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Dynamic decoupling of left-invertible
MIMO LTI plants

PAWEŁ DWORAK

In the paper problems with dynamic decoupling of the left-invertible multi-input multi-
output dynamic (MIMO) linear time invariant (LTI) plants are considered. It is presented an
universal and efficient algorithm for synthesis of control system for proper, square, right and
left invertible plants which can be both unstable and/or non-minimumphase.

Key words: dynamic decoupling, left-invertible, pole assignment, polynomial matrix equa-
tions.

1. Introduction

The main characteristic of the multi-input multi-output (MIMO) plants is the cou-
pling of theirs inputs and outputs. This feature can make the process of designing the
control system seriously difficult. Therefore in a design of the control systems decou-
pling methods are used which goal is to lead a system to the situation when a specific
group of inputs affect a specific group of outputs and no element of this input group have
influence on any other output component of the system. After decoupling the transfer
function matrix of the system is diagonal (triangular, block diagonal), thus the system
is divided into small subsystems, which can be analyzed irrespectively of each other.
Decoupling makes the control system much more easier to design and control.

However dynamic decoupling of MIMO systems is one of the most difficult problem
in construction of multivariable control systems especially for non-square plants which
can have non minimum phase transmission zeros. It is well known in the decoupling
theory that some poles of the decoupled (compensated) system, related to the so called
interconnection transmission zeros of the plant, are fixed. These can generate uncon-
trollable and/or unobservable parts of the closed-loop system. Cancelations of such non
minimum phase zeros (unstable hidden modes) make the system unstable [9, 11, 20].
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An idea of dynamic decoupling for multivariable (MIMO) systems has been consid-
ered by many authors since 60s beginning with [13]. Solution to Morgan problem was
given in [4] and its stability conditions in [16]. General decoupling problem with stabil-
ity for square and right-invertible plants has been intensively studied in the past (see e.g.
[3, 5, 16, 18, 23]) and it still arouse considerable interest [8, 14, 17, 19, 22]. However
most of the proposed methods allows one to exist in the decoupled system some fixed
poles which (if there are unstable) can result in its instability. Moreover there are as well
often limited to the square or right invertible plants with minimum phase zeros only. Yet
the everyday practice shows that often there is a need to maintain and control processes
with more outputs than inputs. It may happen eg. during system failure when one lose
some actuators and the precise control of all outputs is not possible.

As in this case an independent control of each output is not possible then usually
methods of control after actuator faults assume that the rank of the input matrix does
not change [15]. It is not possible to synthesize the decoupler for diagonal (row-by-row)
decoupling but as it was shown in [20] there is a chance to synthesize block decoupled.

This paper complements the results obtained in [2, 20] and presents an universal
algorithm for dynamic decoupling designed for linear m-input l-output both invertible
(m = l) and right invertible (m > l) and left invertible (l > m) plants described by proper
rational full rank transfer matrix TTT (s). Plants which be unstable, non-minimum phase or
both.

The presented algorithm guarantees free location of all poles of the system and guar-
antees that all designed elements (parts of the system) are proper (or strictly proper), so
they are able to be physically realizable.

The paper is organized as follows. The problem statement and decoupling concept
have been brought in section 2. and 3. Conditions for decoupling of left-invertible plants
with l > m are presented in section 4. An universal algorithm for decoupling square and
right invertible plants extended by steps for left-invertible plants is given in section 5.
An example which demonstrates the effectiveness of the proposed algorithm is given in
section 6. Finally the paper is concluded in section 7.

