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On simplified forms of the fractional-order backward difference

and related fractional-order linear discrete-time system description
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Abstract. In this paper three simplified forms of the fractional-order (FO) backward difference (BD) are proposed and analysed. Due to

time and frequency characteristics criteria parameters of simplified forms of the FOBDs are chosen. Applications of the simplified forms

of the FOBDs diminish a number of multiplications and additions needed to evaluate the FOBD. This is very important in real-time

microprocessor calculations. It is proved that in a discrete state-space description of a fractional-order system one should correct the input

matrix with simplified forms of the FOBD. Investigations are supported by two numerical examples.
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1. Introduction

The fractional calculus and fractional differential equations

[1–5] as a very potential mathematical tool in different areas

of engineering and science is applied to create more adequate

models of real dynamical systems. In automatics it may be

used to create more sophisticated control strategies. The dis-

cretised FO left derivative – the FOBD is a generalisation of

commonly known difference or sum. Adequate mathematical

models and sophisticated control strategies causes yet simu-

lation problems due to so called “growing calculation tail”

threatening to overrun the processor memory. As a remedy

for the mentioned disadvantage one can apply a simplified

form of the FOBD. This leads to a non-free of calculation

errors FOBD approximation. A commonly used approxima-

tion consists of a simple cut of an infinite series representing

the FOBD. However, this can cause large errors, especially

in the case of dynamic systems which are on a stability mar-

gin. A paper is organised as follows. In Sec. 2 a definition of

the FOBD in Grünwald-Letnikov and Horner forms is given

[6]. Some properties of coefficients defining the mentioned

forms are given. In Sec. 3 the simplified forms of the FOBD

are proposed and discussed its frequency characteristics. Next

the simplified forms are used in the FO linear time-invariant

systems. An input matrix correction formula is derived. In-

vestigations are supported by numerical examples.

2. Mathematical preliminaries

In this Section, two equivalent forms of the FOBD are in-

troduced. First form is commonly known as the Grünwald-

Letniov FOBD [7], the second one as the Horner form [8].

It is worth noting that for the negative FOs, both forms of the

FOBD define the fractional-order backward sum (FOBS).

2.1. The Grünwald-Letnikov form of the FOBD. One de-

fines the FOBD of a discrete-time bounded function fk as a

discrete convolution sum

GL
0 ∆

(ν)
k fk = a

(ν)
k ∗ fk =

k∑

i=0

a
(ν)
i fk−i

=
[

a
(ν)
0 a

(ν)
1 . . . a

(ν)
k−1 a

(ν)
k

]




fk

fk−1

...

f1

f0



,

(1)

where the second function is defined below

a
(ν)
k = (−1)k

(
ν

k

)
=





1 for k = 0

(−1)k ν(ν − 1) . . . (ν − k + 1)

k!
for k = 1, 2, 3, . . .

(2)

ν ∈ R+ denotes an order and * denotes a discrete convolu-

tion.

2.2. The Horner form of the FOBD. The Horner form of

the FOBD of the discrete-time bounded function fk is ex-

pressed as

H
0 ∆

(ν)
k fk = fk + c

(ν)
1

·
(
fk−1 + c

(ν)
2

(
fk−2 + c

(ν)
3

(
fk−3 + · · · +

(
c
(ν)
k f0

))))
,

(3)

where

c
(ν)
k =

a
(ν)
k

a
(ν)
k−1

= 1 −
ν + 1

k
. (4)
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Obviously

lim
k→∞

c
(ν)
k = lim

k→∞

(
1 −

ν + 1

k

)
= 1. (5)

From formulae (2) and (4) one obtains

lim
k→∞

a
(ν)
k

a
(ν)
k−1

= lim
k→∞

c
(ν)
k = 1 (6)

and

lim
k→∞

c
(ν)
k

c
(ν)
k−1

= lim
k→∞

1 − ν+1
k

1 − ν+1
k+1

= 1. (7)

2.3. Coefficients a
(ν)
k

and c
(ν)
k

selected properties. In com-

puter evaluation of the FOBD the knowledge concerning the

convergence of the functions a
(ν)
k and c

(ν)
k is very important.

