example 2 Check the reachability of the pair

A =




0 0 0
1 1 0
2 0 1


 , B =




1
0
0


 . (11)

Note that the pair satisfies the necessary condition of reachability (Theorem 3). In this

case the sequence (8) for the pair (11) contains only one monomial column B1 =




1
0
0



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since the column A1 = AB1 =




0
1
2


 is not monomial. Therefore, the pair is not reach-

able.
If m > 1 then using Procedure sequentially for each linearly independent monomial

column of the matrix B we may find the sequence of the linearly independent monomial
columns

B1,A
(1)
i11

, ...,A(1)
i1k1

,B2,A
(2)
i21

, ...,A(2)
i2k2

, ...,Bm,A(m)
im1

, ...,A(m)
imkm

. (12)

The positive linear systems (1) for m > 1 is reachable in q steps (q ¬ n) if and only if
the sequence (12) contains n linearly independent columns for ki ¬ q, i = 1, . . . ,m.

Therefore, the following theorem has been proved.

Theorem 7 The multi-input positive system (1) is reachable in q steps (q ¬ n) if and
only if using Procedure it is possible to find n linearly independent monomial columns
(12) for ki ¬ q, i = 1, . . . ,m.

Example 3 Check the reachability of the pair

A =




0 1 0 0
1 0 0 1
0 2 0 2
0 0 1 1




, B =




1 0
0 0
0 1
0 0




. (13)

For the first monomial column of the matrix B we have

B1 =




1
0
0
0




, A1 =




0
1
0
0




, A2 =




1
0
2
0




. (14)

The first two columns of (14) are only linearly independent monomial columns. For the
second monomial column of the matrix B we obtain also only two linearly independent
monomial columns

B2 =




0
0
1
0




, A3 =




0
0
0
1




, A4 =




0
1
2
1




. (15)
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In this case the sequence (12) has the form

B1 =




1
0
0
0




, A1 =




0
1
0
0




, B2 =




0
0
1
0




, A3 =




0
0
0
1




. (16)

By Theorem 7 the positive system with (13) is reachable in q = 2 steps.

4. Decomposition of positive pair (A,B)

Let the pair (A,B) of the positive systems (1) be unreachable but the sequence (12)
contains at least one monomial column. First we shall consider the single-input (m =
1) system and we shall assume that the matrix B ∈ ℜn×m

+ is monomial, otherwise the
positive system is unreachable for any matrix A ∈ℜn×n

+ .
Let us assume that the reachability matrix

Rn = [ B AB ... An−1B ] ∈ℜn×n
+ (17)

of the positive system (1) has n1 < n linearly independent monomial columns

P1 = B, P2 = AB, Pn1 = An1−1B. (18)

It is always possible to chose n2 = n−n1 linearly independent monomial columns

Pn1+1,Pn1+2, ...,Pn (19)

which are orthogonal to the columns (18). The matrix

P = [ P1 ... Pn1 Pn1+1 ... Pn ] (20)

is monomial and its inverse P−1 is equal to PT , where T denotes the transpose.
It is assumed that the following condition

PT
k APn1 = 0 and k = n1 +1, ...,n (21)

is satisfied. Note that (21) holds if APn1 is a linear combination of the monomial columns
P1, ...,Pn1 . We shall show that if the condition (21) is satisfied then using the matrix (20)
we can reduce the pair (A, B) to the following form

Ā = P−1AP =

[
Ā1 Ā12

0 Ā2

]
, B̄ = P−1B =

[
B̄1

0

]
(22)
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where the pair
Ā1 ∈ℜn1×n1

+ , B̄1 ∈ℜn1
+ (23)

is reachable and the pair Ā2 ∈ Ren2×n2
+ , B̄2 = 0 ∈ Ren2

+ is unreachable.
From (18) we have

AP = [AP1 AP2 ... APn1 APn1+1 ... APn] = [P2 P3 ... Pn1 APn1 ... APn]. (24)

Taking into account that (18) are orthogonal to (19) and using (24) we obtain

P−1AP = PT AP =




PT
1
...

PT
n1

PT
n1+1
...

