
Archives of Control Sciences
Volume 22(LVIII), 2012

No. 2, pages 145–159

Computation of initial conditions and inputs
for given outputs of fractional

and positive discrete-time linear systems

TADEUSZ KACZOREK

The problem of computation of initial conditions and inputs for given outputs of fractional
standard and positive discrete-time linear systems is formulated and solved. Necessary and suf-
ficient conditions for existence of solution to the problem are established. It is shown that there
exist the unique solutions to the problem only if the pair (A,C) of the system is observable.
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1. Introduction

In positive systems inputs, state variables and outputs take only non-negative values.
Examples of positive systems are industrial processes involving chemical reactors, heat
exchangers and distillation columns, storage systems, compartmental systems, water and
atmospheric pollution models. A variety of models having positive linear behavior can
be found in engineering, management science, economics, social sciences, biology and
medicine, etc. An overview of state of the art in positive linear theory is given in the
monographs [2, 3]. The notions of controllability and observability and the decomposi-
tion of linear systems have been introduced by Kalman [10, 11]. Those notions are the
basic concepts of the modern control theory [1, 9, 12, 13, 6]. They have been also ex-
tended to positive linear systems [2, 3]. The decomposition of the pair (A,C) and (A,B)
of the positive discrete-time linear systems has been addressed in [4] and the problem of
computation of initial conditions and inputs for given outputs of standard and positive
discrete-time linear system in [7].

In this paper the problem of computation of initial conditions and inputs for given
outputs of fractional standard and positive discrete-time linear systems will be formu-

The Author is with Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska
45D, 15-351 Bialystok, Poland. E-mail: kaczorek@isep.pw.edu.pl

This work was supported by Ministry of Science and Higher Education in Poland under work
S/WE/1/11.

Received 03.01.2012.



146 T. KACZOREK

lated and solved. Necessary and sufficient conditions for existence of solutions to the
problem will be established.

The paper is organized as follows. In section 2 the problem is formulated. The main
results of the paper are given in sections 3 and 4. The necessary and sufficient conditions
for existence of solutions to the problem for fractional standard systems are established
in section 3 and for fractional positive system in section 4. Concluding remarks are given
in section 4.

The following notation will be used: ℜ – the set of real numbers, ℜn×m – the set
of n×m real matrices, ℜn×m

+ – the set of n×m matrices with nonnegative entries and
ℜn

+ = ℜn×1
+ , In – the n×n identity matrix.

2. Preliminaries and problem formulation

Consider the fractional discrete-time linear system [8]

∆αxi+1 = Axi +Bui

yi =Cxi +Dui
, i ∈ Z+, 0 < α < 1 (1)

where α is fractional order, xi ∈ℜn is the state vector, ui ∈ℜm is the input vector, yi ∈ℜp

is the output vector and A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n, D ∈ ℜp×m. The fractional
difference of the order α ∈ (0, 1) is defined by

∆αxi = xi +
i

∑
j=1

(−1) j

(
α
j

)
xi− j, i ∈ Z+ (2a)

where (
α
j

)
=

α(α−1)...(α− j+1)
j!

, j = 1,2, . . . (2b)

Substitution of (2) into (1) yields

xi+1 = Aαxi +
i

∑
j=1

c j(α)xi− j +Bui, i ∈ Z+ (3a)

where

Aα = A+ Inα, ,c j(α) = (−1) j

(
α

j+1

)
> 0, j = 1,2, . . . (3b)

The solution of (3a) has the form [8]

xi = Φix0 +
i−1

∑
k=0

Φi−k−1Bui (4)



COMPUTATION OF INITIAL CONDITIONS AND INPUTS FOR GIVEN OUTPUTS
OF FRACTIONAL AND POSITIVE DISCRETE-TIME LINEAR SYSTEMS 147

and the matrix Φi can be computed from the formula

Φi+1 = AαΦi +
i

∑
j=1

c j(α)Φi− j, Φ0 = In. (5)

Definition 1 [8] The system (1) is called the (internally) positive fractional system if
and only if xk ∈ ℜn

+, yk ∈ ℜp
+, k ∈ Z+ for any initial conditions x0 ∈ ℜn

+ and all input
sequences uk ∈ ℜm

+, k ∈ Z+.

Theorem 1 [8] The fractional system (1) is positive for 0 < α < 1 if and only if

Aα ∈ ℜn×n
+ , B ∈ ℜn×m

+ , C ∈ ℜp×n
+ , D ∈ ℜp×m

+ . (6)

Definition 2 [8] The positive fractional system (1) is called observable in q (q ­ pn)
steps if on the bases of knowledge of the input sequence uk ∈ ℜm

+ and the output
sequence yk ∈ ℜp

+ for k = 0,1, . . . ,q− 1 it is possible to determine uniquely the initial
conditions x0 ∈ ℜn

+.

A column (row) of the form aei (aei, T – denotes the transpose), i = 1, . . . ,n; a > 0
is called monomial. A square matrix A is called monomial if in each row and in each
column only one entry is positive and the remaining entries are zero.

Theorem 2 [8] The positive fractional system (1) is observable in q steps if and only if
the matrix

Oq =


C

CΦ1
...

CΦq−1

 (7)

contains n linearly independent monomial rows.

