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Optimal control problem for infinite variables
hyperbolic systems with time lags

GABER MOHAMED BAHAA and MOHAMED MAHMOUD THARWAT

In this paper, by using the theorems of [Lions (1971) and Lions & Magenes (1972) ], the op-
timal control problem for distributed hyperbolic systems, involving second order operator with
an infinite number of variables, in which constant lags appear both in the state equations and in
the boundary conditions is considered. The optimality conditions for Neumann boundary con-
ditions are obtained and the set of inequalities that characterize these conditions is formulated.
Also, several mathematical examples for derived optimality conditions are presented. Finally,
we consider an optimal distributed control problem for (n × n)-infinite variables hyperbolic
systems.

Key words: optimal control, hyperbolic system, time delays, distributed control problems,
Neumann conditions, existence and uniqueness of solutions, second order operator with an
infinite number of variables.

1. Introduction

Various optimization problems associated with the optimal control of distributed pa-
rameter systems with time lags appearing in the boundary conditions have been studied
recently by Wang (1975); Knowles (1978); Wong (1987) and Kowalewski (1993a,b,
1995, 1998, 1999, 2000).

Infinite dimensional systems can be used to describe many physical phenomena in
the real world. Well-known examples are heat conduction, vibration of elastic material,
diffusion-reaction processes, population systems, and many others. Thus, the optimal
control theory for infinite dimensional systems has a wide range of applications in engi-
neering, economics, and some other fields.

We refer, for instance, to Imanuvilov (1998), and Lions & Enrique (1955) for the ap-
plication of similar results in quantum field and as an physical examples. In Imanuvilov
(1998) the local controllability problem for the Navier-Stokes equations that described
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by an n×n systems were established. In Lions & Enrique (1955), the controllability of
the motion of a fluid by means of the action of a vibrating shell coupled at the boundary
of the fluid is formulated.

The necessary and sufficient conditions of optimality for systems governed by dif-
ferent types of partial differential operators defined on spaces with finite number of vari-
ables are discussed for example in [Lions (1971), Lions & Magenes (1972) and Petukhov
(1995)].

The optimal control problem of systems governed by different types of operators
defined on spaces with an infinite number of variables are initiated and proved in [Gali
& El-Saify (1982,1989) and Kotarski (1997)].

In [Bahaa (2008a), El-Saify & Bahaa (2001), and El-Saify, Serag & Bahaa (2000)],
we have obtained the set of inequalities that characterize the optimal control for n× n
system governed by elliptic, parabolic and hyperbolic equation of infinite number of
variables with different conditions.

In this paper, we consider the optimal control problem for linear hyperbolic systems
in which constant time lags appear both in the state equations and in the Neumann bound-
ary conditions involving second order operator with an infinite number of variables. The
optimal control is characterized by the adjoint equation. Using this characterization par-
ticular properties of the optimal control are proved.

This paper is organized as follows. In section 2, we introduce spaces of functions of
infinitely many variables. In section 3 we formulate some facts and new results which
enable us to statement the Neumann problem for hyperbolic operator with an infinite
number of variables. In section 4, the distributed optimal control problem for this case
is formulated, then we give the necessary and sufficient conditions for the control to
be an optimal. In the end of this section we present some special cases for derived the
optimality conditions. In section 5, we generalized the discussion to two cases, the first
case: The optimal control for (2×2) coupled hyperbolic systems with infinite number of
variables is studied. The second case: The optimal control for (n×n) coupled hyperbolic
systems with infinite number of variables was be formulated. In section 6, we concluded
our results.

2. Sobolev spaces with infinite number of variables

This section covers the basic notations, definitions and properties, which are neces-
sary to present this work (Berezanskii, 1975), ( Gali & El-Saify 1982; 1983), (El-Saify
& Serag & Bahaa, 2000) and (El-Saify & Bahaa, 2001).

Let (pk(t))∞
k=1 be a sequence of weights, fixed in all that follows, such that;

0 < pk(t) ∈C∞(R1),

∫
R1

pk(t)dt = 1,
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with respect to it we introduce on the region R∞ = R1 ×R1 × . . . , the measure dρ(x) by
setting,

dρ(x) = p1(x1)dx1 ⊗ p2(x2)dx2 ⊗ . . . ,(R∞ ∋ x = (xk)
∞
k=1,xk ∈ R1).

On R∞ we construct the space L2(R∞,dρ(x)) with respect to this measure i.e.,
L2(R∞,dρ(x)) is the space of quadratic integrable functions on R∞. We shall often set
L2(R∞,dρ(x)) = L2(R∞).

It is classical result that L2(R∞) is a Hilbert space for the scalar product

(ϕ,ψ)L2(R∞) =
∫
R∞

ϕ(x)ψ(x)dρ(x).

