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Exponential stability of nonlinear neutral type systems

MICHAEL GIL’

Nonlinear neutral type systems with distributed and discrete delays are considered. Explicit
exponential stability conditions are established. The main tool is a combined usage of the recent
norm estimates for the matrix resolvents, the Urysohn theorem and estimates for fundamental
solutions of the linear parts.
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1. Introduction and preliminaries

This paper is devoted to stability analysis of nonlinear neutral type systems with
delay. The stability of neutral type equations was investigated by many authors. The
classical results can be found in [8, 9]. The basic method for the stability analysis is the
direct Lyapunov method. By that method many very strong results are obtained. Mainly,
scalar equations [1, 11, 12] and linear systems [2, 5] were considered. But finding Lya-
punov’s type functionals for nonlinear neutral type systems is usually difficult. The pa-
pers [3, 14] should be mentioned. In these papers, systems with discrete delays have
been investigated. The global exponential stability of periodic solutions for impulsive
neutral-type neural networks with delays have been explored in [13].

In the present paper we suggest the explicit exponential stability conditions for a
class of nonlinear neutral type systems with distributed and discrete delays.

The paper is organized as follows. It consists of 8 sections. In this section we inves-
tigate the linear parts of the systems considered below. In Section 2, the main result is
formulated. The proof of the main result is presented in Section 4. In Sections 4 and 5
we establish auxiliary results, which then are used to illustrate the main result. In Sec-
tion 6 we explore systems whose linear parts have discrete delays. Systems whose linear
parts have distributed delays are investigated in Section 7. The illustrative example is
presented in Section 8.

Let Cn be a complex Euclidean n-dimensional space with a scalar product (., .)n,
the unit matrix I, and the Euclidean norm ∥.∥n =

√
(., .)n. For a linear operator A in Cn

(matrix), ∥A∥n = supx∈Cn ∥Ax∥n/∥x∥n is the spectral norm.
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Denote by C(χ) = (χ,Cn) the space of continuous functions defined on a set χ ⊂ R
with values in Cn and the finite norm ∥w∥C(χ) = supt∈χ ∥w(t)∥n. C1(χ) = C1(χ,Cn) is
the space of continuously differentiable functions defined on χ with values in Cn and the
norm ∥w∥C1(χ) = ∥w∥C(χ)+ ∥ẇ∥C(χ), where ẇ is the derivative of w; L2(χ) = L2(χ,Cn)
is the space of functions defined on with values in Cn and the finite norm

∥w∥L2(χ) = [
∫
χ

∥w(t)∥2
ndt]1/2.

First, consider the linear problem

ẏ(t)−
η∫

0

dR̃(τ)ẏ(t − τ) =
η∫

0

dR(τ)y(t − τ) (ẏ(t) =
dy
dt

; 0 < η = const < ∞; t ­ 0), (1)

y(t) = ϕ(t) for −η¬ t ¬ 0, (2)

where ϕ ∈C1(−η,0) is given; R(s) = (ri j(s))n
i, j=1 and R̃(s) = (r̃i j(s))n

i, j=1 are real n×n-
matrix-valued functions defined on [0,η] whose entries have bounded variations

var(ri j) =

η∫
0

|dr jk|< ∞ and var(r̃i j)< ∞.

The integrals in (1) are understood as the Lebesgue - Stieltjes integrals.
We define the variation of R(.) as the matrix

Var(R) = (var(ri j))
n
i, j=1,

and denote V (R) := ∥Var(R)∥n. So V (R) is the spectral norm of matrix Var (R). Simi-
larly, V (R̃) is defined. It is assumed that R(η) is invertible and

V (R̃)< 1. (3)

A solution of problem (1), (2) is an absolutely continuous vector function y(t) defined
on [−η,∞) and satisfying (1) and (2).

The matrix-valued function

K(z) = Iz− z

η∫
0

exp(−zs)dR̃(s)−
η∫

0

exp(−zs)dR(s) (z ∈ C)

is the characteristic matrix-valued function to equation (1) and the zeros of det K(λ)
are the characteristic values of K(.); λ ∈ C is a regular value of K(.), if det K(λ) ̸= 0.
Everywhere below it is assumed that all the characteristic values of K(.) are in the
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open left half-plane C−. Below we give some conditions that provide the location of the
characteristic values in C−.