Such information provides inter alia, the first-order difference

and the ratio of coefficients a
(ν)
k and c

(ν)
k .

Theorem 1. For 0 < ν < 1

GL
0 ∆

(1)
k a

(ν)
k < GL

0 ∆
(1)
k c

(ν)
k . (8)

Proof. By definition formula (2), for k = 1, 2, · · ·

GL
0 ∆

(1)
k a

(ν)
k = a

(ν)
k − a

(ν)
k−1

= a
(ν)
k−1

(
1 −

ν + 1

k

)
− a

(ν)
k−1

= −
ν + 1

k
a
(ν)
k−1 = a

(ν+1)
k > 0.

(9)

Similarly, by (4)

GL
0 ∆

(1)
k c

(ν)
k = c

(ν)
k − c

(ν)
k−1

=

(
1 −

ν + 1

k

)
−

(
1 −

ν + 1

k − 1

)
=

ν + 1

k(k − 1)
> 0

for k = 2, 3, . . . .

(10)

Now one examines inequality (8). Substitution (2) into (9) and

comparison with (10) yields

(−1)
(ν + 1)

k
(−1)

k−1
ν(ν − 1) · · · (ν − k + 2)

(k − 1)!

= (−1)k (ν + 1)ν(ν − 1) · · · (ν − k + 2)

k!
<

ν + 1

k(k − 1)
.

(11)

The above inequality holds because it may also be expressed

in a simplified form

(−1)kν
(ν

1
− 1
)(ν

2
− 1
)
· · ·

(
ν

k − 2
− 1

)
< 1

for k = 2, 3, . . .

(12)

and further

ν
(
1 −

ν

1

)(
1 −

ν

2

)
· · ·

(
1 −

ν

k − 2

)
< 1

for k = 2, 3, . . . .

(13)

All factors on the left-hand side of inequality (13) are less

than 1 which prove the theorem.

The next theorem may be useful in an estimation of the

coefficients a
(ν)
k and c

(ν)
k convergence.

Theorem 2. For 0 < ν < 1∣∣∣∣∣
a
(ν)
k

a
(ν)
k−1

∣∣∣∣∣ <

∣∣∣∣∣
c
(ν)
k

c
(ν)
k−1

∣∣∣∣∣ for k = 3, 4, . . . . (14)

Proof. By definition formulae (2) and (4)
∣∣∣∣∣
c
(ν)
k

c
(ν)
k−1

∣∣∣∣∣ =

∣∣∣∣∣
1 − ν+1

k

1 − ν+1
k−1

∣∣∣∣∣ =

∣∣∣∣1 −
ν + 1

k

∣∣∣∣

∣∣∣∣∣
1

1 − ν+1
k−1

∣∣∣∣∣ , (15)

∣∣∣∣∣
a
(ν)
k

a
(ν)
k−1

∣∣∣∣∣ =
∣∣∣∣1 −

ν + 1

k

∣∣∣∣ . (16)

Hence,
∣∣∣∣∣
c
(ν)
k

c
(ν)
k−1

∣∣∣∣∣ =

∣∣∣∣∣
a
(ν)
k

a
(ν)
k−1

∣∣∣∣∣

∣∣∣∣∣
1

1 − ν+1
k−1

∣∣∣∣∣ for k = 3, 4, . . . . (17)

Noting that
∣∣∣∣∣

1

1 − ν+1
k−1

∣∣∣∣∣ > 1 for k = 3, 4, . . . . (18)

one obtains (14).

In view of the Theorems 1 and 2 one can conclude that

the convergence of c
(ν)
k to 1 is quicker then a

(ν)
k to 0.