We next consider a Sobolev space in the case of an unbounded region. For functions
which are ℓ= 1,2, . . . times continuously differentiable up to the boundary Γ of R∞ ( Γ
is meant to be the boundary of the support of the measure dρ(x)) and which vanish in a
neighborhood of ∞, we introduce the scalar product

(ϕ,ψ)W ℓ(R∞) = ∑
|α|¬ℓ

(Dαϕ,Dαψ)L2(R∞),

where Dα is defined by

Dα =
∂|α|

(∂x1)α1(∂x2)α2 · · ·
, |α|=

∞

∑
i=1

αi,

and the differentiation is taken in the sense of generalized functions on R∞, and after the
completion, we obtain the Sobolev space W ℓ(R∞). So in short, Sobolev space W 1(R∞)
is defined by :

W 1(R∞) = {ϕ|ϕ,Dϕ ∈ L2(R∞)}.
As in the case of a bounded region, the space W 1(R∞) form the space with positive

norm ||.||W 1(R∞). We can construct the space W−1(R∞) = (W 1(R∞))∗ with negative norm
||.||W−1(R∞) with respect to the space W 0(R∞) = L2(R∞) with zero norm ||.||L2(R∞), then
we have the following equipped,

W 1(R∞)⊆ L2(R∞)⊆W−1(R∞),

||ϕ||W 1(R∞) ­ ||ϕ||L2(R∞) ­ ||ϕ||W -1(R∞).

Let L2(0,T ;W 1(R∞)) be the space of square integrable measurable functions t →
ϕ(t)of ]0,T [→W 1(R∞), where the variable t denotes the “ time ”; t ∈]0,T [, T < ∞. This
space is a Hilbert space with respect to the scalar product

(ϕ,ψ)L2(0,T ;W 1(R∞)) =

T∫
0

(ϕ(t),ψ(t))W 1(R∞)dt,
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and its dual is the space L2(0,T ;W−1(R∞)), analogously, we can define the spaces
L2(0,T ;L2(R∞)) which we shall denote by L2(Q).

Let Ω ⊂ R∞ is a bounded, open set with boundary Γ, which is a C∞ manifold of
dimension (n−1). Locally, Ω is totally on one side of Γ and denote by W 1(Ω,R∞,dρ(x))
(briefly W 1(Ω,R∞)) the Sobolev space of vector function y(x) defined on Ω.

The construction of the Cartesian product of n-times to the above Hilbert spaces can
be construct, for example

(W 1(Ω,R∞))n =W 1(Ω,R∞)×W 1(Ω,R∞)×·· ·×W 1(Ω,R∞)︸ ︷︷ ︸
n−times

=
n

∏
i=1

(W 1(Ω,R∞))i,

with norm defined by:

||ϕϕϕ||(W 1(Ω,R∞))n =
n

∑
i=1

||ϕi||W 1(Ω,R∞),

where ϕϕϕ = (ϕ1,ϕ2, ...,ϕn) = (ϕi)
n
i=1 is a vector function and ϕi ∈W 1(Ω,R∞).

Finally, we have the following chain:

(L2(0,T ;W 1(Ω,R∞)))n ⊆ (L2(Q))n ⊆ (L2(0,T ;W−1(Ω,R∞)))n,

where (L2(0,T ;W−1(Ω,R∞)))n are the dual spaces of (L2(0,T ;W 1(Ω,R∞)))n. The
spaces considered in this paper are assumed to be real.

3. Mixed Neumann problem for infinite variables hyperbolic system with time
lags

The object of this section is to formulate the following mixed initial boundary value
problem for the hyperbolic system with time lag which defines the state of the system
model (El-Saify & Bahaa, 2001).

∂2y(u)
∂t2 +A(t)y(u)+b(x, t)y(x, t −h;u) = u, x ∈ Ω, t ∈ (0,T ), (1)

y(x, t ′) = Φ0(x, t ′), x ∈ Ω, t ′ ∈ [−h,0), (2)

y(x,0) = y0(x), x ∈ Ω, (3)

∂y(x,0)
∂t

= yl(x), x ∈ Ω, (4)

∂y
∂νA

= c(x, t)y(x, t −h)+ v, x ∈ Γ, t ∈ (0,T ), (5)

y(x, t ′) = Ψ0(x, t ′), x ∈ Γ, t ′ ∈ [−h,0), (6)
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where Ω ⊂ R∞ has the same properties as in the above section. Also, we have

y ≡ y(x, t;u), u ≡ u(x, t), v ≡ v(x, t),

Q = Ω× (0,T ), Q = Ω× [0,T ], Q0 = Ω× [−h,0), Σ = Γ× (0,T ), Σ0 = Γ× [−h,0),

h is a time lag, b and c are given real C∞ functions defined on Q (Q closure of Q) and on
Σ, respectively, and Φ0, Ψ0 are initial functions defined on Q0 and Σ0 respectively.