Due to Theorem 3.1.1 from [9, p. 114], under conditions (3) equation (1) is asymp-
totically stable and L2-stable (that is, the inequality (16) below holds), if all the charac-
teristic values of K(.) are in C−. Moreover, the integral

G(t) :=
1

2π

∞∫
−∞

eiωtK−1(iω)dω (t ­ 0) (4)

exists and the function G(t) defined by (4) for t ­ 0 and by G(t) = 0 for −η ¬ t < 0 is
called the fundamental solution to (1). From (4) it follows that G(t) is a solution to (1)
and G(0) = I, cf. [9].

2. Statement of the main result

Introduce the set Ω(r) = { f ∈ C(−η,∞) : ∥ f∥C(−η,∞) ¬ r} for a given number
0 < r ¬ ∞. Consider the equation

ẋ(t)−
η∫

0

dR̃(s)ẋ(t − s)−
η∫

0

dR(t,s)x(t − s) = [Fx](t) (t ­ 0), (5)

where F is a continuous mapping Ω(r)→C(−η,∞), satisfying the following condition:
there is a nondecreasing function ν(t) defined on [0,η], such that

∥[F f ](t)∥n ¬
η∫

0

∥ f (t − s)∥ndν(s) (t ­ 0; f ∈ Ω(r)). (6)

A (mild) solution of problem (6), (2) is a continuous function x(t) defined on [−η,∞),
such that

x(t) = z(t)+
t∫

0

G(t − t1)[Fx](t1)dt1 (t ­ 0), (7)

x(t) = ϕ(t) (−η¬ t ¬ 0), (8)

where G(t) is the fundamental solution of the linear equation (1) and z(t) is a solution of
the problem (1), (2).

We will say that the zero solution to equation (5) is exponentially stable, if there are
positive constants r0 ¬ r, m̂ and ε, such that for any ϕ with

∥ϕ∥C1(−η,0) ¬ r0, (9)
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problem (5), (2) has at least one solution, and any solution x(t) of that problem satisfies

∥x(t)∥n ¬ m̂e−εt∥ϕ∥C1(−η,0) (t ­ 0),

provided (9) holds.
Put

v0 =
2 V (R)

1−V (R̃)
and θ(K) := sup

−v0¬ω¬v0

∥K−1(iω)∥n.

Now we are in a position to formulate our main result.

Theorem 1 Let the conditions (3), (6) and

var(ν)θ(K)< 1 (10)

hold. Then the zero solution to (5) is exponentially stable.

This theorem is proved in the next section. Below we give the estimates for θ(K) and
examples.

For instance, (5) can take the form

ẋ(t)−
η∫

0

Ã(τ)ẋ(t − s)dτ−
m̃

∑
k=1

Ãkẋ(t − h̃k) =

(11)
η∫

0

A(s)x(t − s)ds+
m

∑
k=0

Akx(t −hk)+ [Fx](t) (t ­ 0),

where m, m̃ are finite integers; 0 = h0 < h1 < ... < hm ¬ η and 0 < h̃1 < ... < h̃m̃ ¬ η are
constants, Ak, Ãk are constant matrices and A(s), Ã(s) are integrable on [0,η]. Put

V1 =

η∫
0

∥A(s)∥nds+
m

∑
k=0

∥Ak∥n, Ṽ1 =

η∫
0

∥Ã(s)∥nds+
m̃

∑
k=1

∥Ãk∥n,

assuming that VC and ṼC are finite. It is not hard to show that in this case V (R)¬V1 and
V (R̃)¬ Ṽ1.

3. Proof of Theorem 1

For an f ∈C([−η,T ],Cn),T < ∞, put

E f (t) =

η∫
0

dR(s) f (t − s), Ẽ f (t) =

η∫
0

dR̃(s) f (t − s) (0¬ t ¬ T ).
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Lemma 1 The inequalities

∥E f∥C([−η,T ],Cn)→C([0,T ],Cn) ¬
√

n V (R) (12)

and
∥E f∥L2([−η,T ],Cn)→L2([0,T ],Cn) ¬V (R) (13)

are valid.

Proof Let f (t) = ( fk(t))n
k=1 ∈C([−η,T ],Cn). For each coordinate (E f ) j(t) of E f (t) we

have

|(E f ) j(t)|= |
η∫

0

n

∑
k=1

fk(t − s)dr jk(s)|¬
n

∑
k=1

η∫
0

|dr jk| max
0¬s¬η

| fk(t − s)|=

n

∑
k=1

var(r jk) max
0¬s¬η

| fk(t − s)|.