3. Simplified Grünwald-Letniov

and Horner forms of the FODS

In microprocessor evaluation of the FOBD due to (1) or (3)

it is practically impossible to obtain a precise value. This is

caused by a linearly increasing number of multiplications and

additions during the FOBD calculation process. In this Section

the FODS simplified forms which partially extract mentioned

above problems are proposed and discussed. First the most

commonly used form is presented

a
(ν)
1,k =

{
a
(ν)
k for 0 ≤ k ≤ L

0 for L < k
. (19a)

In a second proposed simplified form, with two predefined

integers L, l one defines coefficients

a
(ν)
2,k =






a
(ν)
k for 0 ≤ k ≤ L

ã
(ν)
j,L for jL < k ≤ t(j + 1)L, j = 1, 2, . . . , l

0 for (l + 1)L < k
(19b)

for a
(ν)
jL+1 ≤ ã

(ν)
j,L ≤ a

(ν)
(j+1)L, j = 1, 2, . . .L − 1. The third

simplified form is a special case of (19b)

a
(ν)
3,k =





a
(ν)
k for 0 ≤ k ≤ L

ã
(ν)
l,L for L < k ≤ lL

0 for (l + 1)L < k

(19c)

for a
(ν)
L+1 ≤ ã

(ν)
l,L ≤ a

(ν)
(l+1)L.
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The idea of approximations consists on cutting a series

of coefficients a
(ν)
i,k into l parts and partial substitution by

constant values. The approximation idea is clarified in Fig. 1

where plots of exact coefficients evaluated according to (2) (in

red) and their approximations due (19b) (in blue) and (19c)

(in magenta) for ν = 0.5, L = 50, l = 5 are presented. For

a better clarity of coefficients values relations their absolute

value logarithms put together are plotted in Fig. 2 for (2) (in

red), (19b) (in blue), respectively. One can realise that the ap-

proximations becomes better for consecutive intervals tending

to l Note that in Fig. 1 zeroed coefficients in (19b) and (19c)

cannot be plotted because of a nonexistence of a logarithm of

a zero.

Fig. 1. The logarithms of coefficients (2) (in red), (19b) (in blue)

and (19c) (in magenta)

Fig. 2. Logarithms of absolute values of coefficients (2 in red) and

their approximation (19b) (in blue)

Simplified coefficients c
(ν)
i,k and c̃

(ν)
lL,k for i = 1, 2, 3 and

k = 0, 1, 2, . . . can be evaluated easily from (19a), (19b),

(19c) and (2)

Due to the FOBD approximation versions marked by coef-

ficients (19a), (19b), (19c) the simplified forms of the FOBDs

are defined:

a) The Grünwald-Letnikov form for j = 0, 1, 2, 3

GLj
0 ∆

(ν)
k fk =

k∑

i=0

a
(ν)
j,i fk−i, (20)

b) The Horner form for j = 1, 2, 3

Hj
0 ∆

(ν)
k fk = fk + c

(ν)
j,1

·
(
fk−1 + c

(ν)
j,2

(
fk−2 + c

(ν)
j,3

(
fk−3 + · · · +

(
c
(ν)
j,kf0

))))
,

(21)

where j = 0 denotes the exact FOBD evaluated accorditn

to formulae (1) and (3). In modern microprocessor systems

the times of multiplication and addition operations may be

assumed to be equal [9]. Hence, one can evaluate the total

number of operations required to perform the FOBD calcula-

tions according to its simplified forms. The maximal numbers

of multiplication and summation operations are collected in

Table 1.

Table 1

Multiplication and summation operations for different forms of the FOBD

i
FOBD
Form

+ ×

Total number
of operations

O(i, k)
for k > lL

0
GL
0 ∆

(ν)
k

fk ,

H
0 ∆

(ν)
k

fk

k k 2k

1
GL1
0 ∆

(ν)
k

fk ,

H1
0 ∆

(ν)
k

fk

L + 1 L + 1 2(L + 1)

2
GL2
0 ∆

(ν)
k

fk ,

H2
0 ∆

(ν)
k

fk

L + l + 1 Ll + L + 1 (l + 1)L + 2(L + 1)

3
GL3
0 ∆

(ν)
k

fk ,

H3
0 ∆

(ν)
k

fk

lL + 2 L + 2 (l + 1)L + 4

In Fig. 3 multiplications and additions number in the

FOBD due to exact (1), (3) (in black) and simplified forms

(19b) (red) and (19c) (blue) are plotted.

