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Nonlinear multiple model particle filters algorithm
for tracking multiple targets

ABDENNOUR SEBBAGH and HICHAM TEBBIKH

The paper addresses multiple targets tracking problem encountered in number of situations
in signal and image processing. In this paper, we present an efficient filtering algorithm to
perform accurate estimation in jump Markov nonlinear systems, which we aim to contribute
in solving the problem of multiple targets tracking using bearings-only measurements. The
idea of this algorithm consists of the combination between the multiple model approach and
particle filtering methods, which give a nonlinear multiple model particle filters algorithm. This
algorithm is used to estimate the trajectories of multiple targets assumed to be nonlinear, from
their noisy bearings.
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1. Introduction

Multiple targets tracking (MTT) problem deals with correctly tracking several targets
given noisy sensor measurement at every instant. To perform MTT an observer can rely
on a huge amount of data, possibly collected from different sensors. The main difficulty,
however, comes from the assignment of a given measurement to a target model. These
assignments are generally unknown, because the accurate target models are unknown
as well. This is a neat departure from classical estimation problems. Thus, two distinct
problems have to be solved jointly: the data association and the estimation.

Estimation and filtering are two of the most pervasive tools of engineering if the state
of a system must be estimated from the noisy sensor information. Some kind of state can
be employed to fuse the data from different sensors to produce an accurate estimate of
the system state. When the system dynamics and observation models are linear, the min-
imum mean squared error (MMSE) estimate may be computed using the Kalman filter.
However, in most applications the system dynamics and observation equations are non-
linear and suitable extensions of the Kalman filter have been sought. It is well-known
that the optimal solution to the nonlinear filtering problem requires that a complete de-
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scription of the conditional probability density is maintained [10]. Unfortunately this
exact description requires a potentially unbounded number of parameters then a number
of suboptimal approximations have been proposed [9].

Probably the most widely used estimator for nonlinear systems is the extended
Kalman filter (EKF) [13]. The EKF applies the Kalman filter to nonlinear systems by
simply linearizing all the nonlinear models so that the traditional linear Kalman filter
equations can be applied. However, in practice, the use of the EKF has two well-known
drawbacks:

1. Linearization can produce highly unstable filter if the assumption of local linearity
is violated.

2. The derivations of the Jacobian matrices are nontrivial in most applications and
often lead to significant implementation difficulties.

Under the assumptions of stochastic state equation, nonlinear state and/or measure-
ment models and non-Gaussian noises, we present another filter to track a nonlinear
targets. This filter is called sequential Monte Carlo methods or particle filtering meth-
ods. They mainly consist of propagating, in a possibly nonlinear way, a weighted set of
particles which approximates the probability density of the state conditioned on the ob-
servations according to Monte Carlo integration principles. The weights of the particles
are updated using Bayes formula. Particle filtering can be applied under very general
hypotheses, and is very simple to implement. Such filters have been used in very dif-
ferent areas for Bayesian filtering, under different names: the bootstrap filter for target
tracking in [8] and the condensation algorithm in computer vision [12] are two examples
among others. In earliest studies, the algorithm was only composed of two periods: the
particles were predicted according to the state equation during the prediction step, then
their weights were calculated with the likelihood of the new observation combined with
the former weights. A resampling step has rapidly been added to dismiss the particles
with lower weights and avoid the degeneracy of the particle set into a unique particle of
high weight [8]. Many ways have been developed to accomplish this resampling whose
final goal is to enforce particles in areas of high likelihood.

In literature, several algorithms are developed to track multiple targets, among them
we find the joint probabilistic data association filter (JPDAF), the multiple hypotheses
tracker (MHT) and the probabilistic multiple hypotheses tracker (PMHT) algorithms.
These later yield good performances with efficient computation especially when the
measurement and state models are linear. However, if they are nonlinear, these algo-
rithms break down. We propose in this paper another algorithm to track multiple tar-
gets with bearing only measurement under the assumptions of stochastic state equation,
nonlinear state or/and measurement models and non-Gaussian noises. This algorithm is
called nonlinear multiple model particle filter (NMMPF). The basic idea is to combine
the multiple model approach with a particle filtering methods. A bank of filters results
from this combination. Each filter is used to estimate one target model. The output of the
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algorithm at every instant for one measurement is the combination of all the outputs of
each filter weighted by the probabilities of each filter.