Hence,
n

∑
j=1

|(E f ) j(t)|2 ¬
n

∑
j=1

(
n

∑
k=1

var(r jk)∥ fk∥C(−η,T )

)2

=

∥Var (R) zC∥2
n ¬ (var(R)∥zC∥n)

2 (0¬ t ¬ T ),

where zC = (∥ fk∥C[−η,T ])
n
k=1, ∥.∥C(−η,T ) = ∥.∥C([−η,T ],C). But

∥zC∥2
n =

n

∑
k=1

∥ fk∥2
C(−η,T ) ¬

nmax
k

∥ fk∥2
C(−η,T ) ¬ nsup

t

n

∑
k=1

∥ fk(t)∥2
n = n∥ f∥2

C([−η,T ],Cn).

So
∥E f∥C([0,T ],Cn) ¬

√
nvar (R)∥ f∥C([−η,T ],Cn)

and thus inequality (12) is proved.
Now consider the norm in space L2. We have

T∫
0

|(E f ) j(t)|2dt ¬
T∫

0

(
n

∑
k=1

0∫
−η

| fk(t − s)||dr jk(s)|)2dt =

0∫
−η

0∫
−η

n

∑
i=1

n

∑
k=1

|dr jk(s)||dr ji(s1)|
T∫

0

| fk(t − s) fi(t − s1)|dt.
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By the Schwarz inequality T∫
0

| fk(t − s) fi(t − s1)|dt

2

¬
T∫

0

| fk(t − s)|2dt
T∫

0

| fi(t − s1)|2dt ¬

T∫
−η

| fk(t)|2dt
T∫

−η

| fi(t)|2dt.

Thus

T∫
0

|(E f ) j(t)|2dt ¬
n

∑
i=1

n

∑
k=1

var(r jk)var(r ji)∥ fk∥L2(−η,T )∥ fi∥L2(−η,T ) =

(
n

∑
k=1

var(r jk)∥ fk∥L2(−η,T ))
2 (∥ fk∥L2(−η,T ) = ∥ fk∥L2([−η,T ],C))

and therefore

n

∑
j=1

T∫
0

|(E f ) j(t)|2dt ¬
n

∑
j=1

(
n

∑
k=1

var(r jk)∥ fk∥L2(−η,T ))
2 =

∥Var (R) z2∥2
n ¬ (var(R)∥z2∥n)

2

where z2 is the vector with the coordinates ∥ fk∥L2(−η,T ). But ∥z2∥n = ∥ f∥L2([−η,T ],Cn).
So (13) is also proved.

Lemma 2 The equality sup−∞¬ω¬∞ ∥K−1(iω)∥n = θ(K) is valid. Moreover, θ(K) ­
∥R−1(η)∥n.

Proof Without loss of generality assume that R(0−) = 0. We have −K(0) = R(η). Thus
∥K−1(0)∥n = ∥R−1(η)∥n ­ 1

∥R(η)∥n
­ 1

V (R) . In addition,

∥K(iω)x∥n ­ (|ω|(1−V (R̃))−V (R))∥x∥n ­V (R)∥x∥n (ω ∈ R, |ω|­ v0; x ∈ Cn).

So ∥K−1(iω)∥n ¬ 1
V (R) ¬ ∥K−1(0)∥n (|ω| ­ v0). Thus the maximum of ∥K−1(iω)∥n is

attained on [−v0,v0]. As claimed.

Lemma 3 Let condition (6) hold with r = ∞. Then ∥Fw∥L2(−η,T ) ¬ var(ν)∥w∥L2(−η,T )
(w ∈ L2(−η,T )) for any T > 0.
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Proof In the space L2(−η,∞) of scalar functions w introduce the operator Êν by

(Êνw)(t) =

η∫
0

w(t − τ)dν(τ).

Then using the previous lemma, we have ∥Êνw∥L2(0,∞) ¬ var(ν)∥w∥L2(−η,T ). Now (6)
with w(t) = ∥ f (t)∥n implies the required result.

Furthermore, use the operator Ĝ defined on L2(0,∞) by

Ĝ f (t) =
t∫

0

G(t − t1) f (t1)dt1 ( f ∈ L2(0,∞)),

and assume that
var (ν) ∥Ĝ∥L2(0,∞) < 1. (14)

Lemma 4 Let conditions (3), (14) and (6) with r = ∞ hold. Then problem (5), (2) has a
solution. Moreover, any solution x(t) of that problem satisfies the inequality

∥x∥L2(−η,∞) ¬ (1− var(ν)∥Ĝ∥L2(0,∞))
−1∥z∥L2(−η,∞). (15)

Proof Take a finite T > 0 and define the mapping Φ by

Φw(t) = z(t)+
t∫

0

G(t − t1)[Fw](t1)dt1 (0¬ t ¬ T ;w ∈ L2(0,T )),

and Φw(t) = ϕ(t) for −η¬ t ¬ 0. Then by Lemma 3 we have

∥Φw∥L2(−η,T ) ¬ ∥ϕ∥L2(−η,0)+∥z∥L2(0,T )+∥Ĝ∥L2(0,∞)var(ν)∥w∥L2(−η,T ).