PT
n




[P2P3...Pn1APn1 ...APn] =

[
Ā1 Ā12

0 Ā2

]
(25a)

where

Ā1 =




PT
1 P2 ... PT

1 Pn1 PT
1 APn1

... ...
...

...
PT

n1
P2 ... PT

n1
Pn1 PT

n1
APn1


 =




0 0 ... 0 ā1

1 0 ... 0 ā2

0 1 ... 0 ā3
...

...
. . .

...
...

0 0 ... 1 ān1



∈ℜn1×n1

+ ,

āk = PT
k APn1 , k = 1, ...,n1;

Ā12 =




PT
1 APn1+1 ... PT

1 APn−1 PT
1 APn

... ...
...

...
PT

n1
APn1+1 ... PT

n1
APn−1 PT

n1
APn


 ∈ℜn1×n2

+ ,

Ā2 =




PT
n1+1APn1+1 ... PT

n1+1APn−1 PT
n1+1APn

... ...
...

...
PT

n APn1+1 ... PT
n APn−1 PT

n APn


 ∈ℜn2×n2

+

(25b)

and




PT
n1+1P2 ... PT

n1+1Pn1 PT
n1+1APn1

... ...
...

...
PT

n P2 ... PT
n Pn1 PT

n APn1


 =




0 ... 0
... ...

...
0 ... 0


 ∈ℜn2×n1 (25c)
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since (21) holds. Taking into account that

PT
k B =

{
1
0

for
for

k = 1
k = 2, ...,n

(26)

we obtain

B̄ = P−1B = PT B =




PT
1
...

PT
n


B =




1
0
...
0




=

[
B̄1

0

]
. (27)

Using (25) and (27) it is easy to verify that the pair (Ā1, B̄1) is reachable since

[ B̄1 Ā1B̄1 ... Ān1−1
1 B̄1 ] = In1 . (28)

Therefore the following theorem has been proved.

Theorem 8 Let the positive system (1) be unreachable but the matrix (17) has n1
linearly independent monomial columns and the assumption (21) be satisfied. Then the
pair (A, B) of the system can be reduced to the form (22) by the use of the similarity
transformation with monomial matrix (20). Moreover, the positive pair (Ā1, B̄1) is
reachable.

Example 4 Consider the positive system (1) with the matrices

A =




0 0 0 2
1 0 1 0
2 1 0 1
0 0 0 1




, B =




0
1
0
0




. (29)

The pair is unreachable since the reachability matrix

R4 = [ B AB A2B A3B ] =




0 0 0 0
1 0 1 0
0 1 0 1
0 0 0 0




(30)

has only two linearly independent monomial columns P1 = B and P2 = AB. In this case
the monomial matrix (20) has the form

P = [ P1 P2 P3 P4 ] =




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1




(31)
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and the assumption (21) is satisfied since

[
PT

3

PT
4

]
AP2 =

[
1 0 0 0
0 0 0 1

]



0 0 0 2
1 0 1 0
2 1 0 1
0 0 0 1







0
0
1
0




=

[
0
0

]
. (32)

Using (22) we obtain

Ā = P−1AP =




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1







0 0 0 2
1 0 1 0
2 1 0 1
0 0 0 1







0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1




=

(33)

=




0 1 1 0
1 0 2 1
0 0 0 2
0 0 0 1




=

[
Ā1 Ā12

0 Ā2

]

and

B̄ = P−1B =




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1







0
1
0
0




=




1
0
0
0




=

[
B̄1

0

]
. (34)

The pair

Ā1 =

[
0 1
1 0

]
, B̄1 =

[
1
0

]
(35)

is reachable since [ B̄1 Ā1B̄1 ] =

[
1 0
0 1

]
.