The hyperbolic operator
∂2

∂t2 +A(t) in the state equation (1) is a second order hyper-

bolic operator with infinite number of variables and A(t) (Berezanskii, 1975), (Gali &
El-Saify, 1982; 1983) and (Kotarski & El-Saify & Bahaa, 2002b ) is given by:

A(t)y(x) =

(
−

∞

∑
k=1

1√
pk(xk, t)

∂2

∂x2
k

√
pk(xk, t)+q(x, t)

)
y(x)

=−
∞

∑
k=1

D2
ky(x)+q(x, t)y(x),

(7)

where

Dky(x) =
1√

pk(xk, t)

∂
∂xk

√
pk(xk, t)y(x), (8)

and q(x, t) is a real-valued function in x which is a bounded and measurable on Ω ⊂R∞,
such that q(x, t)­ c0 > 1, c0 is a constant. The operator A(t) is a bounded second order
self-adjoint elliptic partial differential operator with an infinite number of variables maps
W 1(Ω,R∞) onto W−1(Ω,R∞).

For this operator we define the bilinear form as follows:

Definition 3.1 For each t ∈ (0,T ), we define a family of bilinear forms on W 1(Ω,R∞)
by:

π(t;y,ϕ) = (A(t)y,ϕ)L2(Ω,R∞), y, ϕ ∈W 1(Ω,R∞), (9)

where A(t) maps W 1(Ω,R∞) onto W−1(Ω,R∞) and takes the above form. Then

π(t;y,ϕ) =
(

A(t)y,ϕ
)

L2(Ω,R∞)

=

(
−

∞

∑
k=1

D2
ky(x)+q(x, t)y(x),ϕ(x)

)
L2(Ω,R∞)

=
∫
Ω

∞

∑
k=1

Dky(x)Dkϕ(x)dρ(x)+
∫
Ω

q(x, t)y(x)ϕ(x)dρ(x).
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Lemma 3.1 The bilinear form π(t;y,ϕ) is coercive on W 1(Ω,R∞), that is

π(t;y,y)­ λ ||y||2W 1(Ω,R∞), λ > 0. (10)

Proof It is well known that the ellipticity of A(t) is sufficient for the coerciveness of
π(t;y,ϕ) on W 1(Ω,R∞).

π(t;ϕ,ψ) =
∫
Ω

∞

∑
k=1

Dkϕ(x)Dkψ(x)dρ+

∫
Ω

q(x, t)ϕ(x)ψ(x)dρ.

Then

π(t;y,y) =
∫
Ω

∞

∑
k=1

|Dky(x)|2 dρ(x)+
∫
Ω

q(x, t)|y(x)|2 dρ(x)

­
∞

∑
k=1

||Dky(x)||2L2(Ω,R∞)+ c0||y(x)||2L2(Ω,R∞)

= ||y(x)||2W 1(Ω,R∞)+ c0||y(x)||2L2(Ω,R∞)

­ ||y(x)||2W 1(Ω,R∞)

= λ||y||2W 1(Ω,R∞), λ > 0.

Also we have:

∀y,ϕ ∈W 1(Ω,R∞) the functiont → π(t;y,ϕ)
is continuously differentiable in (0,T ) and

π(t;y,ϕ) = π(t;ϕ,y)

 (11)

Then the left-hand side of the boundary condition (5) may be written in the following
form:

∂y(u)
∂νA

=
∞

∑
k=1

(Dky(u))cos(n,xk) = d(x, t), (12)

where
∂

∂νA
is a normal derivative at Γ, directed towards the exterior of Ω, cos(n,xk) is

the k− th direction cosine of n, with n being the normal at Γ exterior to Ω, and

d(x, t) = c(x, t)y(x, t −h)+ v(x, t) ∈W
1
2 ,

1
4 (Σ). (13)

First we shall prove sufficient conditions for the existence of a unique solution of the
mixed initial boundary value problem (1)–(6) for the case where the control u belong to
L2(Q).
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To this purpose, for any pair of real numbers r,s ­ 0, we introduction the Sobolev
space W r,s(Q) (Lions and Magenes, 1972, Vol. 2, p. 6) defined by

W r,s(Q) = L2 (0,T ;W r(Ω,R∞))∩W s (0,T ;L2(Ω,R∞)
)

(14)

which is a Hilbert space normed by T∫
0

||y(t)||2W r(Ω,R∞)dt + ||y||2W s(0,T ;L2(Ω,R∞))

1/2

, (15)

where W s
(
0,T ;L2(Ω,R∞)

)
denotes the Sobolev space of order s of functions defined on

(0,T ) and taking values in L2(Ω,R∞).
For simplicity, we introduce the following notation:

E j , (( j−1)h, jh), Q j = Ω×E j, Σ j = Γ×E j, j = 1,2, . . . . (16)

The existence of a unique solution for the mixed initial-boundary value problem (1)–
(6) was verified in Kowalewski (1993a) and in Kotarski, El-Saify & Bahaa (2002a,b).