Notations

The notation used here is fairly standard. R denotes the field of real numbers, R[s] the
ring of polynomials in s with real coefficients, R[s]m×n set of m×n polynomial matrices
with coefficients from the field R. Lower case bold letters denote vectors xxx, capital bold
letters AAA denote real matrices; PPP(s) denotes polynomial matrix. A polynomial matrix
PPP(s) is said to be unimodular if PPP−1(s) exists and is also polynomial matrix; it means
that its determinant detPPP(s) is a real number. A right divisor of a polynomial matrix PPP(s)
is a polynomial matrix RRR(s) such that PPP(s) = PPP1(s)RRR(s) for some polynomial matrix
PPP1(s). Two polynomial matrices are relatively right prime (r.r.p.) if they have no common
right divisors except unimodular matrices. The analogous definitions are made for left
divisors. Detailed description of definitions and basic operations on polynomial matrices
may be found in [10, 12].
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2. Problem statement

We consider a controllable and observable LTI MIMO model of the plant defined by
the state and output equations

ẋxx(t) = AAAxxx(t)+BBBuuu(t)
(1)

yyy(t) =CCCxxx(t)+DDDuuu(t)

where xxx(t) ∈ Rn, uuu(t) ∈ Rm and yyy(t) ∈ Rl (l > m), are the state, input and output vectors
respectively. In the polynomial matrix approach transfer matrices of all elements of the
system are defined by pairs of polynomial matrices either r.r.p. for plants, or r.l.p. for
other elements. Applying this approach, the plant model (1) can be transformed to the
relatively prime matrix fraction description in the frequency s domain as follows

yyy = BBB1(s)AAA−1
1 (s)uuu (2)

where

BBB1(s)AAA−1
1 (s) =CCC(sIIIn −AAA)−1BBB+DDD. (3)

Assuming dynamic block decoupling of the designed control system we group out-
put and a vector of exogenous signals into k blocks according to the partitions

yyy(t) =



yyy1(t)
...

yyyi(t)
...

yyyk(t)


, qqq(t) =



qqq1(t)
...

qqqi(t)
...

qqqk(t)


(4)

where

yyyi(t) ∈ Rli ,
k

∑
i=1

li = l, qqqi(t) ∈ Rmi ,
k

∑
i=1

mi = m. (5)

We want to design a decoupled system in which each part (loop) i = 1,2, ...,k of a
system defined by pairs of signals qqqi(t), yyyi(t) could be controlled independently of other
parts j ̸= i. Moreover, each part of the system should be designed with individually
supposed dynamic properties according to the requirements.
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3. Decoupling concept

The goal of decoupling of the LTI dynamic system can be achieved in a control sys-
tem structure presented in Fig. 1. which contains: the dynamic feedforward compensator
and (if necessary) the Luenberger observer with feedback matrix FFF .

Feedback law, employed to decouple the system (the linear state variable feedback
along with dynamic feedforward) is described by

uuu(s) = GGG−1(s)LLL0(s) fff (s)+GGG−1(s)LLL(s)qqq(s) (6)

where

fff (s) = FFF(s)xxxp(s)
∆
= FFFxxx(t) (7)

xxxp(s) is a partial state vector of the plant, GGG(s) ∈ R[s]m×m, LLL(s) ∈ R[s]m×l , LLL0(s) ∈
R[s]m×m, - polynomial matrices such that GGG−1(s)LLL0(s) and GGG−1(s)LLL(s) are proper and
FFF(s)AAA−1

1 (s) is strictly proper. Without any lose of generality the matrix LLL0(s) may be
taken as LLL0(s) = IIIm.

Figure 1. Structure of the decoupled control system with inaccessible plant’s state vector.

According to this scheme the considered decoupling systems are suitably defined in
s-domain by: proper and possible low-order transfer matrix GGG−1(s)LLL(s) for the dynamic
feedforward compensator and strictly proper (or proper) transfer matrices QQQ−1(s)HHH(s)
and QQQ−1(s)KKK(s) for the full (or reduced) order Luenberger observer along with a feed-
back matrix FFF . All of the above-mentioned polynomial matrix fractions should be r.l.p.
with nonsingular, row-reduced, denominator matrices.

The main problem is to find a method for block decoupling of the control system
(between the signals qqq and yyy) so as to obtain the transfer matrix TTT yyyqqq(s) free of cancelation
of unstable hidden modes. For the applied decoupling law this transfer matrix takes the
form

TTT yyyqqq(s) = BBB1(s)[GGG(s)AAA1(s)−FFF(s)]−1LLL(s) = NNN(s)DDD−1(s) (8)

with
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NNN(s) = block diag[NNNi j(s)] ∈ R[s]l×m (9)

and

DDD(s) = block diag[DDDii(s)] ∈ R[s]m×m (10)

where i = 1,2, . . . ,k and j = 1,2, . . . ,k according to the partition (4).