Fig. 3. Multiplications and additions number vs. k for GL
0 ∆

(ν)
k fk

(black), GL1
0 ∆

(ν)
k fk (blue) and GL2

0 ∆
(ν)
k fk (red) methods
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The simplified forms of the FOBDs (19b) and (19c) in

the discrete system description should preserve the system

stability conditions [10–13] (asymptotic, marginal stability,

instability). There should be a parity between model and their

simplified form. The most difficult task is to find a simplified

model of the marginally stable system.

4. FOBD simplified forms parameter L

and l selection

The one-sided Z-Transform of the FOBD has a form

Z
{

GL
0 ∆

(ν)
k fk

}
= ∆(z) =

(
1 − z−1

)ν
F (z), (22)

where Z{fk} = F (z) It can be represented as an infinite se-

ries of a complex variable z−1. The simplified forms (19a),

(19b), (19c) are represented by finite series

Z
{

GL,j
0 ∆

(ν)
k fk

}
= ∆j(z) =

[
lL∑

i=0

a
(ν)
j,i z−i

]
F (z) (23)

for j = 1, 2, 3. Realise that

∆4(z)=

[
k∑

i=0

a
(ν)
j,i z−i

]
F (z) = lim

k→∞

Z
{

GL,4
0 ∆

(ν)
k fk

}
, (24a)

Z
{

GL
0 ∆

(ν)
k fk

}
= lim

k→∞

Z
{

GL,4
0 ∆

(ν)
k fk

}
. (24b)

As the FOBD approximation versions (19a), (19b), (19c) cri-

teria may serve the following real functions

JIAE

(
L, l, ν, ã

(ν)
lL , i

)

= max
ω∈[ωp,ωk]

eIAE

(
L, l, ν, ã

(ν)
lL , ω, i

)

= max
ω∈[ωp,ωk]

∣∣∆(ejω) − ∆i

(
ejω , L, l

)∣∣ ,

(25a)

JIsE

(
L, l, ν, ã

(ν)
lL , i

)

= max
ω∈[ωp,ωk]

eISE

(
L, l, ν, ã

(ν)
lL , ω, i

)

= max
ω∈[ωp,ωk]

∣∣∆(ejω) − ∆i(e
jω , L, l)

∣∣2 ,

(25b)

where ωp < ωk, ωp, ωk ∈ [0 π] is a normalised frequency [14]

and i = 1, . . . , 4 The shapes of the frequency characteristics

of the FOBD (22) and their approximations (23) are presented

in a numerical example.

4.1. Numerical example. One considers a fractional order

ν = 0.5. In Fig. 4a,b discrete Nyquist diagrams are shown

over two frequency ranges ω ∈ [0 π] (4a) and ω ∈ [0 π/12]
(4b): the ideal FOBD described by formula (22) (in black),

approximation (19a) for L = 50 (in green), approximation

(19b) for L = 50, l = 5 (in blue), (19c) for L = 50, l = 5,

ã
(ν)
lL = a

(ν)
150 (in magenta). Also a plot obtained by formula

(1) for k = 250 (in red) is added. Figures reveal that approx-

imations acts in a low frequency range.

The plots of the performance criterion eIAE (L, l, ν, ω)
(25a) over the second considered range ω ∈ [0 π/12] are pre-

sented in Fig. 5.

a) b)

Fig. 4. Discrete Nyquist diagrams of the FOBD (22) – in black and their approximations ((19a) – in green, (19b) – in blue, (19c) – in

magenta and (1) – in red) over frequency range ω ∈ [0 π] (a) and ω ∈ [0 π/12] (b)
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Fig. 5. Performance criterion (25a) vs. frequency of approximations

described by formulae ((19a) – in green, (19b) – in blue, (19c) – in

magenta and for (1) – in red)) over frequency range ω ∈ [0 π/12]