Theorem 3.2 Let y0, y1 ,Φ0,Ψ0, v and u be given with y0 ∈ W 2(Ω,R∞), y1 ∈
W 3/2(Ω,R∞),Φ0 ∈W 2,2(Q0),Ψ0 ∈W 3/2,3/2(Σ0), v ∈W 3/2,3/2(Σ), u ∈W 0,1(Q) and the
following compatibility relations:

∂y0

∂νA
(x,0) = d1(x,0), on Γ, (17)

∂y1

∂νA
(x,0)+

(
∂
∂t

(
∂

∂νA

))
y0(x,0) =

∂
∂t

d1(x,0), on Γ. (18)

Then, there exists a unique solution y ∈ W 2,2(Q) for the mixed initial-boundary value
problem (1)–(6) with y(·,h) ∈W 2(Ω,R∞) and y′(·,h) ∈W 3/2(Ω,R∞) for j = 1,2, . . .

4. Problem formulation. Optimization theorems

Now, we formulate the optimal control problem for (1)–(6) in the context of the
Theorem 3.2, that is u ∈ L2(Q).

Let us denote by U = L2(Q) the space of controls. The time horizon T is fixed in our
problem.

The performance functional is given by

I(v) = λ1

∫
Q

[y(x, t;v)− zd ]
2 dρdt +λ2

∫
Q

(Nv)vdρdt, (19)
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where λi ­ 0, λ1 + λ2 > 0, zd is a given element in L2(Q) and N is a positive linear
operator on L2(Q) into L2(Q).

Control constraints: We define the set of admissible controls Uad such that

Uad is closed, convex subset of U = L2(Q). (20)

Let y(x, t;u) denote the solution of the mixed initial-boundary value problem (1)–(6)
at (x, t) corresponding to a given control u ∈Uad . We note from Theorem 3.2 that for any
u ∈Uad the performance functional (19) is well-defined since y(u) ∈W 2,2(Q)⊂ L2(Q).

Making use of the Loins’s scheme we shall derive the necessary and sufficient con-
ditions of optimality for the optimization problem (1)–(6), (19) and (20). The solving of
the formulated optimal control problem is equivalent to seeking a u∗ ∈Uad such that

I(u∗)¬ I(u), ∀u ∈Uad .

From the Lion’s scheme (Theorem 1.3 of Lions, 1971, p.10), it follows that for λ2 >
0 a unique optimal control u∗ exists. Moreover, u∗ is characterized by the following
condition:

I′(u∗)(u−u∗)¬ 0, ∀u ∈Uad . (21)

For the performance functional of form (19) the relation (21) can be expressed as

−λ1

∫
Q

(zd −y(u∗))[y(u)−y(u∗)]dρdt +λ2

∫
Q

Nu∗(u−u∗)dρdt ¬ 0, ∀u ∈Uad . (22)

We shall apply Theorem 3.2 to the control problem of (1)–(6). To simplify (21), we
introduce the adjoint equation and for every u ∈ Uad , we define the adjoint variable
p = p(u) = p(x, t;u) as the solution of the system

∂2 p(u)
∂t2 +A∗(t)p(u)+b(x, t +h)p(x, t +h;u)

(23)
= λ1(y(u)− zd), x ∈ Ω, t ∈ (0,T −h),

∂2 p(u)
∂t2 +A∗(t)p(u) = λ1(y(u)− zd), x ∈ Ω, t ∈ (T −h,T ), (24)

p(x,T,u) = 0, x ∈ Ω, (25)

∂p(x,T ;u)
∂t

= 0, x ∈ Ω, (26)

∂p
∂νA∗

(x, t) = c(x, t +h)p(x, t +h;u), x ∈ Γ, t ∈ (0,T −h), (27)

∂p(u)
∂νA∗

(x, t) = 0, x ∈ Γ, t ∈ (T −h,T ). (28)
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The existence of a unique solution for the problem (23)–(28) on the cylinder Ω×
(0,T ) can be proved using a constructive method. It is easy to notice that for given zd
and u, problem (23)–(28) can be solved backwards in time starting from t = T , i.e., first
solving (23)–(28) on the sub-cylinder Qk and in turn on Qk−1, etc. until the procedure
covers the whole cylinder Ω×(0,T ). For this purpose, we may apply Theorem 3.2 (with
an obvious change of variables).

Hence, using Theorem 3.2, the following result can be proved.

Lemma 4.1 Let the hypothesis of Theorem 3.2 be satisfied. Then for given zd ∈ L2(Ω)
and any u ∈ W 0,1(Q), there exists a unique solution p(u) ∈ W 2,2(Q)) for the adjoint
problem (23)–(28).

Now, we have the main result.

Theorem 4.2 If the assumptions concerning system (1)–(6) and controllability condi-
tion (20) are satisfied, then optimal control u∗ exists and is characterized by the follow-
ing condition

T∫
0

∫
Ω

(p(u∗)+λ2Nu∗)(u−u∗)dρdt ¬ 0, ∀u ∈Uad , (29)

where p(u∗) is the solution of the adjoint system (23)–(28).