As it was above mentioned, under condition (3), the linear equation (1) is L2-stable. That
is,

∥z∥L2(−η,∞) ¬ c1∥ϕ∥C1(−η,0) (c1 = const). (16)

So Φ maps L2(−η,T ) into itself. Taking into account that Φ is compact, due to the
Schauder fixed point theorem, we prove the existence of solutions. Furthermore,

∥x∥L2(−η,T ) = ∥Φx∥L2(−η,T ) ¬ ∥z∥L2(−η,T )+∥Ĝ∥L2(0,T )var(ν)∥x∥L2(−η,T ).

Hence we easily obtain (15).
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By the Parseval equality and Lemma 2 we have ∥Ĝ∥L2(0,∞) = θ(K). Now the previous
lemma implies the inequality

∥x∥L2(−η,∞) ¬ (1− var(ν)θ(K))−1∥z∥L2(−η,∞).

Thus according to (16),

∥x∥L2(−η,∞) ¬ c2∥ϕ∥C1(−η,0) (c2 = const). (17)

From (5), and Lemmas 1 and 3 it follows that

∥ẋ∥L2(0,∞) ¬V (R̃)∥ẋ∥L2(−η,∞)+(V (R)+ var(ν))∥x∥L2(−η,∞).

Or

∥ẋ∥L2(0,∞) ¬V (R̃)(∥ẋ∥L2(0,∞)+∥ẋ∥L2(−η,0))+(V (R)+ var(ν))∥x∥L2(−η,∞).

So due to (3) we obtain

Corollary 1 Under the hypothesis of Lemma 4 we have

∥ẋ∥L2(0,∞) ¬ (1−V (R̃))−1[(V (R)+ var(ν))∥x∥L2(0,∞)+V (R̃)∥ϕ̇∥L2(−η,0)].

The previous corollary and (17) imply the inequality

∥ẋ∥L2(0,∞) ¬ c3∥ϕ∥C1(−η,0) (c3 = const). (18)

We need the following simple result.

Lemma 5 Let f ∈ L2(0,∞) and ḟ ∈ L2(0,∞). Then ∥ f∥2
C(0,∞) ¬ 2∥ f∥L2(0,∞)∥ ḟ∥L2(0,∞).

For the proof see [7, Lemma 7.7]. This lemma, (16) and (17) imply the next result.

Lemma 6 Under the hypothesis of Lemma 4, the inequality

∥x∥C(0,∞) ¬ c4∥ϕ∥C1(−η,0) (c4 = const) (19)

is valid and therefore the zero solution of (5) is globally stable in the Lyapunov sense.

Proof of Theorem 1 Substituting

x(t) = yε(t)e−εt (20)

with an ε > 0 into (5), we obtain the equation

ẏε − εyε −Eε,R̃ẏε + εEε,R̃yε = Eε,Ryε +Fεyε, (21)
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where

(Eε,R̃ f )(t) =

η∫
0

eετdτR̃(t,τ) f (t − τ),(Eε,R f )(t) =

η∫
0

eετdτR(t,τ) f (t − τ)

and [Fε f ](t) = eεt [F(e−εt f )](t). By (6) with r = ∞ we have

∥[Fε f ](t)∥n ¬ eεt

η∫
0

e−ε(t−s)∥ f (t − s)∥ndν¬ eεη
η∫

0

∥ f (t − s)∥ndν.

Taking ε sufficiently small and applying our above arguments to equation (21), according
to (19), we obtain

∥yε∥C(0,∞) ¬ cε∥ϕ∥C1(−η,0) (cε = const). (22)

Now (20) implies
∥x(t)∥C(0,∞) ¬ cε∥ϕ∥C1(−η,0)e

−εt (t ­ 0). (23)

So in the case r = ∞, the theorem is proved.
Now let r <∞. By the Urysohn theorem [4, p. 15], there is a continuous scalar-valued

function ψr defined on C(0,∞), such that

ψr( f ) = 1 (∥ f∥C(0,∞) < r) and ψr( f ) = 0 (∥ f∥C(0,∞) ­ r).

