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A hybrid PSO approach
for solving non-convex optimization problems

TIMOTHY GANESAN, PANDIAN VASANT and IRRAIVAN ELAMVAZUTHY

The aim of this paper is to propose an improved particle swarm optimization (PSO) pro-
cedure for non-convex optimization problems. This approach embeds classical methods which
are the Kuhn-Tucker (KT) conditions and the Hessian matrix into the fitness function. This
generates a semi-classical PSO algorithm (SPSO). The classical component improves the PSO
method in terms of its capacity to search for optimal solutions in non-convex scenarios. In
this work, the development and the testing of the refined the SPSO algorithm was carried out.
The SPSO algorithm was tested against two engineering design problems which were; ’op-
timization of the design of a pressure vessel’ (P1) and the ’optimization of the design of a
tension/compression spring’ (P2). The computational performance of the SPSO algorithm was
then compared against the modified particle swarm optimization (PSO) algorithm of previous
work on the same engineering problems. Comparative studies and analysis were then carried
out based on the optimized results. It was observed that the SPSO provides a better minimum
with a higher quality constraint satisfaction as compared to the PSO approach in the previous
work.

Key words: Kuhn-Tucker conditions (KT), non-convex optimization, particle swarm opti-
mization (PSO), semi-classical particle swarm optimization (SPSO)

1. Introduction

In recent years, many engineering design problems are classified as non-convex con-
strained optimization problems (see [1], [2] and [3]). Constrained optimization tech-
niques (meta-heuristic) such as genetic algorithms [4], genetic programming [5] as well
as particle swarm optimization (PSO) [6] have been developed and implemented to these
problems.

Particle Swarm Optimization (PSO) is an optimization method developed based on
the movement and intelligence of swarms. PSO integrates the concept of social interac-
tion to problem solving and decision-making. PSO was developed by James Kennedy
and Russell Eberhart [3] in 1995. Particle swarm is the system model or social structure
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of a basic creature which makes a group to have some objectives such as food searching
and predator-prey interactions. Hence, the governing principle is that it is an important to
take part with the most of the population in a group that has the same activity. Recently,
PSO has been applied to various fields of power system including economic dispatch
problems as well as in optimization problems in electric power systems (see Phuang-
pornpitak et al [7]).

As observed in [8], [9] and [10], classical optimization methods such as the Aug-
mented Lagrange, Penalty and Karush-Kuhn-Tucker (KKT) techniques can be used to
modify existing artificial intelligence algorithms such as neural networks. In [9] and [10],
the Augmented Lagrange HNN was used to solve the economic load dispatch problem
which involves only equality constraints. Similarly, in this work, the Kuhn-Tucker (KT)
conditions [11] and the determinant of the Hessian matrix [12] is used to modify cer-
tain components of the PSO fitness function to provide the algorithm with the capacity
to handle the nonlinearities, such as those encountered in engineering design problems.
The SPSO algorithm is then used to solve two engineering design problems. These two
problems are the ’optimization of the design of a pressure vessel’ (P1) [13] and the ’op-
timization of the design of a tension/compression spring’ (P2) [14]. The results are then
compared against the results obtained with the modified PSO algorithm in [15].

This paper is organized as follows: Section 2 presents the problem description for
P1 and P2, Section 3 discusses the development of the SPSO approach. The analysis and
computational results are included in Section 4. In Section 5, some discussions on the
computational experiments are provided. Section 6 presents the concluding remarks and
recommendations for future research work.

2. Description of the engineering design application data

Two engineering design problems are considered in this work the ’optimization of
the design of a pressure vessel’ (P1) [13] and the ’optimization of the design of a ten-
sion/compression spring’ (P2) [14].