Proof We simplify (22) using the adjoint equation (23)–(28). For this purpose setting
u = u∗ in (23)–(28), multiplying both sides of (23) and (24) by y(u)− y(u∗), then inte-
grating over Ω× (0,T −h) and Ω× (T −h,T ) respectively, and then adding both sides
of (23) and (24) we get

−λ1

∫
Q

(zd − y(x, t;u∗))(y(x, t;u)− y(x, t;u∗))dρdt

=

T∫
0

∫
Ω

(
∂2 p(u∗)

∂t2 +A∗(t)p(u∗)
)
(y(u)− y(u∗))dρdt

+

T−h∫
0

∫
Ω

b(x, t +h)p(x, t +h;u∗)[y(x, t;u)− y(x, t;u∗)]dρdt

(30)
=

∫
Ω

p′(x, t.;u∗)(y(x, t;u)− y(x, t;u∗))dρ

+

T∫
0

∫
Ω

p(u∗)
∂2

∂t2 (y(u)− y(u∗))dρdt +
T∫

0

∫
Ω

A∗(t)p(u∗)(y(u)− y(u∗))dρdt



382 G.M. BAHAA, M.M. THARWAT

+

T−h∫
0

∫
Ω

b(x, t +h)p(x, t +h;u∗)(y(x, t;u)− y(x, t;u∗))dρdt.

Then, applying (26), formula (30) can be expressed as

−λ1

T∫
0

∫
Ω

(zd − y(x, t;u∗))(y(x, t;u)− y(x, t;u∗))dρdt = (31)

T∫
0

∫
Ω

p(u∗)
∂2

∂t2 (y(u)− y(u∗))dρdt +
T∫

0

∫
Ω

A∗(t)p(u∗)(y(u)− y(u∗))dρdt

+

T−h∫
0

∫
Ω

b(x, t +h)p(x, t +h;u∗)(y(x, t;u)− y(x, t;u∗))dρdt.

Using (1), the first integral on the right-hand side of (31) can be rewritten as

T∫
0

∫
Ω

p(u∗)
∂2

∂t2 (y(u)− y(u∗))dρdt

=

T∫
0

∫
Ω

p(u∗)(u−u∗)dρdt −
T∫

0

∫
Ω

p(u∗)A(t)(y(u)− y(u∗))dρdt

−
T∫

0

∫
Ω

p(x, t;u∗)b(x, t)(y(x, t −h;u)y(x, t −h;u∗))dρdt (32)

=

T∫
0

∫
Ω

p(u∗)(u−u∗)dρdt −
T∫

0

∫
Ω

p(u∗)A(t)(y(u)− y(u∗))dρdt

−
T−h∫
h

∫
Ω

p(x, t ′+h;u∗)b(x, t ′+h)(y(x, t ′;u)− y(x, t ′;u∗))dρdt ′.

The second integral on the right-hand side of (31), in view of Green’s formula, can be
expressed as

T∫
0

∫
Ω

A∗(t)p(u∗)(y(u)− y(u∗))dρdt =
T∫

0

∫
Ω

p(u∗)A(t)(y(u)− y(u∗))dρdt

(33)

+

T∫
0

∫
Γ

p(u∗)
(

∂y(u)
∂νA

− ∂y(u∗)
∂νA

)
dΓdt −

T∫
0

∫
Γ

∂p(u∗)
∂νA∗

(y(u)− y(u∗))dΓdt.
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Using the boundary condition (5), the second component on the right-hand side of (33)
can be written as

T∫
0

∫
Γ

p(u∗)
(

∂y(u)
∂νA

− ∂y(u∗)
∂νA

)
dΓdt

=

T∫
0

∫
Γ

p(x, t;u∗)c(x, t)(y(x, t −h;u)− y(x, t −h;u∗))dΓdt (34)

=

T−h∫
−h

∫
Γ

p(x, t ′+h;u∗)c(x, t ′+h)(y(x, t ′;u)− y(x, t ′;u∗))dΓdt ′.

The last component in (33) can be rewritten as

T∫
0

∫
Γ

∂p(u∗)
∂νA∗

(y(u)− y(u∗))dΓdt =
T−h∫
0

∫
Γ

∂p(u∗)
∂νA∗

(y(u)− y(u∗))dΓdt

(35)

+

T∫
T−h

∫
Γ

∂p(u∗)
∂νA∗

(y(u)− y(u∗))dΓdt.

Substituting (35), (34) into (33) and then (33), (32) into (31) we obtain

−λ1

T∫
0

∫
Q

(zd − y(t∗;u∗))(y(t∗;u)− y(t∗;u∗))dρdt =

T∫
0

∫
Ω

p(u∗)(u−u∗)dρdt −
T∫

0

∫
Ω

p(u∗)A(t)(y(u)− y(u∗))dρdt

−
0∫

−h

∫
Ω

b(x, t +h)p(x, t +h;u∗)(y(x, t;u)− y(x, t;u∗))dρdt

−
T−h∫
0

∫
Ω

b(x, t +h)p(x, t +h;u∗)(y(x, t;u)− y(x, t;u∗))dρdt

+

T∫
0

∫
Ω

p(u∗)A(t)(y(u)− y(u∗))dρdt (36)

+

0∫
−h

∫
Γ

c(x, t +h)p(x, t +h;u∗)(y(x, t;u)− y(x, t;u∗))dΓdt
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+

T−h∫
0

∫
Γ

c(x, t +h)p(x, t +h;u∗)(y(x, t;u)− y(x, t;u∗))dΓdt

−
T−h∫
0

∫
Γ

∂p(u∗)
∂νA∗

(y(x, t;u)− y(x, t;u∗))dΓdt

−
t∗∫

T−h

∫
Γ

∂p(u∗)
∂νA∗

(y(x, t;u)− y(x, t;u∗))dΓdt

+

T−h∫
0

∫
Ω

b(x, t +h)p(x, t +h;u∗)(y(x, t;u)− y(x, t;u∗))dρdt.