Put [Fr f ](t) = ψr( f )[F f ](t). Clearly, Fr satisfies (6) for all f ∈C(−η,∞). Consider the
equation

ẋ− Ẽẋ = Ex+Frx. (24)

The solution of (24) denote by xr. For a sufficiently small ε, according to (23), we have
∥xr(t)∥C(0,∞) ¬ cε∥ϕ∥C1(−η,0). If we take ∥ϕ∥C1(−η,0) ¬ r/cε, then Frxr = Fx and equa-
tions (5) and (24) coincide. This and (23) prove the theorem.

4. Estimates for θ(K)

For an n×n-matrix A, λk(A) (k = 1, ...,n) denote the eigenvalues of A numerated in
an arbitrary order with their multiplicities, A∗ is the adjoint to A and A−1 is the inverse
to A. N2(A) is the Hilbert-Schmidt (Frobenius) norm of A: N2

2 (A) = Trace AA∗, AI =
(A−A∗)/2i is the imaginary component.

The following quantity plays a key role in the sequel:

g(A) = (N2
2 (A)−

n

∑
k=1

|λk(A)|2)1/2.



134 M. GIL’

It is not hard to check that g2(A)¬ N2(A)−|Trace A2|. In Section 2.2 of [6] it is proved
that

g2(A)¬ 2N2
2 (AI) and g(eiτA+ zI) = g(A) (25)

for all τ ∈ R and z ∈ C. If A1 and A2 are commuting matrices, then

g(A1 +A2)¬ g(A1)+g(A2). (26)

From Corollary 2.1.2 [6], it follows that for any invertible n×n-matrix A, the inequality

∥A−1∥n ¬
n−1

∑
k=0

gk(A)√
k!ρk+1(A)

(27)

is true, where ρ(A) is the smallest modulus of the eigenvalues of A: ρ(A) =
mink=1,...,n |λk(A)|.

Put

B(z) =

η∫
0

z exp(−zs)dR̃(s)+

η∫
0

exp(−zs)dR(s).

So K(z) = zI−B(z). By (25) g(B(z)) = g(K(z)). Thanks to (27), for any regular value z
of K(.), the inequality

∥[K(z)]−1∥n ¬ Γ(K(z)) (z ∈ C) (28)

is valid, where

Γ(K(z)) =
n−1

∑
k=0

gk(B(z))√
k!ρk+1(K(z))

and ρ(K(z)) is the smallest absolute value of the eigenvalues of K(z):

ρ(K(z)) = min
k=1,...,n

|λk(K(z))|.

If B(z) is a normal matrix, then g(B(z)) = 0, and ∥[K(z)]−1∥n ¬ ρ−1(K(z)). For exam-
ple, that inequality holds, if K(z) = zI − Ãze−zη −Ae−zη, where A and Ã are Hermitian
matrices.

Furthermore, from (28) the inequality

θ(K)¬ Γ0(K), where Γ0(K) := sup
−v0¬ω¬v0

Γ(K(iω)) (29)

follows. Thus due to Theorem 1 we arrive at the following result.

Theorem 2 Let all the zeros of K be in C− and the conditions (3), (6) and

var(ν)Γ0(K)< 1 (30)

hold. Then the zero solution to equation (5) is exponentially stable.
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Denote
ĝ(B) := sup

ω∈[−v0,v0]

g(B(iω)) and ρ̂(K) := inf
ω∈[−v0,v0]

ρ(K(iω)).

Then we have

Γ0(K)¬ Γ̂(K), where Γ̂(K) :=
n−1

∑
k=0

ĝk(B)√
k!ρ̂k+1(K)

. (31)

Now Theorem 2 implies

Corollary 2 Let all the zeros of K be in C− and the conditions (3), and qΓ̂(K)< 1 hold.
Then the zero solution to equation (5) is exponentially stable.

Thanks to the definition of g(A), for all ω ∈ R one can write

g(B(iω))¬ N2(B(iω))¬
√

n∥B(iω)∥n ¬
√

n(|ω|V (R̃)+V (R)). (32)

The sharper estimates for g(B(iω)) under additional conditions are given below.

5. Auxiliary results

In this section we investigate scalar quasi-polynomials. The results obtained in this
section will be used in the rest of the paper. Consider the function

k(z) = z

1−
η∫

0

e−τzdµ̃

+

η∫
0

e−τzdµ (z ∈ C), (33)

where µ = µ(τ) and µ̃ = µ̃(τ) are nondecreasing functions defined on [0,η], with

0 < var(µ̃)< 1 and var(µ)< ∞. (34)

Put

v1 =
2 var(µ)

1− var(µ̃)
.

Lemma 7 The equality inf−∞¬ω¬∞ |k(iω)|= inf−v1¬ω¬v1 |k(iω)| is valid.