The algorithm starts with determination of the numerator matrix of the system. It
is taken as a block diagonal matrix NNN(s) = blockdiag[NNNii(s), i = 1,2, . . . ,k], where par-
ticular blocks NNNii(s) are the greatest common left divisors (g.c.l.d.) of columns of i-th
row-block of BBB1(s) caused by the partition (4)

BBB1(s) =



BBB11(s)
...

BBB1i(s)
...

BBB1k(s)


. (11)

Then BBB1(s) takes the form

BBB1(s) = NNN(s)BBB(s). (12)

In general the decoupled system does not have to be stable but it should be free of
any unstable cancelations, unobservable and/or uncontrollable, unstable poles. However
if the polynomial matrix G̃GG(s) ∈ R[s]l×l , which is a g.c.l.d. of all columns BBB(s) defined
by the relation

BBB(s) = G̃GG(s)B̃BB(s) (13)

is not unimodular and if its zeros lie in the unstable region of the complex plane, the
(unobservable) poles of decoupled system corresponding to these zeros are fixed and un-
stable [9]. These so called ’interconnection’ transmission zeros can not be eliminated by
an feedforward compensator of zero order. So in such case a dynamic compensator have
to be used. To remove these unobservable poles we can use the compensation scheme
together with an additional dynamic feedforward compensator obtained by augmenting
the plant model with a serial dynamic element RRRa(s)PPP−1

a (s). This element has to be con-
nected to the input of the original plant presented in Fig. 2 and finally shifted into the
structure of dynamic feedforward compensator [1, 9].

After calculations of the element RRRa(s)PPP−1
a (s) the standard procedure with an aug-

mented plant can be used and a decoupled system TTT yyyqqq(s) without fixed poles caused by
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Figure 2. Structure of the decoupled system for the augmented plant.

G̃GG(s) is automatically obtained. An algorithm which may be used to calculate this ad-
ditional dynamics was analyzed in [1, 9] and has been modified in [6] to make it more
reliable and efficient.

4. Decoupling of left-invertible plants

The problem with decoupling of a non-square plant with l > m is to find a method
which allows us to obtain the transfer matrix (8) free of cancelation of unstable hidden
modes (uncontrollable and/or unobservable poles of TTT yyyqqq(s)). In order to do it we adopt
the following lemma and theorem given in [9, 20].

Theorem 2 A left-invertible plant with the transfer matrix (8) of rank m can be block
decoupled according to the partition (4) by use of linear state variable feedback and
dynamic feedforward if and only if rankBBB1i(s) = mi, i = 1,2, . . . ,k.

If assumption of theorem 1 is satisfied then, there exists k unimodular matrices
UUU i(s) ∈ R[s]li×li such that

UUU i(s)BBB1i(s) =

[
BBBmi(s)

000

]
(14)

with BBBmi(s) of full rank. Then parting UUU−1
i (s) =

[
PPPi(s) RRRi(s)

]
one can define

BBB1i(s) =
[

PPPi(s) RRRi(s)
][ BBBmi(s)

000

]
= PPPi(s)BBBmi(s). (15)
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After defining

PPP(s) =


PPP1(s)

. . .

PPPk(s)

 ∈ R[s]l×m (16)

and

BBBm(s) =


BBBm1(s)

. . .

BBBmk(s)

 ∈ R[s]m×m (17)

the transfer matrix (2) takes the form

TTT (s) = BBB1(s)AAA−1
1 (s) = PPP(s)BBBm(s)AAA−1

1 (s) (18)

which inner square part TTT m(s) = BBBm(s)AAA−1
1 (s) may be decoupled by using any known

decoupling method.
Then the transfer matrix (8) of the decoupled system takes the form

TTT yq(s) = PPP(s)BBBm(s)[GGG(s)AAA1(s)−FFF(s)]−1LLL(s) = PPP(s)NNNm(s)DDD−1(s) (19)

with

NNNm(s) = block diag[NNNii(s), i = 1, . . . ,k] ∈ R[s]m×m. (20)

Stability of the decoupled system describe the following lemmas and theorem.

