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Comparison between two approaches to modeling
microsatellite DNA repeats: infinite dimensional model

and its n-dimensional approximation

MAŁGORZATA BIAŁKA

Two approaches to modeling microsatellite DNA repeats are considered. The former is an
infinite dimensional system based on the theory of branching random walks which dynamic
properties are characterized using Laplace transforms and Laplace asymptotic techniques. The
latter is an n-dimensional approximation where microsatellite DNA repeats model is the exam-
ple of a chain system. Both models were the subject of many numerical calculations using the
MATLAB software. The results allow us to evaluate the asymptotic behavior and determine the
effect of the system parameters on the run of the solution and the state variables.

Key words: infinite-dimensional systems, asymptotic stability, chain systems, microsatel-
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1. Introduction

Microsatellites are the short tandem repeats of motifs of length up to 6 pairs of
bases. Their high polymorphism is shown in the variable structure of basic sequence and
in the length of repeated sequence. Microsatellites are widely dispersed throughout the
eukaryotic genome. The lengths of STR sequences appear to be stable during the life
of an individual. Changes in microsatellite sequences are not the result of classic point
mutations where a single nucleotide is exchanged by another. Alteration in the length of
microsatellite sequences takes place in the process called polymerase slippage resulting
in lengthening or shortening the sequence by one motif depending on which polymerase
strand an error occurred [1].

Although the function of short tandem repeats has not been defined yet, they are
very useful for various genetics applications. Microsatellites are important tool in foren-
sics (genetic fingerprinting of individuals), paternal analysis, molecular phylogenetics,
etc.. They play a significant role in early diagnosis of some cancers because their length
changes in the early disease development. This phenomenon is known as microsatel-
lite instability (MI) . In oncology the meaning of MI was described for the first time
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in hereditary nonpolyposis colon cancer. Microsatellite instability is present in 55-86%
cases of HNCC. Frequency of MI in sporadic colon cancers is significant either - it
varies from 15 to 35% [2]. The tri-nucleotides microsatellites repeats which length ex-
ceeds a normal range are responsible for various genetic disorders: Huntington disease,
fragile X, myotonic dystrophy, spinal-bulbar muscular atrophy or Friedreich’s ataxia.
Huntington disease is the example of polyglutamine expansions. Human gene HD cod-
ing huntingtin protein contains the sequence CAG repeated from 10 to 35 times. In the
case of Huntington disease the number of repeats increases from 36 to 121 resulting in
protein malfunction and disease development [1].

The evolution of microsatellite DNA repeats can be described using an infinite sys-
tem of linear differential equations [3]. The use of Laplace transforms and asymptotic
Laplace expansions allow us to analyze the stability of the model. The n-dimensional
approximation is an example of chain system with tridiagonal system matrix [4]. The
present paper shows the results of numerical studies using the MATLAB software for
both approaches to modeling microsatellites mentioned above. In the literature we can
find another techniques applied to modeling microsatellites (e.g. [5], [6]). In paper [5]
the considered model combines stepwise changes of the length of STR sequence with
the possibility of sequence breakdown and the problem is solved using the theory of
Markov chains and stochastic semigroups.

2. Modeling microsatellite DNA repeats

We consider microsatellites as a stratified population of individuals which differ in
number of repeats of basic sequence built up to 6 pairs of bases. Let us index the subpop-
ulations i = 0,1,2, . . . .The time evolution of population can be described by a branching
random walk with an absorbing boundary as it follows [3]:

• the quantity of types of particles is unlimited: i = 0,1,2, . . . ,

• particle’s lifetime is described by θ which is the parameter of exponential distri-
bution,

• each particle in the moment of its death produces the pair of progeny; the single
progeny particle survives independently with probability β,

• the progeny of 0 type particle is also of type 0,

• the progeny of i type particle, i = 1,2, . . . became of type i−1 with probability v,
type i+1 with probability η and type i with probability 1− v−η.