The problem P1 is a pressure vessel design optimization problem. The optimization
of the design of a compressed air storage tank that has a working static pressure of 3,000
psi and a minimum volume of 750 ft3 is considered. This cylindrical vessel is capped
(closed) at both ends by hemispherical heads. The tank is constructed of rolled steel
plates and its shell is made in two halves. These two halves are joined by the longitudinal
welds to form the cylinder. The objective is to minimize the total cost (including the
cost of the materials that forms the welding [13]). The design variables involved are
the thickness x1, the thickness of the head x2, the inner radius x3, and the length of the
cylindrical section of the vessel x4. The variables x1 and x2 are discrete values which
are integer multiples of 0.0625 inches. The formal statement of problem P1 is as the
following:
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Minimize:

f (⃗x) = 0.6224x1x3x4 +1.7781x2x2
3 +3.1661x2

1x4 +19.84x2
1x3 (1)

subject to:
g1(⃗x) =−x1 +0.0193x3 ¬ 0 (2)

g2(⃗x) =−x2 +0.00954x3 ¬ 0 (3)

g3(⃗x) =−x2
3x2

4π− 4
3

x3
3π+1296000¬ 0 (4)

g4(⃗x) = x4 −240¬ 0 (5)

x1 ­ 0.0625, x2 ¬ 6.1875, x3 ­ 10, x4 ¬ 200 (6)

where x1, x2, x3 and, x4 are the decision variables, g1(⃗x), g2(⃗x), g3(⃗x) and g4(⃗x) are the
constraints and f (⃗x) is the objective function.

The second problem considered in this work is the optimization of the design of a
tension/compression spring (P2). The aim of this problem is to minimize the weight of
a tension/compression spring, subject to certain constraints. The constraints considered
are the minimum deflection, shear stress, surge frequency; limits on the outside diameter
and on design variables. There are three design variables (or decision variables) in this
problem which is the wire diameter x1, the mean coil diameter x2, and the number of
active coils x3. The formal representation of problem P2 is as the following:

Minimize:
f (⃗x) = (x3 +2)x2x2

1 (7)

subject to

g1(⃗x) =
(

1−
x3

2x3

7178x4
1

)
¬ 0 (8)

g2(⃗x) =
4x2

2 − x1x2

12566x3
1x2 − x4

1
+

1
5108x2

1
−1¬ 0 (9)

g3(⃗x) =
(

1− 140.45x1

x2
2x3

)
¬ 0 (10)

g4(⃗x) =
(

x1 + x2

1.5
−1
)
¬ 0 (11)

0.05¬ x1 ¬ 2, 0.25¬ x2 ¬ 1.3, 2¬ x3 ¬ 15 (12)

where x1, x2 and x3 are the decision variables, g1(⃗x), g2(⃗x), g3(⃗x) and g4(⃗x) are the
constraints and f (⃗x) is the objective function.
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3. Semi-classical particle swarm optimization

The PSO algorithm was initially developed in 1995 by Kennedy and Eberhart [3].
This technique originates from two different ideas. The first idea was based on the ob-
servation of swarming or flocking habits of certain types of animals (for instance; birds,
bees and ants). The second concept was mainly related to the study of evolutionary com-
putation. The PSO algorithm works by searching the search space for candidate solutions
and evaluating them to some fitness function with respect to the associated criterion. The
candidate solutions are analogous to particles in motion (swarming) through the fitness
landscape in search for the optimal solution. Initially the PSO algorithm chooses some
candidate solutions (candidate solutions can be randomly chosen or be set with some a
priori knowledge). Then each particle’s position and velocity (candidate solutions) are
evaluated against the fitness function. Then if the fitness function is not satisfied, then
update the individual and social component with some update rule. Next update the ve-
locity and the position of the particles. This procedure is repeated iteratively until the all
candidate solutions satisfy the fitness function and thus converges into a fix position. It
is important to note that the velocity and position updating rule is crucial in terms of the
optimization capabilities of the PSO algorithm. The velocity of each particle in motion
(swarming) is updated using the following equation.

vi(n+1) = wvi(n)+ c1r1[x̂i(n)− xi(n)]+ c2r2[g(n)− xi(n)] (13)

where each particle is identified by the index i, vi(t) is the particle velocity and xi(t) is
the particle position with respect to iteration (n). The parameters w, c1, c2, r1 and r2 are
usually defined by the user. These parameters are typically constrained by the following
inequalities:

w ∈ [0,1.2], c1 ∈ [0,2], c2 ∈ [0,2], r1 ∈ [0,1], r2 ∈ [0,1]. (14)