5. Linear discrete-time fractional-order

system description

The mostly considered description of the linear discrete-time

FO system (FOS) is as follows [1, 11, 15]

GL
0 ∆

(ν)
k+1xk+1 = Axk + Buk, (26a)

yk = Cxk + Duk, (26b)

where xk ∈ Rn, uk ∈ Rm, yk ∈ Rp are the state, input

and output vectors, respectively. The matrices A ∈ Rn×n,

B ∈ Rn×m, C ∈ Rp×nD ∈ Rp×m are constant. A vector

x0 ∈ Rn is treated as initial condition vector. To distinguish

the states of the same system evaluated by Grünwald-Letnikov

and Horner forms appropriate superscripts (GL) and (H) are

added. Taking into account (19b) and (19c) yields two sim-

plified forms of (26a)

GLxk+1 = −

k+1∑

i=1

a
(ν)
i

GLxk+1−i + AGLxk + Buk, (27)

Hxk+1 = AHxk − c
(ν)
1

(
Hxk + c

(ν)
2

(
Hxk−1 + c

(ν)
3

·
(

Hxk−2 + · · · +
(
c
(ν)
k+1

Hx0

))))
+ Buk.

(28)

5.1. Solution of simplified forms of the FOS state-space

model. In practical applications one should apply simplified

forms of the FOBD described by formulae (20) or (21). This

is forced by the FOBD evaluation problems caused by micro-

computer finite memory sampling time. Simplified dynamical

models are obtained by a substitution of coefficients (19), c
(ν)
i,k

and c̃
(ν)
lL,k into (27) and (28), respectively

GL,jxk+1 = −

k+1∑

i=1

a
(ν)
j,i

GL,jxk+1−i+AGL,jxk+Buk, (29)

H,jxk+1 = AH,jxk − c
(ν)
j,1

(
H,jxk + c

(ν)
j,2

(
H,jxk−1 + c

(ν)
j,3

·
(

H,jxk−2 + · · · +
(
c
(ν)
j,k+1

H,jx0

)
· · ·
)))

+ Buk.

(30)

Realise that due to (19b), (19c) the above forms simplify to

GL,jxk+1 = −
lL∑

i=1

a
(ν)
j,i

GL,jxk+1−i+AGL,jxk+Buk, (31)

H,jxk+1 = AH,jxk − c
(ν)
j,1

(
H,jxk + c

(ν)
j,2

(
H,jxk−1 + c

(ν)
j,3

·
(

H,jxk−2 + · · · +
(
c
(ν)
j,lL

H,jx0

)
· · ·
)))

+ Buk

(32)

appropriately.

5.2. The FOS response accuracy analysis. By definition

GL
0 ∆

(ν)
k fk = H

0 ∆
(ν)
k fk. (33)

In the FOS response numerical calculation by the same hard-

ware and software, equality (33) is not always satisfied. Hence,

an error function may serves as a measure of the differences

between numerical values of formulae (1) and (3) obtained

using the approximations (20) and (21), respectively.

GL,Hek =
∣∣∣GL
0 ∆

(ν)
k fk − H

0 ∆
(ν)
k fk

∣∣∣ . (34)

This suggests that as an exact value one may consider a mean

value of (1) and (3)

0∆
(ν)
k fk =

GL
0 ∆

(ν)
k fk + H

0 ∆
(ν)
k fk

2
. (35)

Next one defines two error functions

GL,j
0 ek =

∣∣∣0∆(ν)
k fk − GL,j

0 ∆
(ν)
k fk

∣∣∣H,j
0 ek

=
∣∣∣0∆(ν)

k fk − H,j
0 ∆

(ν)
k fk

∣∣∣
(36)

which serves as a tool for optimal lL evaluation. The optimal-

ity of lL is considered as minimal values that guarantee not

to exceed assumed maximal absolute error. Here one should

consider two cases:

a) (asymptotically stable solution)

−∞ < lim
k→∞

xk = xs < ∞, (37)

b) (limit circle)

xmin ≤ lim
k→∞

xk ≤ xmax. (38)