Lemma 2 [9] The block diagonal matrix DDD(s) ∈ R[s]l×l that satisfies the relation (8)
exists if there exist polynomial matrices L̄LL(s) ∈ R[s]m×(m−l) and B̄BB(s) ∈ R[s]m×(m−l) of
full rank such that GGG(s)AAA1(s)−FFF(s)−LLL(s)DDD(s)BBB(s) = L̄LL(s)B̄BB(s).

Theorem 3 [9] The closed-loop poles of the decoupled system TTT yyyqqq(s) realized by lin-
ear state variable feedback (l.s.v.f.) with dynamic feedforward consist of the zeros of∣∣[LLL(s), L̄LL(s)]∣∣, which are uncontrollable, the zeros of

∣∣∣[BBBT(s), B̄BBT
(s)]

T∣∣∣, which are unob-
servable and the zeros of |DDD(s)|, which are controllable and observable.

Lemma 3 [20] The invariant zeros of BBBm(s)AAA−1
1 (s) are precisely those of BBB1(s)AAA−1

1 (s).

Applying the above method for preparing the plant model to the standard decoupling
procedure [2, 6, 7] we obtain the design algorithm for the considered block decoupled
control system.
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5. The algorithm

In this section an universal algorithm for decoupling square, right and particularly
considered in the paper left-invertible plants is presented. Using theorem 1 the algorithm
allows one to check decoupling conditions for systems with more outputs than inputs.
The algorithm guarantees free location of all poles of the system and guarantees that
all designed elements (parts of the system) are proper (or strictly proper), so they are
able to be physically realizable. Moreover it allows one to fully automate process of the
synthesis of decoupled system which may be used in an adaptive control for non linear
or reconfigurable systems. Detailed description of all steps of the standard decoupling
procedure for square and right invertible plants m­ l may be found in [2, 6, 7].

Step 1

Given the plant description (1) derive its transfer matrix BBB1(s)AAA−1
1 (s) using the

Wolovich’s structure theorem. Permute rows of BBB1(s) , if it is necessary, to group plant’s
outputs yyy(s) (and yyy0(s)). Substitute BBB1(s) := PPPBBB1(s), where PPP is a permutation matrix.

If m­ l go to Step 3 else do the following steps:

Step 2.1

If assumption of theorem 1 is satisfied then according to the assumed partition (4) deter-
mine k unimodular matrices UUU i(s) ∈ R[s]li×li such that

UUU i(s)BBB1i(s) =

[
BBBmi(s)

000

]
with BBBmi(s) of full rank.

Step 2.2

Calculate UUU−1
i (s) =

[
PPPi(s) RRRi(s)

]
and define

PPP(s) =


PPP1(s)

. . .

PPPk(s)

 ∈ R[s]l×m (21)

to obtain matrices BBBm(s) and PPP(s) of the square part TTT m(s) = BBBm(s)AAA−1
1 (s).

Substitute BBB1(s) := BBBm(s).
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Step 3

Define NNN(s) = blockdiag[NNNii(s), i = 1,2, ...,k], where NNNii(s) are g.c.l.d. of the columns
of i-th row-block of BBB1(s). Calculate BBB(s) ∈ R[s]l×m such that BBB1(s) = NNN(s)BBB(s).

Determine G̃GG(s) ∈ R[s]l×l , a g.c.l.d. of all columns of the matrix BBB(s) = G̃GG(s)B̃BB(s).
If G̃GG(s) is unimodular (or stable) go to Step 4, else to calculate the additional

dynamic element do the following steps:

Step 3.1

Convert the left to right fractions G̃GG
−1
(s)EEE i = R̃RRi(s)J̃JJ

−1
ii (s) for i = 1,2, . . . ,k

with EEE i defined by IIIl = [EEE1,EEE2, . . . ,EEEk]. Define R̃RR(s) = [R̃RR1(s), ..., R̃RRk(s)] and
J̃JJ(s) = blockdiag[JJJii(s), i = 1,2, . . . ,k].