The term wvi(t) in equation (13) is the inertial term which keeps the particle moving
in the same direction as its original direction. The inertial coefficient w serves as a
dampener or an accelerator during the particles motion. The term c1r1[x̂i(n)−xi(n)] also
known as the cognitive component functions as memory. Hence, the particle tends return
to the location in the search space where the particle had a very high fitness value. The
term c2r2[g(n)−xi(n)] known as the social component serves to move the particle to the
locations where the swarm has moved in the previous iterations. After the computation
of the particle velocity, the particle position is then calculated as follows:

xi(n+1) = xi(n)+ vi(n+1) (15)

The iterations are then continued until the all candidate solutions are at their fittest posi-
tions in the fitness landscape and some stopping criterion which is set by the user is met.
For more comprehensive texts on PSO methods, refer to [16], [17] and [18].

In this work, the fitness criterion described above is enhanced by using the determi-
nant of the Hessian matrix and the KT conditions. The KT conditions are the necessary
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conditions for optimality. Let the multivariate optimization problem can generalized as
the following:

Max → f (x) subject to
g1(x1, . . . ,xn)¬ b1

g2(x1, . . . ,xn)¬ b2 (16)
...
gm(x1, . . . ,xn)¬ bm

where g1(x1, . . . ,xn) are the constraints, f (x) is the objective function, n is the maximum
number of decision variables, m is the maximum number of constraints and i, j ∈ N.
Then the Lagrangian of the system can be expressed as the following:

L(x j, λ̄i) = f (x j)−
m

∑
i=1

λ̄igi(x j) such that ∀i ∈ [1,m] and ∀ j ∈ [1,n]. (17)

It can be observed that the vector, x j is the stationary point if for some λi ∈ R the sta-
tionarity condition holds. The stationarity equation (differential of the Lagrangian) is as
the following:

∇L(x j, λ̄i) =
∂ f (x j)

∂x j
−

m

∑
i=1

λ̄i
∂gi(x j)

∂x j
= 0 such that ∀ j ∈ [1,n]. (18)

However, the KT conditions will only identify the stationary points but will not provide
the information if the points are locally minimal or maximal. To overcome this setback,
the Hessian matrix of the differential Lagrangian is employed. If the determinant of the
Hessian matrix of the Lagrangian is positive definite (det

(
H(∇L(xj,λi)

)
> 0), then the

point is locally convex (minimum point) and vice versa. Therefore, the fitness criterion
of the SPSO algorithm is embedded with the KT conditions [11] and the Hessian [12] of
the Lagrangian to provide enhance its search accuracy for the local optimal.

3.1. Formulation for problem P1

For problem P1, the stationarity equation where ∀i ∈ [1,4] are as the following:

∇L(x1, λ̄i) = 0.6224x3x4 +6.3322x1x4 +39.68x1x2 + λ̄1 (19)

∇L(x2, λ̄i) = 1.7781x2
3 + λ̄2 (20)

∇L(x3, λ̄i) = 0.6224x1x4 +3.5562x2x3 +19.84x2
1 −0.0193λ̄1

(21)
−0.00954λ̄2 +2x3x2

4πλ̄3 +4x2
3πλ̄3

∇L(x4, λ̄i) = 0.6224x1x3 +3.1161x2
1 +2x4x2

3πλ̄3 − λ̄4. (22)
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For ∀ j ∈ [1,4], λ1 and λ2 can be calculated directly as the following:

λ1 =−(0.6224x3x4 +6.3322x1x4 +39.68x1x2) (23)

λ2 =−1.7781x2
3. (24)

By substituting λ2 into equation (21), λ3 is be obtained and by substituting λ3 into equa-
tion (22), λ4 can be calculated.