The paper is organized as follows. In section 2, the mathematical formulation of air
traffic control (ATC) motion models in the (X, Y) plane is presented. In section 3 and 4,
we describe the particle filtering methods with adaptive resampling and its application
to single target tracking with bearing-only measurement. Section 5, the central part of
this work, deals with multiple targets tracking. New algorithm (NMMPF) combines the
multiple model approach with particle filtering to obtain a bank of filters which estimate
respective models. Finally, section 6 is devoted to application of the NMMPF to track
multiple targets with bearing-only measurements and discuss the results of simulations.

2. ATC motion models

In air traffic control (ATC), civilian aircraft have two basic modes of flight [21]:

e Uniform motion (UM): the straight and level flight with a constant speed and
course.

e Maneuver: turning or climbing/descending.

The horizontal and vertical motion models can be, typically, assumed to be decoupled
[11]. There are many estimators discussed horizontal motion in literature. The flight
modes in horizontal plane can be modeled by:

e A nearly constant velocity model for the uniform motion, implemented as WNA
(white noise acceleration, or second-order kinematic) model with low-level pro-
cess noise.

¢ A maneuvering model, which can be implemented as a WNA model with signifi-
cant process noise, commensurate with the expected maneuvers.

o A nearly coordinated turn model.

The nearly constant model is given by

1 T 00 0.5T> 0

Xi+1 = 0 100 Xy + T 0 k (D
0 01 T 0 0.572
0 0 0 1 0 T

where T is the sampling interval, X is the state of the aircraft, defined as

X=& & n 7 (2)
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with & and 1 denoting the Cartesian coordinates of the horizontal plane. V; is a zero-
mean Gaussian white noise used to model (cover) small accelerations, the turbulence,
wind change, and so on, with an appropriate covariance

0 ox 0
0 o |’
which is a design parameter.

The turn of a civilian aircraft usually follows a pattern known as coordinated turn
(CT), characterized by constant turn rate and constant speed. Although the actual turns
are not exactly "coordinated’ since the ground speed is the airspeed plus the wind speed,
it can be suitably described by the ’coordinated turn’ model plus a fairly small noise
representing the modeling error, resulting in the nearly coordinated turn model. The CT
model is necessarily a nonlinear one if the turn rate is unknown constant. Augmenting
the state vector in equation (2) by one more component, the turn rate ®, that is,

X=E &1 of 3)

makes the nearly coordinated turn model in the following form

r sin ;T 1 —cos,T 7
1 O —— 0 B T
o o 0572 0 0
0 cos oy T 0 —siny T 0 T 0 0
Xer1=| ¢ 1 —cosayT ! sin ;T o | X+ 0 0572 0 | V.
O Ok 0 T 0
0 sino, T 0 cos ;T 0
0 0 T
| 0 0 0 0 1 | - -
4)

Note that the process noise Vj in equation (1) has different dimension then the one in
equation (4).
The observations are available at discrete times according to

Y, = arctan <S) + Wy &)

where W, is zero-mean Gaussian noise of covariance va independent of V, and (X, Y)
is the position of the target in the horizontal plane.

3. Particle filtering methods

We consider a dynamic system represented by the stochastic process (Xi) € R™
whose evolution is given by the state equation [3, 19]:

Xi = Fe(X—1, V). (6)
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We want to estimate the state vector X; at discrete times with the help of system’s ob-
servations which are realizations of the stochastic process (Yx) € R"™ governed by the
measurement equation:

Y = Hy(Xi, Wi). (7

The two processes (Vi) € R™ and (W) € R™ are only supposed to be independent white
noises. Note that the functions F;, and H; are not assumed linear.

We will denote by Yy, the sequence of the random variables (Yy,...,Y;) and by yo.x
one realization of this sequence. Note that throughout the paper, the first subscript of
any vector always refers to the discrete time. Our problem consists in computing at each
discrete time k the conditional density Ly = p (X |Yo = yo,...,¥x = yx) of the state Xj
given all the observations accumulated up to k, and also in estimating any functional
g(Xk) of the state via the expectation E(g(X) |Yo.x ) [2]. The recursive Bayesian filter,
also named optimal filter, resolves exactly this problem in two steps at each time k as
follows:

o 5o ~ p(Xo)
e Initialization: . 1 ,n=1,....N
q0 = N

o fork=1,...,T,4:

o Proposal: sample s} from f(Xy |Xk—1 = s}, Yx =y) for n=1,....N

compute un — normalized weight :
SEISE_ )k st
@Z:qz_lp( k‘ffln) ks ) forn=1,.....N
o Weighting: S s ‘sk—l’yk)
normalize weights :
qr = N(A]ZAW forn=1,....N
\ Y—1 4y
o Return Eg(Xk) =YN  qg(sh).