Step 3.2

Calculate B̂BB(s) ∈ R[s]l×m and R̂RR(s) ∈ R[s]m×m by the left to right conversion

R̃RR
−1
(s)B̃BB(s) = B̂BB(s)R̂RR

−1
(s).

Step 3.3

Convert the right to left fraction of AAA111(s)[R̂RRad(s)]−1 = ṘRR−1
(s)ṖPP(s) and set RRRaaa(s)= ṘRRad(s)

and P̄PP(s) = ṖPP(s). The R̂RRad(s) and ṘRRad(s) are adjoints of R̂RR(s) and ṘRR(s), respectively.

Step 3.4

Select UUU4(s) ∈ R[s]m×m such that RRRa(s)UUU4(s) is column-reduced.
Substitute RRRa(s) := RRRa(s)UUU4(s).
For assumed poles derive PPPa(s) = ΛΛΛ(s) where ΛΛΛ(s) = diag[λi(s), i = 1,2, ...,m] with

deg[λi(s)] = degci[RRRa(s)].

Step 3.5

Derive minimal state space realization of RRRa(s)PPPa
−1(s)

ẋxxa(t) = AAAaxxxa(t)+BBBauuuoa(t)
(22)

yyy(t) =CCCaxxxa(t)+DDDauuuoa(t),

where xxxa(t) ∈ Rna , uuuoa(t) ∈ Rm and uuu(t) ∈ Rm are vectors of state, input and output of
this element respectively.
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Step 3.6

Connect (in series) additional dynamic element (22) with the plant (1)

ẋxxoa(t) =

[
AAA BBBCCCa

000 AAAa

]
xxxoa(t)+

[
BBBDDDa

BBBa

]
uuuoa(t) (23)

yyy(t) =
[

CCC DDDCCCa

]
xxxoa(t)+DDDDDDauuuoa(t), (24)

where vector xxxoa(t) comes from substitution

xxxoa(t) =

[
xxx(t)
xxxa(t)

]
. (25)

Step 3.7

Using the Wolovich’s structure theorem derive the r.r.p. transfer matrix fraction
BBB1(s)AAA−1

1 (s) for obtained state space description (23) of the augmented plant.
Go to Step 2.

Step 4

If m = l go to Step 5 else according to theorem 2 to eliminate any unobservable poles of
the decoupled system calculate B̄BB(s) to obtain [BT(s), B̄BBT

(s)]T unimodular. To do that:
Derive an unimodular matrix UUU(s) such that BBB(s)UUU(s) = [ IIIl 000 ]. Let

UUU−1(s) = [ UUUT
1 (s) UUUT

2 (s) ]T , where UUU1(s) ∈ R[s]l×m, UUU2(s) ∈ R[s](m−l)×m. Sub-
stitute B̄BB(s) =UUU2(s).

Step 5

To determine degrees of the diagonal elements of DDD(s), which decide about the number
of controllable and observable poles of the decoupled system:

Perform the right to left conversion of AAA1(s)

[
BBB(s)
B̄BB(s)

]−1

= Q̃QQ
−1
(s)P̃PP(s) to obtain

with row-reduced.
Determine ν j = degr j[Q̃QQ(s)] for j = 1,2, . . . ,m and define ν = max{ν j}.
Given the ν j and ν derive P̂PP(s) = diag[sν−νi ]P̃PP(s).
Let P̂PP(s) = [P̂PP

F
(s), P̂PP

L
(s)], where P̂PP

F
(s) ∈ R[s]m×l and P̂PP

L
(s) ∈ R[s]m×(m−l).

Define P̂PP
F
(s) = [PPPF

1 (s)
...PF

2 (s)
... . . .