λ3 =
−0.6224x1x4 −3.5562x2x3 −19.84x2

1 +0.0193λ1 +0.00954λ2

2πx3x2
4 +4πx2

3
(25)

λ4 = 0.6224x1x3 +3.1161x2
1 +2πx2

3x4λ3. (26)

The Hessian matrix of the differential Lagrangian is represented as the following:

H(∇L(xj,λi)) =
∂2L

∂xi∂x j
. (27)

In this work, the notation for the Hessian matrix of the differential Lagrangian is as in
equation (28) and (29):

Li
j =

∂2L
∂xi∂x j

(28)

Li
j =


L1

1 L1
2 L1

3 L1
4

L2
1 L2

2 L2
3 L2

4

L3
1 L3

2 L3
3 L3

4

L4
1 L4

2 L4
3 L4

4

 for i, j ∈ [1,4]. (29)

The expressions for the Hessian matrix entries for problem P1 is as the following:

L1
1 = 6.3322x4 +39.68x2, L1

2 = 39.68x1, L1
3 = 0.6224x4, L1

4 = 0.6224x3 +6.3322x1,

L2
1 = 0, L2

2 = 0, L2
3 = 3.5562x3, L2

4 = 0,
L3

1 = 0.6224x4 +39.68x1, L3
2 = 3.5562x3, L3

3 = 3.5562x2 +2πx2
4λ3 +8πx3λ3, (30)

L3
4 = 0.6224x1 +4πx3x4λ,

L4
1 = 0.6224x3 +6.2322x1, L4

2 = 0, L4
3 = 0.6224x1 +4πx3x4λ3, L4

4 = 2πx2
3λ3

The determinant off the Hessian matrix of the differential Lagrangian is then solved
using Laplace expansion [19].
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3.2. Formulation for problem P2

For problem P1, the stationarity equations where ∀i ∈ [1,3] are as the following:

∇L(x1, λ̄i) = 2x1x2x3 +4x1x2 −
4λ̄1x3

2x3

7178x5
1
+

4λ̄2x2
2(37698x2x2

1 −4x3
1)

(12566x2x3
1 − x4

1)
2 −

(31)

− λ̄2(25132x1x2
2 −3x2

1x2)

(12566x2x2
1 − x3

1)
2 +

λ̄2

2554x3
1
+

140.45λ̄3

x2
2x3

− 2
3

λ̄4

∇L(x2, λ̄i) = x2
1x3 +2x2

1 +
3λ̄1x2

2x3

7178x4
1
+

λ̄2(4x2x4
1 + x5

1)

(12566x2x3
1 − x4

1)
2 −

280.9λ̄3x1

x3
2x3

− 2
3

λ̄4 (32)

∇L(x3, λ̄i) = x2
1x2 +

λ̄1x3
2

7178x4
1
− 140.45λ̄3x1

x2
2x2

3
(33)

In problem P2, the distribution of the λi in the differential lagrangian equations (equation
(27), (28)) makes λ1 a free variable. Therefore, the values of λi can only be obtained
iteratively by first guessing the free variable λ1. Firstly, the equations (27) and (28) are
simplified as the following:

∂L
∂x1

= α0 +α1λ1 +α3λ3 +α4λ4 (34)

∂L
∂x2

= β0 +β1λ1 +β3λ3 +β4λ4 (35)

∂L
∂x3

= φ0 +φ1λ1 +φ3λ3 (36)

where,

α0 = 2x1x2x3 +4x1x2, α1 =−
4x3

2x3

7178x5
1
, α3 =

140.45
x2

2x3
, α4 =−2

3

α2 =
4x2

2(37698x2x2
1 −4x3

1)

(12566x2x3
1 − x4

1)
2 − 25132x1x2

2 −3x2
1x2

(12566x2x2
1 − x3

1)
2 +

1
2554x3

1
(37)

β0 = x2
1x3 +2x2

1, β1 =
3x2

2x3

7178x4
1
,

β2 =
4x2x4

1 + x5
1

(12566x2x3
1 − x4

1)
2 , β3 =−280.9x1

x3
2x3

,
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β4 =−2
3

(38)

φ0 = x2
1x2, φ1 =

x3
2

7178x4
1
, φ1 =−140.45λ̄3x1

x2
2x2

3
. (39)

The iterative procedure begins by guessing the value of λ1. Since ∂L
∂x3

= 0, therefore
λ3 can be obtained as the following:

λ3 =
−φ0 −φ1λ1

φ2
. (40)