We assume that at the time t = 0 there exists Ni(0) i type particles. We denote Ni(t)
the quantity of i type particles at the time t. We also denote:

d = 2βvθ, b = 2βηθ, λ = (2β−1)θ. (1)
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We obtain the following infinite system of linear differential equations:

Ṅ0(t) = λN0(t)+dN1(t)
Ṅ1(t) = λN1(t)− (b+d)N1(t)+dN2(t)
...
Ṅi(t) = λNi(t)− (b+d)Ni(t)+dNi+1(t)+bNi−1(t) i­ 2
...

(2)

We assume that:

d > 0, b > 0, λ > 0, and d > b. (3)

Only the first equation contains element N0(t) so we can limit our considerations to the
system in the form:

Ṅ1(t) = λN1(t)− (b+d)N1(t)+dN2(t)
...
Ṅi(t) = λNi(t)− (b+d)Ni(t)+dNi+1(t)+bNi−1(t) i­ 2
...

(4)

3. Asymptotic behavior of infinite dimensional model

The solution of the infinite dimensional system (4) was obtained using Laplace trans-
forms under following assumptions: d ̸= b and the initial conditions: Ni(0) = δi j, where
δ is Kronecker delta. The final result has the following form [3]:

N1(t) =

k
(√

d/b
)k

d

 Ik

(
2
√

bdt
)

t
e[λ−(b+d)]t (5)

NΣ(t) = eλt − eλtk
(√

d/b
)k

t∫
0

Ik

(
2
√

bdτ
)

τ
e−(b+d)τdτ (6)

To examine the behavior of the solution in long time horizon we consider the asymp-
totic solution of the infinite dimensional system (4) which was obtained using Laplace
asymptotic expansions [3, 7, 8]. Finally we obtain:

N1(t)∼
1

2
√

π 4
√

(bd)3
t−3/2e[λ−(

√
d−

√
b)2]t (7)
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NΣ(t)∼
[

1− min(b,d)
b

]
eλt +

d

2
√

π 4
√

(bd)3
(√

d −
√

b
)2 t−3/2e[λ−(

√
d−

√
b)2]t . (8)

Having the formulas (7) and (8) we can easily precise the conditions of convergence of
the system (4) to zero. The solution of the system (4) decays exponentially to 0, as t → ∞
if and only if:

d > b, and
√

d −
√

b >
√

λ. (9)

To simulate the approximate solution we take long time horizon which assures
results corresponding to the behavior of the accurate solution. The parameter values
have been taken from [9].

Figures 1 and 2 show the trajectory of the approximate output NΣ(t) and the approx-
imate state variable N1(t) under conditions (9). Figures 3 and 4 show the case where
convergence conditions are not satisfied and the number of particles grows quickly to in-
finity. Figures 5 and 6 concerns the case where condition

√
d−

√
b >

√
λ is not satisfied

and d > b so the growth is slower.
The numerical studies of the accurate solution enable us to determine the influence of

parameters. Figures 7 and 8 show the relationship between the trajectory of the solution
NΣ(t) and N1(t) for different values of parameter d which depends on probability v that
the progeny of i particle will be type i− 1. Parameter values which have bee taken for
investigations: k = 1, b = 0.2, λ = 0.1, d = 0.5, 0.9, 1.1 and 1.7.

We can observe that if d is smaller then the solution is closer to instability region.

Figure 1. The approximate output NΣ(t) for b = 0.2, d = 1.5 and λ = 0.1.
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Figure 2. The approximate state variable N1(t) for b = 0.2, d = 1.5 and λ = 0.1.

Figure 3. The approximate output NΣ(t) for b = 0.5, d = 0.4 and λ = 0.2.

Figure 4. The approximate state variable N1(t) for b = 0.5, d = 0.4 and λ = 0.2.
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Figure 5. The approximate output NΣ(t) for b = 0.3, d = 0.9 and λ = 0.4.

Figure 6. The approximate state variable N1(t) for b = 0.3, d = 0.9 and λ = 0.4.

Figure 7. NΣ(t) – influence of parameter d.
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Figure 8. N1(t) – influence of parameter d.