Figure 1. Particle filter without resampling.

Suppose we know L;_1. The prediction step is done according to the following equa-
tion:

P(Xk = Xk [You—1 = Your—1) = /p(Xk = X | Xk—1 = x) L1 (x)dx. ®)
R
Using equation (6), we can calculate p(X; = xi [Xj—1 = x):

p(Xi=x¢ | X, =x) = /P(Xk = x| X1 =%, Vi =v)p(Vik = v [Xp—1 = x)dv. (9)
Rix
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The observation y; enables us to correct this prediction using Bayes rule:

Y, — v X, = Xy = x0 [ Yor 1 = Voo
Le(x) = P Yk = ye| Xie = x1) p(Xie = xp [Yo-r—1 = Yok—1) ' (10)
Jrne PV = yic | Xk = xi) p(Xie = X |[Yok—1 = Your—1) dx

Under the specific assumptions of Gaussian noises Vi and W, and linear functions F; and
Hg, these equations lead to the Kalman filter’s equations. Unfortunately, this modeling
is not appropriate in many problems in signal and image processing, which makes the
calculation of the integrals in equation (8) and (10) infeasible (no closed-form). The orig-
inal particle filter, which is called the bootstrap filter [8, 5, 19], proposes to approximate
the densities (L) by a finite weighted sum of N Dirac densities centered on elements
of R™, which are called particles. The application of the bootstrap filter requires that one
knows how to do the following [2, 3]:

e sample from initial prior marginal p(Xp);
e sample from p(V) for all k;

e compute p(Yy = yi|Xx =x) for all k through a known function [, such that
le(y;x) o< p(Yi = y | Xk = x)

where missing normalization must not depend on x. The first particle set Sy is created by
drawing N independent realizations from p(Xp) and assigning uniform weight 1/N to
each of them. Then, suppose we have at our disposal at time k — 1 the weighted particle
set Sk—1 = (s}_1,9}_)n=1,....n Where the a posteriori marginal L;_; is then estimated
by the probability density Ls, , = ¥ _, q_19s; -

The prediction step consists of propagating each particle of S;_; according to the
evolution of equation (6). The weight of each particle is updated during the correction
step. Up to a constant, equation (10) comes down to adjust the weight of predictions
by multiplying it by the likelihood p(yx |xx ). In the most general setting of sequential
Monte Carlo methods [4, 7], the displacement of particles is obtained by sampling from
an appropriate density f which might depend on the data as well. The general algorithm
is summarized in Fig. 1. The density Lg, is often multimodal as several hypotheses about
the position of the object can be made at one time. It is for instance the case when one
object is tracked in the presence of significant clutter. Several hypotheses about the ob-
ject position can then be kept if the set of particles splits into several subsets. This is
where the great strength of this filter lies. In [16] for instance, the measurement vector Yy
consists of a set of detected features along line measurements. The assumed underlying
generative model affects each feature either to the target boundary, or to its interior or
to the background. The likelihood function is built from this generative model and then
takes into account the clutter model. An extension of the algorithm in Fig 1. called the
hybrid bootstrap filter, has also been proposed to deal with significant clutter and spuri-
ous objects for target tracking [7] and guidance [6]. The weighted sum of Dirac laws is
then approximated by a Gaussian mixture obtained by a clustering method [20]. The par-
ticle sets enable one to estimate any functional of Xj in particular the two first moments
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with g(x) = x and g(x) = x?, respectively. The mean can be used to estimate the position
of one object but it can be a bad estimator if the posterior is highly multimodal. In such
cases the ideal would be to calculate the mean only over the particles that contribute
to the principal mode but such an estimator has not been developed for the moment. In
practice, the number of particles is finite and the major drawback of this algorithm is
the degeneracy of the particle set: only few particles keep high weights and the others
have very small ones. The former carry the information, whereas the latter are mostly
useless. The resampling is a good way to remedy this drawback because it eliminates the
particles of smallest weights. The stochastic resampling consists of sampling N particles

o $0~ P(Xo)
e Initialization: . 1 ,n=1,....N
q0 = N
o fork=1,...,T,ua:

o Proposal: sample s} from f(Xi |Xk—1 = s}, Ye=yx) for n=1,....N

( compute un — normalized weight :
o PGS DO sE)

q"ﬂk:qkil ~ [ n fOI‘ YLZI, ...... ,N

o Weighting: Sk {skfl’yk)
normalize weights :
n_ @ _
% =N = for n=1,....,.N
n= lqk
o Return Eg(X;) = Y0, }8(57).
Calculate N, —L .