Thus, the value of λ1 is known. Next we simplify further equations (30) and (31) to
isolate the λ1 and λ3 terms. The expression produced is as the following:

∂L
∂x1

= (α0 +m0)+α2λ2 +α4λ4 (41)

∂L
∂x2

= (β0 +n0)+β2λ2 +β4λ4 (42)

where
m0 = α1λ1 +α3λ3 and n0 = β1λ1 +β3λ3. (43)

The expressions in equation (37) is then rearranged to express λ2 in terms of λ4:

λ2 =
−α4λ4 − (α0 +m0)

α2
(44)

The λ2 expression is then substituted into equation (38) to represent it only in terms of
λ4:

(β0 +n0)+β2

(
−α4λ4 − (α0 +m0)

α2

)
+β4λ4 = 0 (45)

λ4 =
(α0β2

/
α2)+(m0β2

/
α2)−β0 −n0

β4 − (α4β2
/

α2)
(46)

By substituting equation (42) into equation (40), the value of λ2 is obtained. Thus, by
initializing the value of the free variable λ1, the values of λ2, λ3 and λ4 is obtained
iteratively until the stationary condition is satisfied.

The notation used in P1 is applied similarly in P2. The Hessian matrix of the differ-
ential Lagrangian is as in equation (36):

Li
j =

 L1
1 L1

2 L1
3

L2
1 L2

2 L2
3

L3
1 L3

2 L3
3

 for i, j ∈ [1,3]. (47)
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The expressions for the Hessian matrix entries for problem P2 is as the following:

L1
1 = {2x2x3 +4x2}−

{
10λ1x3

2x3

3589x6
1

}
+


[(12566x2x3

1 − x4
1)

2(4λ1x2
2)(75396x2x1 −12x2

1)−
(4λ1x2

2)(37698x2x2
1 −4x3

1)(25132x2x3
1 −2x4

1)(37698x2x2
1 −4x3

1)]

/(12566x2x3
1 − x4

1)
4


−

{
[(12566x2x2

1 − x3
1)

2(25132λ2x2
2 −6λ2x1x2)−2(25132λ2x1x2

2 −3λ2x2x2
1)

×(12566x2x2
1 − x3

1)(25132x1x2 −3x2
1)]/(12566x2x2

1 − x3
1)

4

}
−
{

3λ2
2554x4

1

}

L1
2 = {2x1x3 +4x1}−

{
12λ1x2

2x3

7178x5
1

}
+


[(12566x2x3

1 − x4
1)

2(λ2)(16x3
1x2 +5x4

1)−
(2λ2)(4x4

1x2 + x5
1)(12566x2x3

1 − x4
1)(37698x2x2

1 −4x3
1)]

/(12566x2x3
1 − x4

1)
4

−
{

280.9λ3
x3x3

2

}

L1
3 = 2x1x2 −

{
4λ1x3

2

7178x5
1

}
−
{

140.45λ3

x2
2x2

3

}

L2
3 = x2

1 +

{
3λ1x2

7178x4
1

}
+

{
280.9λ3x1

x3
2x2

3

}

L3
1 = {2x1x2}−

{
4λ1x3

2

7178x5
1

}
−
{

140.45λ3

x3
2x3

3

}
(48)

L3
2 = x2

1 +

{
3λ1x2

2

7178x4
1

}
+

{
280.9λ3x1

x3
2x2

3

}

L3
3 =

{
280.9λ3x1

x2
2x3

3

}

L2
1 = {2x3 +4x1}−

{
12λ1x2

2x3

7178x5
1

}
+


[(12566x2x3

1 −4x4
1)

2(4λ2)(37698x3
2x2

1 −4x3
1x2

2)−
(4λ2)(37698x2

1x3
2 −4x3

1x2
2)(25132x3

1)(12566x2x3
1 −4x4

1)]

/(12566x2x3
1 −4x4

1)
4


−

{
[(12566x2x2

1 − x3
1)

2λ2(50264x1x2 −3x2
1)−λ2(50264x1x2 −3x2

1)

×(25132x2
1)(12566x2x2

1 − x3
1)]/(12566x2x2

1 − x3
1)

4

}
−
{

280.9λ3
x3x3

2

}
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L2
2 =

{
6λ1x2x3

7178x4
1

}
+


[(12566x2x3

1 − x4
1)

2(4x4
1λ3)−

(λ3)(4x4
1x2 + x5

1)(25132x3
1)(12566x2x3

1 − x4
1)]

/(12566x2x3
1 − x4

1)
4

−
{

842.7λ3x1

x3x4
2

}

The determinant of the Hessian matrix in P2 is then obtained using the Laplace expan-
sion [19].