...PPPF
k (s)] where P̂PP

F
i (s) ∈ R[s]m×li , i = 1,2, . . . ,k.
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Step 6

For i = 1,2, . . . ,k and j = 1,2, . . . , li determine degrees d̄i
j for diagonal elements di

j(s)

of DDDii(s) from the constraint degdi
j(s) = max{degc jP̂PP

F
i (s)−ν, 0}.

Step 7

According to theorem 2 determine set of the controllable and observable poles of
the decoupled system. Using freely chosen (stable) values of poles for block decou-
pled system set the Hurwitz matrix SSS(s) = diag[s̄i(s)], i = 1,2, . . . , l and calculate
DDD(s) =UUU−1(s)SSS(s)VVV−1(s) where VVV (s) = blockdiag[VVV i(s)] and UUU(s) = IIIl .

Step 8

Perform the right to left conversion of AAA1(s)

[
DDD(s)BBB(s)

B̄BB(s)

]−1

= ΦΦΦ−1
D (s)ΦΦΦN(s) to obtain

ΦΦΦN(s) ∈ R[s]m×m with row-reduced.
Determine µ j = degr j[ΦΦΦD(s)], j = 1,2, . . . ,m and define µ = max{µ j}.
Given the µ j and µ derive Φ̂ΦΦN(s) = diag[sµ−µ j ]ΦΦΦN(s). Select an unimodular matrix

ŴWW (s) ∈ R[s]m×m such that Φ̂ΦΦN(s)ŴWW (s) is column-reduced.

Step 9

Determine degrees l̄ j = deg[l̂ j(s)] for j = 1,2, . . . ,m from the constraint
l̄ j = max{degc j[ hatΦΦΦNNN(s)ŴWW (s)] − µ,0} and set L̂LL(s) = diag[l̂ j(s)] with l̂ j(s) cho-
sen freely as stable (monic) polynomials suited to the assumed (according to theorem 2
uncontrollable) poles of the transfer matrix TTT yq(s).

Step 10

Calculate [LLL(s), L̄LL(s)] = L̂LL(s)ŴWW (s) to obtain the matrices LLL(s) ∈ R[s]m×l and
L̄LL(s) ∈ R[s]m×(m−l), the first l and the last m− l columns of L̂LL(s)ŴWW (s).

Step 11

Execute right matrix division [LLL(s)DDD(s)BBB(s) + L̄LL(s)B̄BB(s)]AAA−1
1 (s) = GGG(s)−FFF(s)AAA−1

1 (s)
where GGG(s) ∈ R[s]m×m is the quotient and −FFF(s) ∈ R[s]m×m is the remainder.
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Step 12

Given the column structure of the plant’s denominator matrix AAA1(s) and the obtained
matrix FFF(s), determine the feedback matrix FFF from the equation FFF(s) = FFFT̂TT ŜSS(s), which
results from the well-known Wolovich’s structure theorem [21].

Step 13

If the plant’s state vector is not accessible for direct measurement in order to design the
full order Luenberger observer set the matrix

C̄CC2(s) = diag[c̄ j(s)], j = 1,2, ..., l

where c̄ j(s) =
d̄ j

∏
i=1

(s− si). The si are assumed (stable) values of poles for the observer

and d̄i are observability indices equal to the row degrees of matrix AAA2(s), denominator
matrix of the r.l.p. matrix fraction description of the (for left invertible plants original)
plant’s transfer matrix.

Transform matrix C̄CC2(s) to the matrix CCC2(s) with the same (row) structure as AAA2(s).
Determine the gain matrix LLL of the observer from the equation

CCC2(s)−AAA2(s) = S̃SS(s)T̃TT LLL (26)

where S̃SS(s) and T̃TT are calculated during r.l.p. (dual) factorization of the plant’s transfer
matrix.

6. Example

In order to illustrate the theoretical considerations an example of design of a decou-
pling control system is presented. Let assume a plant (of n = 5 order with m = 3 inputs
and l = 4 outputs) defined by the following matrices of the state and output equations
(1)

AAA =


0 1 0 0 0
0 0 1 0 0

−1 −2 −1 0 0
0 0 0 −1 0
0 0 0 −1 2

 , BBB =


1 0 0
0 0 0
0 1 1
0 0 1
0 1 0

 ,
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CCC =


1 0 1 0 0
0 1 0 0 1
0 1 0 0 0
0 0 1 0 0

 , DDD = 000.