Figure 9. NΣ(t) – influence of parameter b.

Figures 9 and 10 show the influence of different values of b on the solution. Parame-
ter b depends on probability η with which the progeny of i type particle become of i+1
type. The increase of b causes instability. Parameter values which have bee taken for
investigations: k = 1, d = 1.5, λ = 0.1, b = 0.2, 0.4, 0.6, 0.8, 1.

Now we examine the influence of parameter λ depending on probability of progeny
surviving β and coefficient of exponential distribution of particles life-time. The results
are shown in Figs 11 and 12. Parameter values which have bee taken for investigations:
k = 1, b = 0.2, d = 1.5, λ = 0.1, 0.3, 0.5, 0.6, 0.7. The growth of λ leads to instability.

Let us check how the trajectory of the output changes for different index k of non-
zero initial condition. This relationship is presented in Figs 13 and 14 for k = 1,2,3,4,5
and in Figs 15 and 16 for k = 6,7,8,9,10. Parameter values are: b= 0.2, d = 1.5, λ= 0.1.
The increase of k implies the later decay of NΣ(t) and N1(t).
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Figure 10. N1(t) – influence of parameter b.

Figure 11. NΣ(t) – influence of parameter λ.

Figure 12. N1(t) – influence of parameter λ.
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Figure 13. NΣ(t) – influence of parameter k.

Figure 14. N1(t) – influence of parameter k.

Figure 15. NΣ(t) – influence of parameter k.
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Figure 16. N1(t) – influence of parameter k.

Figure 17. The output NΣ(t) for k = 1, 2, 3, 4, 5.

Figures 17 and 18 present the trajectory of NΣ(t) and N1(t) for k = 1,2,3,4,5 when
d > b but the second condition

√
d −σb >

√
λ is not satisfied (d = 1.5, b = 1, λ = 0.1).

Figures 19 and 20 show the situation when d < b for k = 1,2,3,4,5 (d = 0.8, b = 1,
λ = 0.1). We can observe that the output NΣ(t) grows immediately and does not lose the
value in the beginning of the trajectory.

Finally, the main observation is that even in the case of unstable trajectories of NΣ(t)
and N1(t) in a short time horizon we can see decrease of the number of particles. The
growth takes place later. Therefore there is necessity to check the behavior of the exam-
ined quantities for the long time horizon.
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Figure 18. The state variable N1(t) for k = 1, 2, 3, 4, 5.

Figure 19. The output NΣ(t) for k = 1, 2, 3, 4, 5.

Figure 20. The state variable N1(t) for k = 1, 2, 3, 4, 5.
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4. n-dimensional approximation

The infinite dimensional system (4) reduced to n-dimensional model has the follow-
ing form:



Ṅ0(t) = λN0(t)+dN1(t)
Ṅ1(t) = λN1(t)− (b+d)N1(t)+dN2(t)
...
Ṅi(t) = λNi(t)− (b+d)Ni(t)+dNi+1(t)+bNi−1(t) i = 2, . . . ,n−1
...
Ṅn(t) = λNn(t)− (b+d)Nn(t)+bNn−1(t)

(10)

We can write it in the form [4]:

Ṅ0(t) = λN0(t)+dN1(t)
Ṅ(t) = [λI +An]N(t) (11)
N(t) = [N1(t) N2(t) . . . Nn(t)]T

where An, for n = 5 takes the following form:

A5 =


−(b+d) d 0 0 0

b −(b+d) d 0 0
0 b −(b+d) d 0
0 0 b −(b+d) d
0 0 0 b −(b+d)


We assume known initial condition vector: Ni(0) ­ 0. The system (11) serves as an
example of the chain system. In this case we have the following analytic formula [10]
for eigenvalues of [λI +An]:

λk = λ− (b+d)+2
√

bd cosφk, φk =
kπ

n+1
, k = 1,2 . . . ,n. (12)

Consequently, we have:

λ1 = λ−
(√

b−
√

d
)2

−2
√

bd
(

1− cos
π

n+1

)
< 1 (13)

and

λn < λn−1 < · · ·< λ1 < λ. (14)
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The eigenvector of [λI +An] is given by [10]:

wk = [wk,1 wk,2 . . . wk,n]
T

wk,i+1 =

√(
b
d

)i

sin
(i+1)kπ

n+1
, i = 0,1, . . . ,n−1, k = 1,2, . . . ,n. (15)

General solution of considered system (11) has the following form:

N0(t) = eλtN0(0)+
t∫

0

eλ(t−τ)dN1(τ)dτ (16)

N(t) = e[λI+An]tN(0). (17)

Therefore we obtain the following asymptotic stability conditions of the system (11):

0¬ β < 0.5. (18)

The condition (18) means the extinction of the whole considered population.
The system describing population of microsatellite DNA repeats

Ṅ(t) = [λI +An]N(t) (19)

where N(t) = [N1(t) N2(t) . . . Nn(t)]T is asymptotically stable if and only if:

λk < 0, k = 1,2, . . .n. (20)

Finally, we obtain (see (12) and (14)) [4]:

β < β1 =
0.5

1−η− v+2
√

ηvcos π
n+1

. (21)

If β < β1∞ = 0.5
1−η−v+2

√
ηv the system is asymptotically stable for any n.

Figures 21, 22 and 23 present the behavior of the population N0 for β = 0.45, 0.5 and
0.55 respectively. Values of the other parameters are: n = 5, v = 0.45, η = 0.01, θ = 0.9,
vector of initial conditions N(0) = [0.1 0.1 0.1 0.1 0.1], N0(0) = 0.

Figures 24, 26 and 28 present influence of different values of β on behavior of the
sum of particles type i = 0,1, . . . ,5 and each type separately. Values of other parameters
are the same as above.

In Fig. 26, for β = 0.5 the trajectory of the sum of particles settles on certain value,
while the particles of type i = 1,2, . . . ,5 (Fig. 27) decay. For β = 0.55 the sum in Fig.
28 loses stability because it contains particles of 0 type, while the trajectories of types
1,2, . . . ,5 remain stable.
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Figure 21. N0(t) for β = 0.45.

Figure 22. N0(t) for β = 0.5.

Figure 23. N0(t) for β = 0.55.
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Figure 24. ∑5
i=0 Ni(t) for β = 0.45.

Figure 25. The state vector N(t) for β = 0.5.

Figure 26. ∑5
i=0 Ni(t) for β = 0.5.
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Figure 27. The state vector N(t) for β = 0.5.

Figure 28. ∑5
i=0 Ni(t) for β = 0.55.

Figure 29. The state vector N(t) for β = 0.55.
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Figure 30. The state vector N(t) for β = 0.75.

Figure 31. The state vector N(t) for β = β1.

Figure 32. The state vector N(t) for β = 0.8.
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Figure 33. ∑5
i=0 Ni(t) for θ = 0.9, 0.8, 0.6 0.4.

Figure 34. N1(t) for θ = 0.9, 0.8, 0.6 0.4.

When β grows and tends to the value of β1 we observe slower convergence to 0 (Fig.
30). For β = β1 the solution settles on certain value (Fig. 31). In Fig. 32 we have β > β1
and the solution becomes unstable.

Now we will check how the changes of θ effect the solution (Figs 33 and 34). We
assume the following parameter values: n = 5, β = 0.55, v = 0.45, η = 0.01, vector of
initial conditions N(0) = [0.1 0.2 0.3 0.4 0.5], N0(0) = 0 and θ = 0.9, 0.8, 0.6, 0.4.
Parameter θ is inversely proportional to particle lifetime, thus the smaller θ the later cell
division takes place. Parameter θ neither effects the quantity of particles nor changes the
stability, but its decrease slows down the decay of the population.

We need now to evaluate the influence of v (the probability of the progeny of i type
particle will become of type i− 1), and η (the probability that the progeny of i type
particle become of type i+1). Both of these parameters have the same influence on the
value of β1 determined by (21). The level lines of β1 in relation to v and η (for n = 5) are
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Figure 35. Level lines of β1(v,η).