o e el = T (@
o Resampling: if Neg < Nipreshold :

n N _d

S ~ _ 6

k"~ La=19%% n=1,...,Nelses} =5} for n=1,...N.
g =1/N

Figure 2. Particle filter with adaptive resampling.

with replacement in the particle set with the probability ¢" to draw s”. The new particles
have uniform weights equal to 1/N. A first solution, adopted in [8] for example, consists
of applying the resampling step at each time period. To measure the degeneracy of the
algorithm, the effective sample size Ny has been introduced in [14, 15]. We can estimate
this quantity by N,y =1/ ¥, (¢})* which measures the number of meaningful particles.
As advocated in [4], the resampling can be done only if Neﬁ' < Nihreshold-
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This enables the particle set to better learn the process and to keep its memory during
the interval where no resampling occurs. The algorithm of the particle filter with adaptive
resampling is described in Fig. 2. details can be found in [4, 14, 15].

4. Single target tracking: application to aircraft tracking with bearings-only
measurements

In this section we perform some simulations to evaluate the particle filtering
algorithm [1]. To illustrate this algorithm, we deal with bearings-only problems. The
target is then a ’point-target in the X-Y plane. Two kinematics models were used to
track this target: A constant velocity model for rectilinear motion and a constant speed
turn model for curvilinear motion.

a. Rectilinear motion

For rectilinear motion, the initial position of target is Xo = [1500 10 1500 5)". The
dynamic noise is a normal zero-mean Gaussian vector with 6, = 6, = 0.005ms 2. The
bearings measurements are simulated with Gaussian noises of standard deviation G,, =
0.02rad (about 1.5 deg), every discrete time period, i.e. every 5s. The measurements set
used of the target are presented in Fig. 3. We have used the bootstrap filters, i.e. the
importance function f is in fact the prior law p(Xj [X;—; ), with adaptive reasampling.
The initialization of the filter has been done according to a Gaussian law whose mean
vector and covariance matrix are Xo = [1600 11 1200 3]" and

5.107% 0 0 0
X 0 107 0 0
0 0 51072 0

0 0 0 1073

The obtained results by the application of particle filtering algorithm with 500 particles
are plotted in Fig. 4, 5 and 6. In this algorithm, we have used the Root Mean Square
Error (RMSE) as the performance measurement of this algorithm.

b. Curvilinear motion

The initial position of target is Xy = [2000 10 1500 5 0.00223]". The dynamic noise
of this motion is the same of the first, the bearings measurements are also simulated with
Gaussian noises of standard deviation ,, = 0.02rad. The measurements set used of the
target are presented in Fig. 7.
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The mean vector and covariance matrix initialization are

2100 2.10%2 0 0 0 0
10 0 5100 0 0 0
Xo=| 1400 Xeov = 0 0 210" 0 0
5 0 0 0 510% 0
0.0523 0 0 0 0o 5.10°*

Fig. 4. and 8 show that the estimated and the real trajectories are superposable and
almost identical. Fig. 5, 6, 9, 10, and 11, present the evolution over time of the root
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mean square position and velocity errors of rectilinear and curvilinear motions, and like
it could be seen the algorithm track accurately the targets dynamic and converge to the
right trajectory. From this, we can say that the tracker track accurately targets whose
state and/or measurement are nonlinear.

5. Multiple targets tracking
a. Notations

Let r be the number of targets model. The state vector that we have to estimate is
made by concatenating the state vector of each target model, at time k, X, = [X], ..., X/
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follows the state equation (1) decomposed in r partial equations [2, 3]:
X, =F (X_,V)) Vi=1,...,r (11)

The noise Vki and Vk"’ are only supposed to be white both temporally and spatially, in-
dependent for i # i’. The observation vector at time k is denoted by yx = (v}, ... ),

where y; is a realization of the stochastic process:
Y] = H{(X{,W}). (12)

With m;, a number of the available measurements at one discrete time k, this later can
: >

be different than » (number of targets model). Again, the noises Wk] and Wk’ are only

supposed to be white noises, independent for j # j'.
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b. Multiple model approach

In the multiple model approach (MM) [21, 17] it is assumed that the system obeys
one of a finite number of models. A Bayesian framework is used: starting with prior
probabilities of each model being correct (i.e., the system is in a particular mode), the
corresponding posterior probabilities are obtained.