Proof We have −k(0) = var(µ). In addition,

|k(iω)|­ |ω|(1− var (µ̃))− var (µ)­ var(µ) (ω ∈ R, |ω|­ v1).

Thus the minimum of |k(iω)| is attained on [−v1,v1]. As claimed.

Put

ξ(z) = z+

η∫
0

exp(−zs)dµ(s) (z ∈ C).
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Lemma 8 Let η var(µ)< π/4. Then all the zeros of ξ(z) are in C− and infω∈R |ξ(iω)|­
d̂, where

d̂ :=

η∫
0

cos(2var(µ)τ)dµ(τ).

Proof Put v2 = var(µ) and

ξ(m,z) = z+(1−m)v2 +m

η∫
0

exp(−zτ)dµ(τ) (m ∈ [0,1]).

We have ξ(m,0) = var(µ) = v2. So according to the previous lemma,

inf
ω∈R

|ξ(m, iω)|= inf
−2v2¬ω¬2v2

|ξ(m,ω)|.

In particular, inf−2v2¬ω¬2v2 |ξ(iω)|= infω∈R |ξ(iω)|. But

|ξ(m, iω)|2 = |iω+ v2(1−m)+m

η∫
0

e−τiωdµ(τ)|2 =

(ω−m

η∫
0

sin (τω)dµ(τ))2 +(v2(1−m)+m

η∫
0

cos (τω)dµ(τ))2 ­ w2(m) (|ω|¬ 2v2),

where

w(m) = v2(1−m)+m

η∫
0

cos (2τv2)dµ(τ).

The derivative of w(m) is non-positive. So w(m)­ w(1) = d̂. Thus

inf
ω∈R

|ξ(m, iω)|= inf
−2v2¬ω¬2v2

|ξ(m, iω)|­ d̂ (m ∈ [0,1]). (35)

Furthermore, assume that ξ(z) has a zero in the closed right hand plane C+. Since
ξ(0,z) = z+v does not have zeros in C+, ξ(m0, is) (ω ∈R) should have a zero for some
m0, according to continuous dependence of zeros on coefficients. But according to (35)
this is impossible. The proof is complete.

Lemma 9 Let the conditions (34),

ηv1 < π/2 (36)
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and

d0 :=

η∫
0

cos(v1τ)dµ− v1

η∫
0

sin(v1τ)dµ̃ > 0 (37)

hold. Then all the zeros of k(.) are in C− and

inf
−∞¬ω¬∞

|k(iω)|­ d0 > 0. (38)

Proof Clearly, Re k(iω) = −ω
∫ η

0 sin(ωτ)dµ̃+
∫ η

0 cos(ωτ)dµ. Hence, with |ω| ¬ v1, we
have

|Re k(iω)|= Re k(iω)­−v1

η∫
0

sin(v1τ)dµ̃+

η∫
0

cos(v1τ)dµ = d0 > 0.

This proves (38). Furthermore, put g2(z) = −z
∫ η

0 e−τzdµ̃ and k(m,z) = ξ(z)+mg2(z),
0 ¬ m ¬ 1. According to Lemma 7, infω∈R |k(m, iω)| = inf−v1¬ω¬v1 |k(m, iω)|. Hence,
due to (38),

|k(m, iω)|­
η∫

0

cos(v1τ)dµ−mv1

η∫
0

sin(v1τ)dµ̃ > d0 (ω ∈ R). (39)

Furthermore, assume that k(z) has a zero in the closed right hand plane C+. By Lemma
8 k(0,z) = ξ(z) does not zeros in C+. So k(m0, iω) (ω ∈ R) should have a zero for some
m0 ∈ (0,1], according to continuous dependence of zeros on coefficients. But due to to
(39) this is impossible. The proof is complete.

For instance, consider the function

k1(z) = z(1− ãe−h̃z)+ae−hz +b

with a,b,h, h̃ = const ­ 0, and 0 < ã < 1. Then v1 = 2(a+ b)(1− ã)−1. Furthermore,
due to Lemma 9 we arrive at the following result.

Corollary 3 Assume that the conditions

hv1 < π/2, h̃v1 < π/2 (40)

and
d1 := a cos(v1h)+b− v1ã sin(v1h̃)> 0. (41)

Then all the zeros of k1(.) are in C− and inf−∞¬ω¬∞ |k(iω)|­ d1 > 0.
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6. Linear parts with discrete delays

Let Ã = (ã jk),A = (a jk) and C = (c jk) be n×n− matrices. Consider the equation

ẏ(t)− Ãẏ(t − h̃)+Ay(t −h)+Cy(t) = [Fy](t) (t ­ 0), (42)

assuming that ∥Ã∥n < 1. So K(z) = z(I − Ãe−h̃z)+Ae−hz +C. The entries of K are

k jk(z) = z(1− ã jke−h̃z)+a jke−hz + c jk.