Figure 36. ∑5
i=0 Ni(t) for v = 0.45, 0.35, 0.25, 0.15.

presented in the Fig. 35. Previously undertaken assumptions (3) limit the possible values
of v and η to values from the area below the line described by the equation v = η.

Figures 36 and 37 represent the behavior of the solution for different values of v
(0.45, 0.35, 0.25, 0.15) and η = 0.01 (we assume θ = 0.9, the other parameter are as
above). Notice, that the increase of v results in growth of β1 and its decrease leads to the
loss of stability of the solution.

Now we can see (Figs 38 and 39) the dependence of the solution on different values
of η (0.01, 0.1, 0.2, 0.3) and v = 0.45. We assume: n = 5, θ = 0.9, β = 0.55, vector of
initial conditions N(0) = [0.1 0.2 0.3 0.4 0.5], N0(0) = 0. The increase of η causes the
lower value of β1 and slower decay of particles quantity.
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Figure 37. N1(t) for v = 0.45, 0.35, 0.25, 0.15.

Figure 38. ∑5
i=0 Ni(t) for η = 0.0.01, 0.1, 0.2, 0.3.

Figure 39. N1(t) for η = 0.0.01, 0.1, 0.2, 0.3.
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Figure 40. ∑5
i=0 Ni(t).

Figure 41. N1(t).

We can see in figures 40 and 41 that when the difference between the v and η values
increases then the solution decay becomes faster (we assume: n = 5, θ = 0.9, β = 0.55,
vector of initial conditions N(0) = [0.1 0.2 0.3 0.4 0.5], N0(0) = 0, v = 0.8, 0.7, 0.6,
0.5, 0.45, η = 0.1, 0.2, 0.3, 0.4, 0.42).

5. Concluding remarks

In this paper we have studied the properties of two models describing evolution
of microsatellite DNA repeats. The infinite dimensional model in the form of infinite
dimensional system of linear differential equations was analyzed by using techniques
of inverse Laplace transforms for non-rational functions and asymptotic expansions of
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integrals and functions. The resulting formulas enable us to make numerical calculations
which allow to determine the influence of system parameters on the trajectory of the
solution which is the same in both considered cases. The significant difference between
both models is that the unstable trajectories of the n-dimensional solution do not show the
loss of the value in the short time horizon. The growth of particles quantity takes place
immediately. However in the case of infinite system the analytical form of the accurate
solution makes it difficult to evaluate the parameters influence, it can be defined only
by numerical studies. The results correspond to conclusions coming from the analysis
of the convergence condition

√
d −

√
b >

√
λ. The increase of the values of b and λ

leads to the loss of solution convergence, while the increase of value of d accelerates
the decay of the solution. As to n-dimensional approximation the influence of β comes
directly from the stability condition (21). The results of numerical studies confirm the
character of θ influence. Parameter θ does not changes the β1 value (21) but influences
the eigenvalues of [λI +An] defined by (12), therefore the decrease of θ slows down the
solution decay. It is important to notice, that the effect of changes of v and η values in
case of n-dimensional approximation is corresponding to the influence of parameters d
and b of infinite system only in the range of v and η values satisfying condition v >
η. For v < η the finite approximation remains asymptotically stable and the v and η
influence is reversed (see Fig. 35). We need to mention that the numerical simulations
of infinite model does not give the appropriate results for long range horizon because
the trajectory of the solution below satisfied convergence conditions tends to "escape"
to infinity. The decrease of integration step improves the results but slows down the
calculation time. The numerical studies of n-dimensional approximation have also some
restrictions concerning the size of the state vector. For n­ 16 the matrix PeΛtP−1 where

P = [w1, . . . ,wn], w(i) are eigenvectors of [λI +An] and Λ =


λ1 0 0

0
. . . 0

0 0 λn

 where λi

is eigenvalue of [λI +An] becomes close to singular and results are inaccurate.
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