First, it will be assumed that the model that the system obeys is fixed, i.e. no switch-
ing from one mode to another occurs during the estimation process (time-invariant
mode). The model assumed, is one of r possible models [18] (the system is in one of
r modes).

M e {Mi};_,

The prior probability that M; is correct (the system is in mode i) is

P{M1|Y0}::ul(0) 121,,7' (13)

,

where Y is the prior information and Y 1;(0) = 1 since the correct model is among the
i=1

assumed r possible models.

1. Calculation of model probabilities

The event M; is defined to represent the condition that dynamic model i is in force.
No time argument is required, as the model is assumed not to switch with time. The
posterior probability that model i is in force conditioned on the measurement history up
to k is represented by:

A
ui(k)=P{Mi| Y.} . (14)
Expanding Y in equation (14) onto the combination of the previous measurement his-

tory Y¥~! combined with the current y(k), and then using Bayes formula in both y(k)
and M; yields [21]:

o . _pAMiyB)| Y} p{y(R)| Mi Y1 } P{Mi|Yi1}
uilk) = PAMil Yoy (k) = = o oy P Y)Y 1} s

Denominator in equation (15) can be expanded using the total probability expansion over
all models:

P O® T} = Y p ()M Yy} P LMY}
=1

where r is the number of hypothesized models (and thus the number of elementary filters
in the structure). This gives the following recursive equation for the model probabilities

pi (k)

(k) = piy(k)| M;, Y1} pi(k—1)

! i=1....r (16)
_)::lp{ y(k)[ M, Yy } pi(k— 1)
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starting with the given prior probabilities in equation (13).
The first term on the right hand side above is the likelihood function of mode i at
time k, which, under Gaussian assumptions, is given by the expression [17]:

AdK) = p (k) [Yie1,M;] = p[vi(k)] = N [vi(k); 0; Si(k)] (17)

where v; and S; are the innovation and its covariance from the mode matched filter
corresponding to mode i.

2. Calculation of combined estimate

The output of each mode-matched filter is the mode-conditioned state estimate X,
the associated covariance P! and the mode likelihood function A;. After the filters are
initialized, they run recursively on their own estimate. Their likelihood functions are
used to update the mode probabilities. The central conditional mean estimate is formed
as a weighted average of the elemental filter estimates using the model probabilities y;(k)

as the weights:
-

X(k|k) =) wi(k)X' (k| k) (18)
i=1
Though generally not required, the covariance of this estimate can also be formed
using a weighted average, but adding the correction term which takes into account the
spreading introduced by different estimates:

r

PR = Yo guh) {P(KIR) + [ =X (K0 (X () - X K0T} a9

The multiple model approach with a bank of filters is given in Fig. 12.
¢. Nonlinear multiple model particle filters (NMMPF) algorithm

To avoid the problem of multiple targets tracking we present our algorithm called
Nonlinear Multiple Model Particle Filters (NMMPF), the basic idea of this algorithm
is to combine the multiple model approach with particle filtering. It consist of using a
bank of filters based on different motion models covering the range of possible expected
observed motions, and to some how combine the estimates from these filters based on
the expectation of each model being the correct descriptor of the object motion. It as-
sumes that the update system state is a linear combination of each filter in the filters
bank weighted by a probability factor. A general description of NMMPF algorithm is
presented in Fig. 13.
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Figure 12. The multiple model approach for r fixed models.