Example 5 Consider the positive system (1) with the matrices

A =




0 0 1 2
1 0 0 0
2 1 0 1
0 0 1 0




, B =




0
1
0
0




. (36)
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The pair is unreachable since the reachability matrix

R4 = [ B AB A2B A3B ] =




0 0 1 2
1 0 0 1
0 1 0 3
0 0 1 0




(37)

has only two linearly independent monomial columns P1 = B and P2 = AB. In this case
the monomial matrix (20) has also the form (31) but the assumption (21) is not satisfied
since

[
PT

3

PT
4

]
AP2 =

[
1 0 0 0
0 0 0 1

]



0 0 1 2
1 0 0 0
2 1 0 1
0 0 1 0







0
0
1
0




=

[
1
1

]
. (38)

Using (22) we obtain

Ā = P−1AP =




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1







0 0 1 2
1 0 0 0
2 1 0 1
0 0 1 0







0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1




=

(39)

=




0 0 1 0
1 0 2 1
0 1 0 2
0 1 0 0




and

B̄ = P−1B =




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1







0
1
0
0




=




1
0
0
0




. (40)

In this case the matrices (39) and ((40) has not the form (22).

Now let us consider the multi-input (m > 1) positive system (1). We shall assume that
the matrix B ∈ ℜn×m

+ has at least one monomial column; otherwise the positive system
is not reachable for any matrix A ∈ℜn×n

+ . Let the reachability matrix

Rn = [ B AB ... An−1B ] ∈ℜn×mn
+ (41)
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has n1 < n linearly independent monomial columns

P1, P2, ..., Pn1 . (42)

The columns of (42) are chosen as follows. Let the columns Bi1 ,Bi2 , ...,Bik (k ¬ m) of
the matrix B are linearly independent monomial columns. We choose from the sequence

ABi1 , ...,ABik ,A
2Bi1 , ...,A

2Bik , ...,A
n−1Bi1 , ...,A

n−1Bik (43)

such monomial columns which are linearly independent from the previously chosen
monomial columns.

It is always possible to chose n2 = n−n1 linearly independent monomial

Pn1+1,Pn1+2, ...,Pn (44)

which are orthogonal to the columns (42).
Let the monomial matrix P have the form

Pn1+1,Pn1+2, ...,Pn (45a)

where

Pi1 = Bi1 , ...,Pi1d1 = Ad1−1Bi1 ,Pi2 = Bi2 , ...,Pi2d2 = Ad2−1Bi2 , ...,Pikdk = Adk−1Bik (45b)

and di (i = 1, . . . ,k) are some natural numbers. Taking into account that

P−1 = PT =




PT
1
...

PT
n


 and PT

i Pj =

{
1
0

for
for

i = j
i 6= j

(46)

we obtain

Ā = P−1AP =




PT
1
...

PT
n


 [A P1 AP2 ... APn ] =

[
Ā1 Ā12

0 Ā2

]
(47a)

where

Ā1 =




PT
1 AP1 ... PT

1 APn1

... ...
...

PT
n1

AP1 ... PT
n1

APn1


 , Ā12 =




PT
1 APn1+1 ... PT

1 APn
... ...

...
PT

n1
APn1+1 ... PT

n1
APn


 ,

Ā2 =




PT
n1+1APn1+1 ... PT

n1+1APn
... ...

...
PT

n APn1+1 ... PT
n APn




(47b)
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where

B̄ = P−1B =




PT
1
...

PT
n


B =

[
B̄1

0

]
, B̄1 = blockdiag[ B̄1 ... B̄ik ],

(47c)

Bi =




1
0
...
0




, i = i1, ..., ik

if
PT

k APj = 0 for k = n1 +1, ...,n; j = 1, ...,n1 (48)

where the pair (Ā1, B̄1) is reachable and the pair (Ā2, B̄2 = 0) is unreachable. Therefore,
the following theorem has been proved.

Theorem 9 Let the positive system (1) be unreachable but the matrix (41) has n1
linearly independent monomial columns and the assumption (48) be satisfied. Then the
pair (A, B) of the system can be reduced to the form (47) by the use of the similarity
transformation with the monomial matrix (45). Moreover the positive pair (Ā1, B̄1) is
reachable.