Thanks to the Hadamard criterion [10], any characteristic value λ of K(z) satisfies the
inequality

|k j j(z)−λ|¬
n

∑
m=1,m ̸= j

|k jm(z)| ( j = 1, ...,n).

Hence we have

ρ(K(z))­ min
j=1,...,n

(|k j j(z)|−
n

∑
m=1,m̸= j

|k jm(z)| ), (43)

provided the right-hand part is positive. Furthermore, in the case (42) we have V (R̃) =
∥Ã∥n, V (R) = ∥A∥n +∥C∥n, v0 = 2(∥A∥+∥C∥)(1−∥Ã∥)−1. In addition,

g(K(z)) = g(B(z)) = g(−zÃe−h̃z +Ae−hz +C).

Hence, by (25)

g(B(iω))¬ 1√
2

N2(B(iω)−B∗(iω))¬

1√
2
[|ω|N2(e−ih̃ωÃ+ eih̃ωÃ∗)+N2(e−ihωA− eih̃ωA∗)+N2(C−C∗)].

One can use also the relation g(B(iω)) = g(eisB(iω)) for all real s and ω. In particular,
taking s =−h̃+π/2, we have by (25)

g(B(iω))¬ 1√
2
[|ω|N2(Ã− Ã∗)+N2(e−i(h−h̃)ωA+ ei(h−h̃)ωA∗)+N2(Ceih̃ω + e−ih̃ωC∗)].

If Ã is self-adjoint, then

g(B(iω))¬ 1√
2
[N2(e−i(h−h̃)ωA+ ei(h−h̃)ωA∗)+N2(Ceih̃ω + e−ih̃ωC∗)].

Hence,
g(B(iω))¬

√
2[N2(A)+N2(C)] (ω ∈ R). (44)
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For example, consider the system

ẏ j(t)− ã j jẏ j(t − h̃)+
n

∑
k=1

(a jkyk(t −h)+ c jkyk(t)) = [Fjy](t), (45)

( j = 1, ...,n; t ­ 0), where [Fjy](t) are coordinates of [Fy](t), and suppose that

a j j,c j j ­ 0, 0 < ã j j < 1 ( j = 1, ...,n). (46)

So Ã = diag (ã j j). Then (43) implies

ρ(K(iω))­ min
j=1,...,n

(
|k j j(iω)|−

n

∑
m=1,m̸= j

(|a jm|+ |c jm|)

)
. (47)

Put

v j =
2(a j j + c j j)

1− ã j j

and assume that

v jmax{h, h̃}< π/2 and d j := a j jcos(v jh)+ c j j − v jãsin(v jh̃)> 0 (48)

( j = 1, ...,n). Then by Corollary 3 all the zeros of k j j(.) are in C− and

inf
−∞¬ω¬∞

|k j j(iω)|­ d j > 0.

In addition, let

ρd := min
j=1,...,n

(d j −
n

∑
m=1,m̸= j

(|a jm|+ |c jm|))> 0, (49)

then according to (44) we get

Γ0(K)¬ Γd :=
n−1

∑
k=0

(
√

2(N2(A)+N2(C)))k
√

k!ρk+1
d

.

Now Theorem 2 yields our next result.

Corollary 4 Let conditions (46), (48) and (49) be fulfilled. Then the zero solution to
system (45) is exponentially stable, provided var(ν)Γd < 1.
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7. Linear parts with distributed delays

Let us consider the equation

ẏ(t)− Ã

η∫
0

ẏ(t − s)dµ̃(s)+A

η∫
0

y(t − s)dµ(s) = [Fy](t) (t ­ 0), (50)

where Ã and A are n× n− matrices with ∥Ã∥n < 1, and µ, µ̃ are scalar nondecreasing
functions, again. Without loss of generality suppose that

var(µ) = var(µ̃) = 1. (51)

So in the considered case R(s) = µ(s)A, R̃(s) = µ̃(s)Ã,

K(z) = zI − zÃ

η∫
0

e−zsdµ̃(s)+A

η∫
0

e−zsdµ(s),

V (R) = ∥A∥n, V (R̃) = ∥Ã∥n and v0 = 2∥A∥n(1−∥Ã∥n)
−1. Moreover,

ĝ(K) = sup
|ω|<v0

g(B(iω))¬ N2(A)+ v0N2(Ã).