The fitness criterion in the PSO algorithm is enhanced using the KT conditions and
the Hessian matrix. The PSO algorithm runs through the search space then identifies
the local minimum point with the aid of the Hessian. If these points satisfy the KT
condition, then the solution is printed. This procedure is repeated until the position and
the celocity of the particles in the swarm converge. The detail mechanism of the program
is represented in the algorithm and the flowchart (see Fig. 1) below:

Step 1: Initialize number of particles, i and the algorithm parameters w, c1, c2, r1, r2, n0.
Step 2: Set initial position xi(n) and velocity vi(n).
Step 3: Compute individual and social influence.
Step 4: Compute position xi(n+1) and velocity vi(n+1) at next iteration.
Step 5: Compute λi.
Step 6: Evaluate fitness function:

IF the candidate solutions are locally convex H(∇L(xj,λi)> 0 and the KT
conditions holds go to step 7.
ELSE update position xi and velocity vi and go to Step 3.

Step 7: Print solutions.
IF the particles velocity and position have converged, then halt
ELSE update position xi and velocity vi and go to Step 3.

where n is the number of iterations.

4. Computational results and analysis

The SPSO algorithm developed in this work is programmed using the C++ program-
ming language on a personal computer (PC) with an Intel dual core processor running at
2 GHz.

4.1. Computational results for problem P1

In problem P1, the objective function f (x), the design variables, number of itera-
tions and the execution time obtained by the SPSO algorithm is compared against the
modified PSO algorithm, [15]. In problem P1, a better optimal value for the objective
function, f (x) is achieved by SPSO algorithm as compared to the PSO [15] algorithm.
In terms of constraint satisfaction, the SPSO algorithm performed very well. The PSO
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Figure 1. Flowchart for the SPSO algorithm.

[15] algorithm seems to a certain degree have over-shot the g1(x) constraint which is
g1(x) ¬ 0. Besides that, the SPSO and the PSO algorithm [15] have satisfied all the
given constraints. The values of the lambda coefficients, (λ1,λ2,λ3,λ4) obtained at the
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converged solution of the objective function for problem P1 is (-1176.54, -237.53, 1.68E-
11, -31.6327).

The progression of the objective function, f (x) with respect to the number of iter-
ations, n for the SPSO algorithm is as in Fig. 2. In Fig. 2, the objective function, f (x)
obtained using the SPSO algorithm has the maximum value of 5703.96 at the 1st itera-
tion and the minimum value of 2019.53 at the 31st iteration. Therefore, the optimal value
is only reached at the 31st iteration with good constraint satisfaction. It must be noted
that the progression of the objective function with respect to the iteration using the SPSO
algorithm for problem P1 is stable and convergent. The progression of the determinant
of the Hessian matrix with respect to the number of iterations, n for problem P1 is as in
Fig. 3.

Figure 2. The objective function, f (x) with respect to the number of iterations, n for the SPSO algorithm
for P1.

Figure 3. The value of the determinant of the Hessian matrix with respect to the number of iterations, n for
the SPSO algorithm for P1.