Example 6 Consider the positive system (1) with the matrices

A =




1 0 0
0 1 1
0 0 2


 , B =




0 1
1 0
0 1


 . (49)

The pair is unreachable since the reachability matrix

R3 = [ B AB A2B ] =




0 1 0 1 0 1
1 0 1 1 1 3
0 1 0 2 0 4


 (50)

has only one monomial column P1 =




0
1
0


. In this case the monomial matrix (45) has

the form

P =




0 1 0
1 0 0
0 0 1


 (51a)
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and the assumption (48) is satisfied since

[
PT

2

PT
3

]
AP1 =

[
1 0 0
0 0 1

]


1 0 0
0 1 1
0 0 2







0
1
0


 =

[
0
0

]
. (51b)

Using (47), (49) and (51a) we obtain

Ā = P−1AP =




0 1 0
1 0 0
0 0 1







1 0 0
0 1 1
0 0 2







0 1 0
1 0 0
0 0 1


 =




1 0 1
0 1 0
0 0 2


 =

(52a)

=

[
Ā1 Ā12

0 Ā2

]

and

B̄ = P−1B =




0 1 0
1 0 0
0 0 1







0 1
1 0
0 1


 =




1 0
0 1
0 1


 =

[
B̄1 0
0 B̄2

]
. (52b)

The positive pair Ā1 = [1], B̄1 = [1] is reachable and the positive pair Ā2 =

[
1 0
0 2

]
,

B̄2 =

[
1
1

]
is unreachable since [ B̄2 Ā2B̄2 ] =

[
1 1
1 2

]
.

Let

x̄i = P−1xi =

[
x̄(1)

i

x̄(2)
i

]
, x̄(1)

i ∈ℜn1 , x̄(2)
i ∈ℜn2 (53)

be a new state vector and

yi = Cxi +Dui = CPP−1xi +Dui = C̄1x̄(1)
i +C̄2x̄(2)

i +Dui (54)

where
CP = [ C̄1 C̄2 ], C̄1 ∈ℜp×n1 , C̄2 ∈ℜp×n2 . (55)

Definition 4 The positive subsystem

x̄(1)
i = Ā1x̄(1)

i + B̄1ui (56a)

y(1)
i = C̄1x̄(1)

i +Dui (56b)

is called the reachable part of the system (1).
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Theorem 10 The transfer matrix of the positive system (1)

T (z) = C[Inz−A]−1B+D (57)

is equal to the transfer matrix of its reachable part (56)

T1(z) = C̄1[In1z− Ā1]−1B̄1 +D (58)

i.e. T (z) = T1(z).

Proof Using (57), (22) and (55) we obtain

T (z) = C[Inz−A]−1B+D = CPP−1[Inz−A]−1PP−1B+D

= C̄[Inz−PAP−1]−1B̄+D = [ C̄1 C̄2 ]

[
In1z− Ā1 −Ā12

0 In2z− Ā2

]−1 [
B̄1

0

]
+D

(59)

= [C̄1 C̄2 ]

[
[In1z− Ā1]

−1 ∗
0 [In2z− Ā2]

−1

][
B̄1

0

]
+D

= C̄1[In1z− Ā1]−1B̄1 +D = T1(z).

Therefore, the transfer matrix (58) represents only reachable part of the positive system.

5. Decomposition of the positive pair (A,C)

Definition 5 The positive system

xi+1 = AT xi +CT ui, i ∈ Z+

yi = BT xi +Dui
(60)

(the matrices A, B, C, D are the same as of (1)) is called the dual positive system with
respect to the system (1).

Theorem 11 The positive system (1) is reachable in q steps if and only if the positive
dual system (60) is observable in q steps.

Proof By Theorem 2 the positive system (1) is reachable in q steps if and only if the
reachability matrix

Rq = [ B AB ... Aq−1B ] (61)
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contains n linearly independent monomial columns. Note that the transpose matrix (61)

RT
q =




BT

BT AT

...
BT (AT )q−1




(62)

contains n linearly independent monomial rows if and only if the matrix (61) contains n
linearly independent monomial columns.

The matrix (62) is the observability matrix of the positive system (60). By Theorem
4 the positive system (60) is observable in q steps if and only if the positive system (1)
is reachable in q steps.

Therefore, for testing the observability of the positive system (1) we can use the
reachability conditions for dual positive system. The duality can be also used in the
decomposition of the positive pair (A,C). Let the pair (A,C) of the positive single-output
(p = 1) system (1) be unobservable but the matrix C be a monomial (otherwise the
system is unobservable for any matrix A ∈ℜn×n

+ ).
Let us assume that the observability matrix

On =




C
CA

...
CAn−1



∈ℜn×n

+ (63)

has n1 < n linearly independent monomial rows

Q1 = C, Q2 = CA, ..., Qn1 = CAn1−1. (64)

It is always possible to choose n2 = n−n1 linearly independent monomial rows

Qn1+1, Qn1+2, ...,Qn (65)

which are orthogonal to the rows (64). The matrix

Q =




Q1
...