If the both matrices Ã and A are self-adjoint, then B(z) is normal and ĝ(K) = 0. If

K(z) = zI − zÃe−zh̃ +A

η∫
0

e−zsdµ(s), (52)

then by (25) g(B(iω)) = g(ieiωh̃B(iω))¬

1√
2
[ |ω|N2(Ã− Ã∗)+N2(

η∫
0

e−iω(s−h̃)dµ(s)A+

η∫
0

eiω(s−h̃)dµ(s)A∗)].

Consequently, in the case (52) we get

ĝ(K)¬ v0√
2

N2(Ã− Ã∗)+
√

2N2(A).

Now we can directly apply Corollary 2.
In the rest of this section we suppose that Ã and A commute. So the eigenvalues of

K can be written as

λ j(K(z)) = z− z

η∫
0

e−zsdµ̃(s)λ j(Ã)+

η∫
0

e−zsdµ(s)λ j(A),
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and, in addition, according to (26), g(B(iω))¬ |ω|g(Ã)+g(A). So

g(B(iω))¬ g(A, Ã) := v0g(Ã)+g(A) (ω ∈ [−v0,v0]).

If A is normal, then g(A) = 0, and g(A, Ã) = g(Ã), if Ã is normal, then g(A, Ã) = g(A).
If the both Ã and A are normal commuting matrices, then g(A, Ã) = 0.

Furthermore, suppose λk(A) and λk(Ã) (k = 1, ...,n) are positive and put

vk =
2λk(A)

1−λk(Ã)
.

If

ηvk < π/2 and dk(µ, µ̃) := λk(A)

η∫
0

cos (τvk)dµ− vkλk(Ã)

η∫
0

sin (τvk)dµ̃ > 0, (53)

(k = 1, ...,n), then by Corollary 3 all the characteristic values of K are in C− and

inf
ω∈R

|λ j(K(iω))|­ d̃com := min
k

dk(µ, µ̃) ( j = 1, ... ,n).

So

Γ̂(K)¬ Γcom(K) :=
n−1

∑
k=0

ĝk(A, Ã)
√

k!d̃k+1
com

.

Now Corollary 2 implies

Corollary 5 Let Ã and A be commuting matrices with positive eigenvalues. Let the con-
ditions (51), (53) and qΓcom(K)< 1 be fulfilled. Then the zero solution to equation (50)
is exponentially stable.

8. Example

Consider the system

ẋ j(t)−aẋ j(t −h)+
2

∑
k=1

c jkxk(t) = [Fjx](t) ( j = 1,2; t ­ 0), (54)

where 0 < a < 1,0¬ h¬ 1, c jk are real and

[Fjx](t) = q jx
p1
1 (t −h)+

1∫
0

m j(s)x
p2
2 (t − s)ds (q j = const ­ 0; p j > 1)



142 M. GIL’

with integrable functions m j ( j = 1,2). For continuous scalar functions f1, f2 defined
on [−h,∞) and a finite r > 0 we have

|[Fj f ](t)|¬ q jrp1−1| f1(t−h)|+rp2−1
1∫

0

|m j(s)|| f2(t−s)|ds (| f j(t)|¬ r; t ­ 0; j = 1,2).

Hence, omitting simple calculations, we obtain inequality (6) with n = 2,η = 1 and
var(ν)¬ q̂r, where

q̂2
r = (q1rp1−1 + rp2−1

1∫
0

|m1(s)|ds)2 +(q2rp1−1 + rp2−1
1∫

0

|m2(s)|ds)2.

Furthermore, we have K(z) = z(1−ae−zh)I+C with C = (c jk) , B(z) =−ae−zhI+C and
by (25), g(B(z)) = g(C)¬ gC = |c12 − c21|. Since Ã and C commute, the eigenvalues of
K are

λ j(K(z)) = z− z ae−zh +λ j(C).

Suppose λk(C) (k = 1,2) are positive and put

vk =
2λk(C)

1−a
.

If
hvk < π/2 and dk := λk(C)− vka sin (hvk)> 0 (k = 1,2), (55)

then by Corollary 3, the characteristic values of K are in C−, and

inf
ω∈R

|λk(K(iω))|­ d̂ := min
k=1,2

dk.

So

Γ̂(K)¬ Γ̃ :=
1
d̂

(
1+

gC

d̂

)
.

Thanks to Corollary 2 we can assert that the zero solution to system (45) is exponentially
stable provided the conditions (55) and q̂Γ̃ < 1 hold.

9. Concluding remarks

In this paper we have established the explicit exponential stability conditions for a
wide class of neutral systems. As the example shows, in appropriate situations we can
avoid constructing the Lyapunov functionals.
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