In Fig. 3, it can be observed that the determinant of the Hessian matrix for the SPSO
algorithm is positive definite from the 1st iteration until the 17th iteration. Then it takes
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Table 3. Comparison of the optimization results for P1

P1 SPSO PSO[15]

f (x) 2019.53 6059.71
x1 0.959383 0.8125
x2 4.48071 0.4375
x3 11.5579 42.0984
x4 75.815 176.637
No. of iterations 31 -
Execution time (secs) 0.09 -

Table 4. Comparisons of constraint satisfaction for P1

P1 SPSO PSO[15]

g1(x) -0.736315 5.72E-09
g2(x) -4.37045 -3.59E-02
g3(x) -1.56E+15 -1.72E+08
g4(x) -164.185 -63.3634

the negative value until the 19th iteration. From then on, determinant of the Hessian ma-
trix remains positive until convergence of the algorithm. The regions where the Hessian
matrix is positive definite can be identified as regions where the associated points are lo-
cally convex. Thus this is the region where the potential local minimum to the objective
function exists.

The computational results are as in Tab. 1. The performance of each algorithm in
terms of constraints satisfaction, g(x) is also obtained (where all values of g(x)¬ 0. The
results of the constraints for problem P1 is as in Tab. 2:

4.2. Computational results for problem P2

For problem P2, the objective function f (x), the design variables, number of itera-
tions and the execution time obtained by the SPSO algorithm is compared against the
modified PSO algorithm, [15].

The progression of the objective function, f (x) with respect to the number of itera-
tions, n for the KHN algorithm is as in Fig. 4. The values of the lambda coefficients,
(λ1,λ2,λ3,λ4) at the converged solution of the objective function for problem P1 is
(0.0011, -0.00585508, 0.000491826, 0.118188).

In Fig. 4, the objective function, f (x) obtained using the SPSO algorithm has the
maximum value of 0.0105989 at the 1st iteration and the minimum value of 0.00820813
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Figure 4. The objective function, f (x) with respect to the number of iterations, n for the SPSO algorithm
for P2.

at the 13th iteration. The optimal value is reached at the 13th iteration with good con-
straint satisfaction. The progression of the determinant of the Hessian matrix with respect
to the number of iterations, n for problem P2 is as in Fig. 5.

Figure 5. The value of the determinant of the Hessian matrix with respect to the number of iterations, n for
the SPSO algorithm for P2.

Similar as in P1, the determinant of the Hessian matrix for the SPSO algorithm can
be obtained. It can be observed to be positive definite from the 1st iteration until the 3rd
iteration. From the 4th iteration onwards, the determinant of the Hessian matrix remains
positive until convergence of the algorithm. Thus, except for the points obtained in the
3rd and the 4th iterations, the rest of the region with respect to the iteration has a potential
local minimum to the objective function.

The computational results are as in Tab. 3. The performance of each algorithm in
terms of constraints satisfaction, g(x) is also obtained (where all values of g(x) ¬ 0).
The results of the constraints for problem P2 is as in Tab. 4.
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Table 5. Comparison of the optimization results for P2

P2 SPSO PSO[15]

f (x) 0.008208 0.01267
x1 0.061122 0.05169
x2 0.387959 0.35675
x3 3.66314 11.2871
No. of i 13 -
Execution time (secs) 0.106 -

Table 6. Comparisons of constraint satisfaction for P2

P2 SPSO PSO[15]

g1(x) -1.13504 -9.001053
g2(x) -0.42808 -0.134247
g3(x) -1.46E+01 -4.05379
g4(x) -0.70061 -0.727707

Table 7. Parameter setting for the SPSO algorithm for problems P1

Parameters Setting for P1 Values

Initial parameter (c1, c2, r1, r2, w) (1.1, 1.2, 0.5, 0.5, 0.8)
Number of particles 4
Initial social influence (s1, s2, s3, s4) (1.1, 1.05, 1.033, 1.025)
Initial personal influence (p1, p2, p3, p4) (3, 6, 11, 18)

Table 5 and Tab. 6 shows the parameter setting for problems P1 and P2 respectively
(based on heuristics) prior to the execution of the algorithm.