Afterwards using the fact that y(x, t;u) = y(x, t;u∗) = Φ0(x, t) for x ∈ Ω and t ∈ [−h,0)
and y(x, t;u) = y(x, t;u∗) = Φ0(x, t) for x ∈ Γ and t ∈ [−h,0) we obtain

−λ1

∫
Q

(zd − y(x, t;u∗))(y(x, t;u)− y(x, t;u∗))dρdt =
T∫

0

∫
Ω

p(u∗)(u−u∗)dρdt. (37)

Substituting (37) into (22) gives (29).

Mathematical Examples

Example 4.1 Consider now the particular case where Uad =U = L2(Q) (no constraints
case). Thus the minimum condition (29) is satisfied when

u∗ =−λ2N−1 p(u∗).

If N is the identity operator on L2(Q), then from the Lemma 4.1 follows that u∗ ∈
W 2,2(Q).

Example 4.2 We can also consider an analogous optimal control problem where the
performance functional is given by:

I(u) = λ1

∫
Σ

[y|Σ(x, t;u)− zΣd ]
2dΓdt +λ2

∫
Q

(Nu)udρdt, (38)

where zΣd ∈ L2(Σ).
From Theorem 3.2 and the Trace Theorem (Lions & Magenes, 1972, Vol 2, p.9), for

each u ∈ L2(Q), there exists a unique solution y(u) ∈W 2,2(Q) with y|Σ ∈ L2(Σ). Thus, I
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is well defined. Then, the optimal control u∗ is characterized by:

λ1

∫
Σ

(y(u∗)− zΣd)[y(u)− y(u∗)]dΓdt +λ2

∫
Q

Nu∗(u−u∗)dρdt ¬ 0, ∀u ∈Uad . (39)

The above inequality can be simplified by introducing an adjoint equation, we define
the adjoint variable p = p(u) = p(x, t;u) as the solution of the equation

∂2 p(u)
∂t2 +A∗(t)p(u)+b(x, t +h)p(x, t +h;u) = 0, x ∈ Ω, t ∈ (0,T −h), (40)

∂2 p(u)
∂t2 +A∗(t)p(u) = 0, x ∈ Ω, t ∈ (T −h,T ), (41)

p(x,T,u) = 0, x ∈ Ω, (42)

∂p(x,T ;u)
∂t

= 0, x ∈ Ω, (43)

∂p
∂νA∗

(x, t) = c(x, t +h)p(x, t +h;u)+λ1(y(u)− zΣd), x ∈ Γ, t ∈ (0,T −h), (44)

∂p(u)
∂νA∗

(x, t) = λ1(y(u)− zΣd), x ∈ Γ, t ∈ (T −h,T ). (45)

Then using Theorem 3.2 we can establish the existence of a unique solution p = p(u∗) =
p(x, t;u∗) ∈W 2,2(Q) for (40)–(45).

As in the above section, we have the following result.

Lemma 4.3 Let the hypothesis of Theorem 3.2 be satisfied. Then, for given zΣd ∈ L2(Σ)
and any u∈ L2(Q), there exists a unique solution p(u∗)∈W 2,2(Q) to the adjoint problem
(40)–(45).

Using the adjoint equations (40)–(45) in this case, the condition (39) can also be written
in the following form∫

Q

(p(u∗)+λ2Nu∗)(u−u∗)dρdt ¬ 0, ∀u ∈Uad . (46)

The following result is now summarized.

Theorem 4.4 For the problem (1)–(6) with the performance function (38) with zΣd ∈
L2(Σ) and λ2 > 0, and with constraint (20), and with adjoint equations (40)–(45), there
exists a unique optimal control u∗ which satisfies the minimum condition (46).
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5. Generalization

Optimal control problem presented her can be extended to certain different two
cases. Case 1: Optimal control problem for (2× 2) coupled hyperbolic systems with
infinite number of variables and with time lags. Case 2: Optimal control problem for
(n×n) coupled hyperbolic systems with infinite number of variables and with time lags.