Qn1

Qn1+1
...

Qn




(66)
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is monomial and its inverse Q−1 = QT . We shall show that if

Qn1AQT
k = 0 for k = n1 +1, ...,n (67)

holds then using (66) we can reduce the pair (A,C) to the from

Â = QAQ−1 =

[
Â1 0
Â21 Â2

]
, Ĉ = CQ−1 = [ Ĉ1 0 ] (68)

where the pair (Â1,Ĉ1) is observable and the pair (Â2,Ĉ2 = 0) is unobservable.
From (64) we have

QA =




Q1A
Q2A

...
Qn1−1A
Qn1A

...
QnA




=




Q2

Q3
...

Qn1

Qn1A
...

QnA




. (69)

Taking into account that (65) are orthogonal to (64) and using (67) we obtain

Â = QAQT =




Q2

Q3
...

Qn1

Qn1A
...

QnA




[ QT
1 QT

2 ... QT
n1

... QT
n ] =

[
Â1 0
Â21 Â2

]
(70)
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where

Â1 =




Q2QT
1 ... Q2QT

n1
... ...

...
Qn1AQT

1 ... Qn1AQT
n1


 =




0 1 0 ... 0
0 0 1 ... 0
...

...
...

. . .
...

0 0 0 ... 1
â1 â2 â3 ... ân1



∈ℜn1×n1

+ ,

âk = Qn1AQT
k , k = 1, ...,n1;

Â21 =




Qn1+1AQT
1 ... Qn1+1AQT

n1
... ...

...
QnAQT

1 ... QnAQT
n1


 ∈ℜn2×n1

+ ,

Â2 =




Qn1+1AQT
n1+1 ... Qn1+1AQT

n
... ...

...
QnAQT

n1+1 ... QnAQT
n


 ∈ℜn2×n2

+ .

(71)

Taking into account that

CQT
k =

{
1
0

for
for

k = 1
k = 2, ...,n

(72)

we obtain
Ĉ = CQT = [ Ĉ1 0 ], Ĉ1 = [ 1 0 ... 0 ] ∈ℜ1×n1

+ . (73)

Using (71) and (73) it is easy to verify that the pair (Â1, B̂1) is observable since




Ĉ1

Ĉ1Â1
...

Ĉ1Ân−1
1




= In1 . (74)

Therefore, the following theorem has been proved.

Theorem 12 Let the positive system (1) be unobservable but the matrix (63) has n1
linearly independent monomial rows and the assumption (67) be satisfied. Then the pair
(A, C) of the system can be reduced to the form (68) by the use of the similarity trans-
formation with monomial matrix (66). Moreover, the positive pair (Â1,Ĉ1) is observable.
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Example 7 Consider the positive system (1) with the matrices

A =




0 1 2 0
0 0 1 0
0 1 0 0
2 0 1 1




, C = [ 0 1 0 0 ]. (75)

The pair is unobservable since the observability matrix

O4 =




C
CA
CA2

CA3




=




0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0




(76)

has only two linearly independent monomial rows (n1 = 2) Q1 = C and Q2 = CA. In this
case the monomial matrix (66) has the form

Q =




Q1

Q2

Q3

Q4




=




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1




(77)

and the assumption (67) is satisfied since

Q2A[ QT
3 QT

4 ] = [ 0 0 1 0 ]




0 1 2 0
0 0 1 0
0 1 0 0
2 0 1 1







1 0
0 0
0 0
0 1




= [ 0 0 ]. (78)

Using (68) and (77) we obtain

Â = QAQT =




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1







0 1 2 0
0 0 1 0
0 1 0 0
2 0 1 1







0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1




(79a)

=




0 1 0 0
1 0 0 0
1 2 0 0
0 1 2 1




=

[
Â1 0
Â21 Â2

]
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and

Ĉ = CQT = [ 0 1 0 0 ]




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1




= [ 1 0 0 0 ] = [ Ĉ1 0 ]. (79b)

The pair

Â1 =

[
0 1
1 0

]
, Ĉ1 = [ 1 0 ] (80a)

is observable since [
Ĉ1

Ĉ1Â1

]
=

[
1 0
0 1

]
. (80b)

Note that the pair (75) is the dual pair to (29) and the results can be obtained by the
duality principle.