Similarly one defines numerical errors occurring in evalua-

tion of the simplified Horner form (32). One should note that

applying simplified forms (31) and (32) one gets steady state

errors (37). The solution of this model inadequacy may be

extracted by a matrix B correction
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5.3. Necessity of a matrix B correction. Now it is assumed

that the system (26) and their approximations (31) and (32)

are asymptotically stable. Moreover it is assumed that the sys-

tem is subjected to an input signal preserving the steady-state

of the solution [13–15]. The last statement means that the

one-sided Z-transform of the input signal uk can be splitted

into a form

Z {uk} = U(z) =
1

z − 1
U ′(z) (39)

with an assumption that

lim
z→1

U ′(z) = U ′(1) 6= 0. (40)

To evaluate the steady-state value of the state one uses the

final value theorem [14]. Hence
GLxs = lim

k→∞

GLxk = lim
z→1

(z − 1)GLX(z), (41)

GL,jxs = lim
k→∞

GL,jxk = lim
z→1

(z − 1)GL,jX(z), (42)

where GLX(z) and GL,jX(z) for j = 1, 2, 3 denote the one-

sided Z – Transform of (26a) and (31), respectively. Applying

the one-sided Z – Transform one obtains

GLX(z) =
[
z
(
1 − z−1

)ν
I − A

]−1

BU(z), (43)

GL,jX(z) =

[
z

lL∑

i=0

a
(ν)
j,i z−iI − A

]−1

BU(z). (44)

Substitution (43) and (44) into (41) yields

GLxs = [−A]−1
BU ′(1). (45)

Similar substitutions and transformations performed on for-

mula (26a) give

GL,jxs =

[
lL∑

i=0

a
(ν)
j,i I − A

]−1

BU ′(1). (46)

To guarantee the same steady-states

GLxs = GL,jxs (47)

in simplified realizations one must correct an input matrix B

in (46). The corrected matrix will be denoted by Bj . Then

from (47) together with (45) and (46) one gets

[−A]
−1

BU ′(1) =

[
lL∑

i=0

a
(ν)
j,i I − A

]−1

BjU
′(1) (48)

and after simple rearrangements

BjU
′(1) =

[
I −

lL∑

i=0

a
(ν)
j,i A−1

]
BU ′(1). (49)

In the single input systems this condition simplifies essential-

ly to

Bj =

[
I−

lL∑

i=0

a
(ν)
j,i A−1

]
B. (50)

In the light of the above investigations for the FOS approxi-

mations one proposes

GL,jxk+1 = −

lL∑

i=1

a
(ν)
j,i

GL,jxk+1−i

+AGL,jxk + Bjuk,

(51)

H,j
xk+1 = A

H,jxk − c
(ν)
j,1

(
H,jxk + c

(ν)
j,2

(
H,jxk−1 + c

(ν)
j,3

·
(

H,jxk−2 + · · · +
(
c
(ν)
j,lL

H,jx0

)
· · ·
)))

+ Bjuk.

(52)

One should note that

lL∑

i=0

a
(ν)
j,i 6= 0 for l, L < ∞ (53)

and

lim
lL→∞

lL∑

i=0

a
(ν)
j,i = 0 for l, L < ∞. (54)

The influence of the finite calculation length lL to the steady

state level illustrates a following example.

5.4. Numerical example. Consider the FOS (36a) with ma-

trices and a state vector

A =




−
273

100

173

40

−
173

200

73

100


, B =

[
3

1

]
,

ν =
1

2
, xk =

[
x1,k

x2,k

]
.

Next one assumes that the system is subjected to the steady

input signal with non-zero initial conditions

x0 =

[
x1,0

x2,0

]
=

[
1

−1

]
, uk = 1k,

where 1k denotes the discrete unit step function. In Fig. 6 the

considered system state transients are plotted.

Now one analyses the simplified solution (19) with L =

100 and l = 3 and a
(ν)
jL+i ≤ ã

(ν)
jL for j = 1, 2, 3 and

i = 1, . . . , L − 1. The plot of coefficients a
(ν)
2,k (in red) to-

gether with a
(ν)
k (in black) is presented in Fig. 7.