5.1. Optimal control for (((222×××222))) coupled hyperbolic systems with infinite number of
variables and with time lags

We can extend the discussions to study the optimal control for (2× 2) coupled hy-
perbolic systems with infinite number of variables and with time lags. We consider the
case where u = (u1,u2) ∈ L2(Q)×L2(Q), the performance functional is given by:

I(u) = I1(u)+ I2(u) =
2

∑
i=1

(
λ1

∫
Q

[yi(x, t;u)− zid ]
2 dρdt +λ2

∫
Q

(Niui)ui dρdt
)
, (47)

where zd = (z1d ,z2d)∈ (L2(Q))2 and Ni is a positive linear operator on L2(Q) into L2(Q),
i = 1,2.

Then the optimality conditions are given by:

State equations:

∂2y1(u)
∂t2 +

(
−

∞

∑
k=1

D2
k +q(x, t)

)
y1(u)+b1(x, t)y1(x, t −h;u)+ y1(u)− y2(u) = u1,

(48)
inQ,

∂2y2(u)
∂t2 +

(
−

∞

∑
k=1

D2
k +q(x, t)

)
y2(u)+b2(x, t)y2(x, t −h;u)+ y1(u)+ y2(u) = u2,

(49)
inQ,

y1(x, t ′,u) = Φ0,1(x, t ′), y2(x, t ′;u) = Φ0,2(x, t ′), x ∈ Ω, t ′ ∈ [−h,0), (50)

y1(x,0;u) = y0,1(x), y2(x,0;u) = y0,2(x), x ∈ Ω, (51)

∂y1(x,0;u)
∂t

= y1,1(x),
∂y2(x,0;u)

∂t
= y1,2(x), x ∈ Ω, (52)

∂y1(u)
∂νA

= c1(x, t)y1(x, t −h)+ v1,
∂y2(u)
∂νA

= c2(x, t)y2(x, t −h)+ v2,

(53)
x ∈ Γ, t ∈ (0,T ),
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y1(x, t ′,u) = Ψ0,1(x), y2(x, t ′;u) = Ψ0,2(x), x ∈ Γ, t ′ ∈ [−h,0), (54)

where ∀i, i = 1,2:
yi ≡ yi(x, t;u),ui ≡ ui(x, t),vi ≡ vi(x, t),

bi is a given real C∞ function defined on Q(Q closure of Q), ci is a given real C∞ function
defined on Σ, Φ0,i, Ψ0,i are initial functions defined on Q0 and Σ0 respectively.

Adjoint equations:

∂2 p1(u)
∂t2 +

(
−

∞

∑
k=1

D2
k +q(x, t)

)
p1(u)+b1(x, t +h)p1(x, t +h : u)

(55)
+p1(u)+ p2(u) = λ1(y1(u)− z1d), x ∈ Ω, t ∈ (0,T −h),

∂2 p2(u)
∂t2 +

(
−

∞

∑
k=1

D2
k +q(x, t)

)
p2(u)+b2(x, t +h)p2(x, t +h : u)

(56)
−p1(u)+ p2(u) = λ1(y2(u)− z2d), x ∈ Ω, t ∈ (0,T −h),

∂2 p1(u)
∂t2 +

(
−

∞

∑
k=1

D2
k +q(x, t)

)
p1(u)+ p1(u)+ p2(u) = λ1(y1(u)− z1d),

(57)
x ∈ Ω, t ∈ (T −h,T ),

∂2 p2(u)
∂t2 +

(
−

∞

∑
k=1

D2
k +q(x, t)

)
p2(u)− p1(u)+ p2(u) = λ1(y2(u)− z2d),

(58)
x ∈ Ω, t ∈ (T −h,T ),

p1(x,T ;u) = 0, p2(x,T ;u) = 0, x ∈ Ω, (59)

∂p1(x, t;u)
∂t

= 0,
∂p2(x, t;u)

∂t
= 0, x ∈ Ω, (60)

∂p1(x, t)
∂νA∗

= c1(x, t +h)p1(x, t +h;u),
∂p2(x, t)

∂νA∗
= c2(x, t +h)p2(x, t +h;u),

(61)
x ∈ Γ, t ∈ (0,T −h),

∂p1(x, t)
∂νA∗

= 0,
∂p2(x, t)

∂νA∗
= 0, x ∈ Γ, t ∈ (T −h,T ). (62)
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Minimum conditions

T∫
0

∫
Ω

(
[p1(u∗)+λ2N1u∗1](u1 −u∗1)+ [p2(u∗)+λ2N2u∗2](u2 −u∗2)

)
dρdt ¬ 0,

(63)
∀u = (u1,u2) ∈ (Uad)

2,

where u∗ = (u∗1,u
∗
2) ∈ (Uad)

2 is the optimal control and p(u) = (p1(u), p2(u)) is the
adjoint state.

The following result is now summarized.

Theorem 5.1 For the problem (48)–(54) with the performance function (47), zd =
(z1d ,z2d) ∈ (L2(Q))2, λ2 > 0, (20), and with adjoint equations (55)–(62), there exists
a unique optimal control u∗ which satisfies the minimum condition (63).