6. Simulation and results: Application to bearings-only problems

To illustrate and explore the capability of our NMMPF algorithm to track multiple
targets, we consider the following multiple targets scenario. Three targets follow:

1. A nearly constant velocity model defined in equation (1) (without acceleration
noise).

2. A nearly constant velocity model defined in equation (1) (with acceleration noise).

3. A nearly coordinated turn model defined in equation (4).



www.czasopisma.pan.pl N www.journals.pan.pl
N
~—

52 A. SEBBAGH, H. TEBBIKH

© Models state and covariance initialization: Xé, Pé, i=1,....r
o Initialization of models probability: 1;(0) =1, i=1,...,r
oFork=1,...,end

> Model-matched filtering (using a bank of particle filtering)
Fori=1,...,r

5o = p(X§)

) n=1,....N
q5=1/N

o Initialization: {

o Forj=1,...,m
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Figure 13. NMMPF: nonlinear multiple model particle filters algorithm with adaptive resampling.
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With 6y = 6y = 0.05m/s? and the initial positions and velocities of the targets are the
following:

2000
3000 500
10
. 10 s 10 ;

XO == 5 0 — 5 XO - 1500

500 3000 5

5 5
0.00223

The trajectories of the three targets are plotted in Fig. 14. We assume that each target
produce one measurement at each time period 7 = 4s according to equation (5) with
Gy, = 0.002rad. The simulated bearings are plotted in Fig. 15.

15000

target 2

10000

5000
target 1

Y position in meters(m)

1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000
X position in meters(m)

Figure 14. Targets trajectories.

So, in this case we need three filters bank. The initialization of these filters has been
done according to a Gaussian law whose mean vectors and covariance matrixes are:

2100
2800 450 1
11 9
Xl mean — ) X2 mean — y X3 mean — 1400 P
(x) oo |+ ODman=| | ) ‘
4 4.5
| 0.00323 |
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Figure 15. Simulated bearings in radian.
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The initial probabilities of the three target models for each measurement are:
,Ul’i:l/3 ;127,-:1/3 ,1137,':1/3 i:1,2, 3.

It follows from the above, that at the start all models have the same chance to be selected
for each measurement.

To evaluate the performance of the algorithm, we have performed 100 different
Monte Carlo runs of the NMMPF with N = 500 particles and adaptive resampling. The
resampling threshold in the particle filtering has been fixed to Nyyresnora = 0.8. We have
chosen the root mean square error (RMSE) as the measure of the performance of this
algorithm.

Fig. 16. shows that the estimated and the real trajectories are superposable and almost
identical. Fig. 17, 18 and 19. show that the NMMPF algorithm needs not more than one
sample to affect each measurement to the correct model. Fig. 20, 21 and 22 present the
evolution over time of the root mean square errors of positions (X and Y coordinates),
velocities (X and Y coordinates) and angular velocity. It can be seen that the algorithm
tracks accurately the targets dynamics and confirms the result plotted in fig 16. From this
we can conclude that the tracker converges and affects each measurement to the correct
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Figure 16. Real and estimated trajectories.
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Figure 17. Models probabilities for the first measurement.

model while maintaining good tracking performance and that the NMMPF is a pertinent
solution to the multiple targets tracking problem whose state and/or measurement models
are nonlinear and non Gaussian noised.

When we execute the NMMPF algorithm with a Pentium 1V, 3.40 GHz, N = 500
particles, it takes around 150 ms per time step to compute the NMMPF estimate of the
three targets with bearings-only measurements.
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Figure 18. Models probabilities for the second measurement.
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Figure 19. Models probabilities for the third measurement.

7. Conclusion

The multiple targets tracking problem is still an open problem to which we try to pro-
vide a contribution. In this paper we presented a nonlinear algorithm (NMMPF) in the
framework of multiple model approach and particle filtering methods, which attempts
to track efficiently a multiple targets under the assumptions of nonlinear state and/or
measurement models and non Gaussian noises. Target state vectors are estimated with
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Figure 20. RMS positions errors (X and Y coordinates).
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Figure 21. RMS velocities errors (X and Y coordinates).

particle filtering and the measurements affectation is done by the multiple model ap-
proach.

Among the multiple targets tracking algorithms, the joint probabilistic data associa-
tion filter JPDAF) and the probabilistic multiple hypotheses tracker (PMHT) intend to
be the leaders, when the process and measurement models are linear, due to its optimal-
ity. Kalman filter is usually used in these cases. However, if the process and/or measure-
ment models are nonlinear, the extended Kalman filter (nonlinear Kalman filter version)
is no longer optimal and presents several drawbacks, among them, the linearization of
the Jacobian matrix which can lead to unstable filter. To overcome these limitations we
substitute the extended Kalman filter by the particle filter and we combine it with the
multiple model approach. Monte Carlo simulations over the used scenario show that not
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Figure 22. RMS angular velocity error (rad/s).

only our algorithm converges to the rights trajectories but also affects each measurement
to the right target.
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