Below in Fig. 8 the plots of states

GL,2xk =

[
GL,2x1,k

GL,2x2,k

]

are presented.

In Fig. 9 there are plotted errors

GL,2ei,k = GLxi,k − GL,2xi,k for i = 1, 2. (55)

The errors (55) limits for the approximated system with

corrected matrices Bj are presented in Figs. 10a,b. The limits

are visible for the time interval [0 30000]. In the same figures

errors obtained for approximated systems without a matrix

B correction are added (in red). These errors are denoted

as GL,2,Bei,k for i = 1, 2. It is clear that errors of the ap-

proximated FOS without input matrix B correction tend to

non-zero steady values The correction removes this problem.
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a) b)

Fig. 6. The system states GLx1,k
GLx2,k vs. discrete time

Fig. 7. Plots of coefficients a
(ν)
2,k (in red) and a

(ν)
k (in black)

a) b)

Fig. 8. Plots of states GL,2x1,k, GL,2x2,k vs. discrete time
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a) b)

Fig. 9. Plots of errors GL,2e1,k, GL,2e2,k vs. discrete time

a) b)

Fig. 10. Plots of errors GL,2ei,k, and GL,2,Bei,k for i = 1, 2 vs. discrete time

6. Marginally stable system

and its approximation

An approximation of a marginally stable FOS (or stable in

the Lapunov sense) by that described by Eqs. (29) or (30) for

j = 1 may not be an easy task. Preservation of the stability

limit by an approximated system may lead to a very large L.

Much greater choice give approximations defined by j = 2, 3.

Here the key role plays an appropriate coefficients with tilde

a
(ν)
jL+i ≤ ã

(ν)
jL ≤ a

(ν)
(j+1)L selection. This free choice preserves

the stability limit.

6.1. Numerical example. Now one considers a system (26a)

with matrices, initial conditions and input signal

A =




−
4389

1591

1297

295

−
1399

1591

1207

1591


 , B =

[
3

1

]
,

ν = 0.5, x0 =

[
1

−1

]
, uk = 0.

(56)

One may check that the system is marginally stable [9–12].

The limit cycle is presented in Fig. 11.

In Figs. 12 and 13 the plots of solutions (27) and (51) for

j = 2, L = 171 and l = 3 are presented, respectively. To pre-

serve the approximated system stability limit as the last nonze-

ro coefficient in (19b) there were taken ã
(0.5)
lL = 0.78363a

(0.5)
lL .

In Fig. 14 errors (55) are given.
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Fig. 11. The system (56) limit circle simulated over time interval [0 120000]

a) b)

Fig. 12. The system states GLx1,k
GLx2,k vs. discrete time

a) b)

Fig. 13. Plots of states GL,2x1,k, GL,2x2,k vs. discrete time
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a) b)

Fig. 14. Plots of errors GL,2e1,k, GL,2e2,k vs. discrete-time

a) b)

Fig. 15. The system states GLx1,k
GLx2,k over the time interval [0 120000]

a) b)

Fig. 16. Plots of states GL,2x1,k, GL,2x2,k over the time interval [0 120000]
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a) b)

Fig. 17. Plots of errors GL,2e1,k, GL,2e2,k over the time interval [0 120000]

In marginally stable systems it is important a transient

behaviour over a large time interval. Figures 15–17 present

the same plots as in Figs. 12–14 but over the larger range

[0 120000].

7. Concluding remarks

The problem of the FOBD approximations by the integer high-

order models has been investigated in this paper. The approx-

imation problem arises in the practical microprocessor evalu-

ation of the FOBD for instance in the FO PID controller. The

proposed simplified forms parameters L and l may be selected

according to frequency criteria. Investigations pointed out the

necessity of an approximated model constant gain correction.

Second numerical example shows the difficulty in approxi-

mation of the FOS which is marginally stabile. Though one

may achieve the same amplitudes of oscillating steady state

response the phase shift is inevitable.
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