5. Discussion on computational experiment

The objective function, f (x) obtained using the SPSO algorithm is be observed to
decline in a decay fashion with respect to the iterations for problem P1. However in
problem P1, as mentioned previously, the objective function decreases parabolically until
convergence. Both the SPSO and the PSO [15] algorithms perform stable computation
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Table 8. Parameter setting for the SPSO algorithm for problems P2

Parameters Setting for P1 Values

Initial parameter (c1, c2, r1, r2, w) (1.1, 1.2, 0.5, 0.5, 0.02)
Number of particles 3
Initial social influence (s1, s2, s3) (1.1, 1.05, 1.03)
Initial personal influence (p1, p2, p3) (3, 6, 11)
initial guess for, λ1 0.0001

without divergent solutions. From the results, it can be seen that the SPSO approach
performs better in finding the optimal solution as compared to the PSO [15] approach.
In terms of implementation, a pure PSO or meta-heuristic method is easier to develop
as compared to the SPSO approach due to the analytical component that may include
lengthy derivations.

From the computational results, it can be seen that the SPSO approach performs
better in finding the optimal solution as compared to the PSO [15] approach. In P1 the
PSO [15] algorithm is seen to have broken the constraint g1(x) to a very negligible
degree. However, the SPSO algorithm abides all constraints in P1 and P2 satisfactorily
(see Tab. 2 and Tab. 4). Thus, it can be said that the SPSO algorithm performs well in
terms of feasibility for this two test problems. In problem P1 and P2, the SPSO algorithm
is a better minimizer as compared to the PSO [15] algorithm. The PSO algorithm may
have slight difficulties in handling the nonlinearities existing in the problem. However,
the SPSO algorithm handles the nonlinearities very well. The SPSO algorithm also
takes very little computational time approximately a fraction of a second (see Tab. 1 and
Tab. 3).

The SPSO method outperforms the previous PSO [15] method. Due to the employ-
ment of a more accurate fitness criterion (the KT conditions and the Hessian matrix)
which were derived analytically based on the problem statement, the adaptability of the
SPSO algorithm to the problem is better as compared to the PSO [15] algorithm. This in
effect minimizes the objective function further to the PSO [15] algorithm. Therefore, the
analytical derivation of the fitness function improves the robustness of the algorithm.
Hybridizing the SPSO method with algorithms like Tabu search (see [20], [21] and [22])
may provide it with a more efficient system for handling situations with multiple con-
straints for large scale problems and thus pave the way for obtaining a solution closer
to the global optimum. From this work, it can also be inferred that the implementa-
tion of more analytical methods to improve the fitness function would provide a better
generic algorithm for solving a wide range of problems. Due to the PSO component in
the SPSO algorithm, the stability and the convergence of the computations are assured
as seen in Fig. 2 and Fig. 4. A global solution with better computational time may be
obtained by strengthening the analytical methods employed in the fitness function in the
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SPSO algorithm. The stopping criteria for the SPSO algorithm is set such that, if the
KT conditions are satisfied, the determinant of the Hessian matrix is positive definite and
position/velocity of the particles converge; the program is then set to halt.

6. Conclusions and recommendations

In problem P1, the objective function is minimized further using the proposed SPSO
algorithm (2019.53) as compared to the PSO (6059.71) algorithm used in [15]. As for
problem P2, the objective function is minimized further using the proposed SPSO algo-
rithm (0.0082081) as compared to the PSO (0.012665) algorithm [15]. In this work, a
new local minimum is reached for the objective function of both test problems using the
SPSO algorithm. The SPSO algorithm developed in this work is an enhancement of the
PSO algorithm in terms of the capacity to handle highly non-convex problems. The KT
conditions and the Hessian matrix improve the PSO algorithm in terms of its accuracy to
search for optimal solutions. Further development in terms of the analytical techniques
to enhance the fitness function, may improve the algorithms capacity to seek out optimal
solutions in non-convex scenarios.

Nomenclature

f (x) objective function,
i index for constraint number,
j index for variable number,
g(x) constraint functions,
x j decision variables,
vi(t) particle velocity,
xi(t) particle position,
n number of iterations,
w, c1, c2, r1, r2 PSO parameters,
s1, s2, s3 parameters for particle social influence in PSO,
p1, p2, p4 parameters for particle social influence in PSO,
bi invariant at the right hand side of the constraints,
L(x j,λi) the Lagrangian of the system,
λi Lagrange coefficients,
Li

j Hessian matrix entries,
ωi, βi, αi, m0, n0 variants introduced for derivations in P2.
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