This plant can be described in the r.r.p. matrix fraction as follows

BBB1(s) =


s−2 s−8 4

1 s+4 −1
0 1 0
0 s 0

 , AAA1(s) =

 s2 −2s −8s−1 4s
s−2 s2 + s−6 −s+3

0 0 s+1

 .
It has the poles s1 = 2, s2,3 = −0.2150± i1, s5 = −0.5698, and one transmission zero
so

1 = 2. So, it is unstable and nonminimum phase.
Before start of design procedure we have assumed that: the control system will be

block decoupled with the partition (4) of the output and reference input taken as l1 = 1,
l2 = 1 and l3 = 2 which allows existing a coupling between signals y3(t) and y4(t).

According to the assumed partition after calculations of Step 2 the transfer matrix
(2) takes the form (18) with matrices

BBBm(s) =

 s−2 s−8 4
1 s+4 −1
0 1 0

 , and PPP(s) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −s 1

 .
Then calculations were continued for a square plant with matrix BBB1(s) := BBBm(s).

As the calculated in Step 3 interconnection transmission zero of the plant is stable
then it is not necessary to synthesize an additional dynamic element RRRa(s)PPP−1

a (s). The
system after decoupling will posses an unobservable but stable pole suo =−2. Calcula-
tion of this element would result in growth of system degree the order of feedforward
compensator (including additional dynamic element) would increase by 2. It would be
also necessary to assume seven instead four poles for the denominator matrix of the
decoupled system D(s).

Assuming in Step 7 the following values of poles:

• for the first block: s1 =−0.5,

• for the second block: s2 =−0.4,

• for the third block: s3 =−0.6, s4 =−0.4,



456 P. DWORAK

We set matrix as:

D(s) =

 s+0.5 0 0
0 s+0.4 0
0 0 s2 + s+0.24


and obtain: -dynamic feedforward compensator GGG−1(s)LLL(s)

LLL(s) =

 1 0 0
0 1 0
0 0 1

 , GGG(s) =

 1 1 1
0 1 0
0 1 1

 ,
and the feedback matrix

FFF =

 −1 −0.5 −3 0.5 2
−2.4 0 −7.6 −3.4 3.4
−2 1 −6.24 0 4

 .
The gain matrix of the full order Luenberger observer with the values of its poles

assumed as s1 =−3, s2 =−3, s3 =−4, s4 =−5, s5 =−2 is given as

LLL =


3 0 1 −2
0 0 5 1

−1 0 −2 2
0 −6 −8 1
0 8 −5 −1

 .
As it is shown in Fig. 3 according to our assumptions there is no influence between

signals y1(t), y2(t) and signals y3(t) and y4(t). Change of the reference value for the
first output yo1(t) at t = 20s influence only first output y1(t). Similarly reference input
yo2(t) does not influence any other outputs but y2(t). State of two outputs y3(t) and y4(t)
depends only on reference input yo3(t). So, the system is (block) decoupled and all of
the assumed design objectives are achieved.

The designed control system (including the plant) has the order ns = n+ no = 10,
where no = n = 5 is the order of Luenberger observer. The system has one unobservable
pole suo =−2 as well as five uncontrollable poles s1 =−3, s2 =−3, s3 =−4, s4 =−5,
s5 =−2 for observer, which define stable hidden modes of the system.

7. Conclusions and final remarks

In the paper an universal algorithm for block decoupling of dynamic plants with
the number of inputs less, equal or greater than the number of their outputs has been
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Figure 3. Results of simulation of the block decoupled control system.

presented. The proposed algorithm guarantees to achieve the assumed dynamics in each
control loop and ensures internal stability and internal property for both unstable and
non-minimum phase proper plants.

Results of simulation confirm the correctness of the proposed algorithm and giving
possibility to automate the process of design the control system the algorithm would be
used to build e.g. adaptive decoupled, reconfigurable, fault tolerant MIMO systems.
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