In a similar way the considerations can be extended for the multi-input (p > 1)
positive systems (1).

Let the observability matrix (63) has n1 < n linearly independent monomial rows
and the rows C j1 ,C j2 , ...,C jl (l ¬ p) of the matrix C ∈ ℜp×n

+ are linearly independent
monomial rows. Then from the sequence

C j1A, ...,C jl A,C j1A2, ...,C jl A
2, ...,C j1An−1, ...,C jl A

n−1 (81)

we may choose monomial rows which are linearly independent from the previously cho-
sen monomial rows.

Let
Q1,Q2, ...,Qn1 (82)

be the linearly independent monomial rows of the matrix (63). Then it is possible to
choose n2 = n−n1 linearly independent monomial rows

Qn1+1,Qn1+2, ...,Qn (83)

which are orthogonal to rows (82).
Let the monomial matrix QT have the form

QT = [QT
j1 ... QT

j1d̄1
QT

j2 ... QT
j2d̄2

... QT
jl d̄l

QT
n1+1 ... QT

n ] (84a)

where

Q j1 = C j1 , ...,Q j1d̄1
= C j1Ad̄1−1,Q j2 = C j2 , ...,

(84b)
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Q j2d̄2
= C j2Ad̄2−1, ...,Q jl d̄l

= C jl A
d̄l−1

and d̄ j ( j = 1, ..., l) are some natural numbers. Taking into account that

QiQT
j =

{
1
0

for
for

i = j
i 6= j

(85)

and the assumption

QkAQT
j = 0 for k = n1 +1, ...,n; j = n1 +1, ...,n1 (86)

we can prove in a similar way as in the case p = 1 the following theorem.

Theorem 13 Let the positive system (1) be unobservable but the matrix (63) has n1
linearly independent monomial rows and the assumption (86) be satisfied. Then the pair
(A, C) of the system can be reduced to the form (68) by the use of the similarity transfor-
mation with the monomial matrix (84). Moreover the positive pair (Â1,Ĉ1) is observable.

Let

x̂i = Qxi =

[
x̂(1)

i

x̂(2)
i

]
, x̂(1)

i ∈ℜn1 , x̂(2)
i ∈ℜn2 (87)

be a new state vector and

QB =

[
B̂1

B̂2

]
, B̂1 ∈ℜn1×m, B̂2 ∈ℜn2×m. (88)

Definition 6 The positive subsystem

x̂(1)
i = Â1x̂(1)

i + B̂1ui (89a)

y(1)
i = Ĉ1x̂(1)

i +Dui (89b)

is called the observable part of the system (1).

Theorem 14 The transfer matrix (57) of the positive system (1) is equal to the transfer
matrix

T1(z) = Ĉ1[In1z− Â1]−1B̂1 +D (90)

of its observable part (89).

The proof is similar to the one of Theorem 10. Therefore, the transfer matrix (90)
represents only the observable part of the positive system (1).
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6. Concluding remarks

A new test for checking the reachability (observability) of positive discrete-time li-
near systems have been proposed (Theorem 6 and 7). Conditions have been established
for: 1) decomposition of the pair (A, B) into reachable and unreachable parts (Theorem
8 and 9), 2) the decomposition of the pair (A, C) into observable and unobservable parts
(Theorem 11 and 12).

It has been shown that the transfer matrix of the positive linear system is equal to the
transfer matrix of its reachable (observable) part (Theorem 10 and 14). The considera-
tions have been illustrated by numerical examples. Using the decomposition of the pair
(A, B) and (A, C) it is possible to decompose a positive discrete-time linear system into
four parts (subsystems): 1) reachable and observable part, 2) reachable and unobservable
part 3) unreachable and observable part and 4) unreachable and unobservable part.

Open problems are extensions of these considerations to positive continuous-time
linear systems and to positive 2D linear systems.
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