5.2. Optimal control for (((nnn×××nnn))) coupled hyperbolic systems with infinite number of
variables and with time lags

We can extend the discussion to (n× n) coupled hyperbolic systems. We consider
the case where u = (u1,u2, . . . ,un) ∈ (L2(Q))n, the performance functional is given by:

I(u) =
n

∑
i=1

(
λ1

∫
Q

[yi(x, t;u)− zid ]
2 dρdt +λ2

∫
Q

(Niui)ui dρdt
)
, (64)

where zd = (z1d ,z2d , . . . ,znd) ∈ (L2(Q))n and Ni is a positive linear operator on L2(Q)
into L2(Q), i = 1,2, . . . ,n.

Then the optimality conditions are given by:

The state equations:

∂2yi(u)
∂t2 +S(t)yi(u)+bi(x, t)yi(x, t −h;u) = ui, x ∈ Ω, t ∈ (0,T ),

yi(x, t ′) = Φi,0(x, t ′) x ∈ Ω, t ′ ∈ [−h,0),
yi(x,0) = yi,0(x), x ∈ Ω,

∂yi(x,0)
∂t

= y1,i(x), x ∈ Ω,

∂yi

∂νS
= ci(x, t)yi(x, t −h)+ vi, x ∈ Γ, t ∈ (0,T )

yi(x, t ′) = Ψ0,i(x, t ′), x ∈ Γ, t ′ ∈ [−h,0),

(65)

where ∀i, i = 1,2, . . . ,n:

yi ≡ yi(x, t;u),ui ≡ ui(x, t),vi ≡ vi(x, t),
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bi is a given real C∞ function defined on Q(Q closure of Q), ci is a given real C∞ function
defined on Σ, Φ0,i, Ψ0,i are initial functions defined on Q0 and Σ0 respectively, and the
operator S(t) is given by

S(t)yi(x) =

(
−

∞

∑
k=1

D2
k +q(x, t)

)
yi(x)+

n

∑
j=1

ai jy j(x) ∀ i = 1,2, . . . ,n, (66)

ai j =

{
1, i­ j;
−1, i < j.

(67)

The operator S(t) is (n× n) matrix takes the form [El-Saify & Bahaa (2000), (2001),
(2002), (2003)]

S(t) =



−
∞

∑
k=1

D2
k +q+1 −1 · · · −1

1 −
∞

∑
k=1

D2
k +q+1 · · · −1

...
...

...
...

1 1 · · · −
∞

∑
k=1

D2
k +q+1


n×n

. (68)

The adjoint equations:

∂2 pi(u)
∂t2 +S∗(t)pi(u)+bi(x, t +h)pi(x, t +h;u) = λ1(yi(u)− zid),

x ∈ Ω, t ∈ (0,T −h),

∂2 pi(u)
∂t2 +S∗(t)pi(u) = λ1(yi(u)− zid), x ∈ Ω, t ∈ (T −h,T ),

pi(x,T,u) = 0, x ∈ Ω,

∂pi(x,T ;u)
∂t

= 0, x ∈ Ω,

∂pi

∂νS∗
(x, t) = ci(x, t +h)pi(x, t +h;u), x ∈ Γ, t ∈ (0,T −h),

∂pi(u)
∂νS∗

(x, t) = 0, x ∈ Γ, t ∈ (T −h,T ).

(69)

The following result is now summarized.

Theorem 5.2 For the problem (65) with the performance function (64), zid ∈ L2(Q),
i= 1,2, . . . ,n, λ2 > 0, (20) and with adjoint equations (69)), there exists a unique optimal
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control u∗ which satisfies the minimum condition

n

∑
i=1

T∫
0

∫
Ω

(
[pi(u∗)+λ2Niu∗i ](ui −u∗i )

)
dρ(x)dt ¬ 0

(70)
∀u = (u1,u2, ....,un) ∈ (Uad)

n,

where u∗ =(u∗1,u
∗
2, .....,u

∗
n)∈ (Uad)

n is the optimal control and p(u)= (p1(u), . . . , pn(u))
is the adjoint state.

6. Conclusions

The optimization problem presented in the paper constitutes a generalization of
the optimal control problem for second order hyperbolic systems, which consists of
one equation, involving second order operator with finite number of variables and
with Neumann boundary condition involving constant time lag appearing both in the
state equation and in the Neumann boundary conditions considered in Knowles (1978),
(Kowalewski 1993a,b; 1995; 1998; 1999; 2000), (El-Saify, 2005; 2006), (El-Saify & Ba-
haa, 2002), (Kotarski & Bahaa, 2005; 2007) and (Kotarski & El-Saify & Bahaa, 2002a)
onto the case of hyperbolic systems involving second order operator with infinite num-
ber of variables with constant retarded arguments appearing in the state equations and in
the Neumann boundary condition.

The main result of the paper contains necessary and sufficient conditions of opti-
mality for hyperbolic systems involving second order operator with infinite number of
variables that give characterization of optimal control.

Also, in this paper, we considered the distributed optimal control problem for (n×n)
hyperbolic systems involving second order operator with infinite number of variables
with constant time delays appearing in both in the state equations and in the Neumann
boundary condition.
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