The problem under considerations can be stated as follows.
Given the sequence of outputs y0,y1, . . . ,yn compute the initial condition x0 and input

sequence u0,u1, . . . ,un for the fractional standard and positive system (1). The problem
can be considered as a generalization of the observability problem of fractional standard
and positive discrete-time linear systems.

The following two cases will be considered separately for fractional standard and
positive systems:

Case 1. The matrix D = 0.
Case 2. The matrix D ̸= 0.
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3. Problem solution for standard systems

Substituting the solution (4) into (1) we obtain

yi =CΦix0 +
i−1

∑
k=0

CΦi−k−1Buk +Dui, i ∈ Z+ (8)

If D = 0 then using (8) for i = 1,2, . . . ,n−1 we obtain

Hz = y (9a)

where

H =



C 0 0 ... 0
CΦ1 CB 0 ... 0
CΦ2 CΦ1B CB ... 0

...
...

...
. . .

...
CΦn−1 CΦn−2B CΦn−3B ... CB


∈ ℜpn×(n+(n−1)m),

z =



x0

u0

u1
...

un−2


∈ ℜn+(n−1)m, y =



y0

y1

y2
...

yn−1


∈ ℜpn.

(9b)

Similarly if D ̸= 0 then we obtain
H̄z̄ = y (10a)

where

H̄ =



C D 0 ... 0
CΦ CB D ... 0
CΦ2 CΦ1B CB ... 0

...
...

...
. . .

...
CΦn−1 CΦn−2B CΦn−3B ... CB

0
0
0
...
D


∈ ℜpn×(m+1)n,

z̄ =



x0

u0

u1
...

un−1


∈ ℜ(m+1)n. (10b)
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In the proofs we will use the following well-known Kronecker-Cappely Theorem [5].

Theorem 3 The equation (9a) has a solution z for given H and y if and only if

rank [ H y ] = rank H (11)

Case 1. D = 0.

Theorem 4 Let D = 0 and n+(n− 1)m ­ np. Then the equation (9a) has a solution
x0,u0,u1, ...,un−2 for any given sequence y0,y1, ...,yn−1 if and only if

rank H ′ = pn (12)

where

H ′ =



C 0 0 ... 0
CAα CB 0 ... 0
CA2

α CAαB CB ... 0
...

...
... ...

...
CAn−1

α CAn−2
α B CAn−3

α B ... CB


Moreover, the equation has the unique solution

z = H−1y (13)

if n+(n−1)m = np and many solutions if n+(n−1)m > np.

Proof. From (5) we have

Φ1 = Aα, Φ2 = A2
α + c1In, Φ3 = A3

α + c1Aα + c2In, ... (14)

where c j = c j(α) = (−1) j

(
α

j+1

)
, j = 1,2, . . . . Using (14) we can write the matrix

H as
H = PH ′ (15)

where

P =



Ip 0 0 ... 0 0
0 Ip 0 ... 0 0

c1Ip 0 Ip ... 0 0
c2Ip c1Ip 0 ... 0 0

...
...

... ...
...

...
cn−2Ip cn−3Ip cn−4Ip ... 0 Ip


.
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From (15) it follows that
rankH = pn (16)

if and only if (12) holds. If the condition (12) is met then by Theorem 3 the equation (9a)
has the solution z for any sequence y0,y1, ...,yn−1. If additionally (m+1)n−m < np the
matrix H is square and the solution is unique. If (m+ 1)n−m > np the equation (9a)
has many solutions.

Theorem 5 Let D = 0 and np > (m+ 1)n−m. Then the equation (9a) has a solution
x0,u0,u1, ...,un−2 for a given sequence y0,y1, ...,yn−1 if and only if the condition

rank [ H ′ y ] = rank H ′ (17)

is satisfied. Moreover, the equation has the unique solution if

rank H ′ = (m+1)n−m (18)

and it has many solutions if

rank H ′ < (m+1)n−m (19)

Proof By Theorem 3 the equation (9a) has a solution z for any y if and only if the
condition (11) is satisfied. From (15) it follows that the condition (17) is equivalent
to the condition (11). The solution is unique if (18) holds since the matrix H ′ has full
column rank. If (17) and (19) hold then the equation (9a) has many solutions.

Theorem 6 The equation (9a) has the unique solution z only if the pair (A,C) is
observable.

Proof The equation (9a) has the unique solution only if the matrix H ′ has full column
rank and this implies the full column rank of the observability matrix of the pair (Aα,C),
i.e.

rank


C

CAα
...

CAn−1
α

= n. (20)

Example 1 Consider the fractional discrete-time system (1) for α = 0.5 and with the
matrices

A =

[
1 2
1 0

]
, B =

[
1
0

]
, C = [ 1 0 ], D = [0]. (21)
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Compute the initial condition x0 =

[
x01

x02

]
and the input u0 of the system for the given

output sequence y0, y1. In this case we have n= 2, m= p= 1, (m+1)n−m= 3> np= 2,

Aα = A+ Inα =

[
1.5 2
1 0.5

]

and the matrix

H =

[
C 0

CA CB

]
=

[
1 0 0
0 1 1

]
(22)

has the full row rank. The equation (9a) has the form

[
1 0 0

1.5 2 1

] x01

x02

u0

=

[
y0

y1

]
(23)

and it has many solutions for any sequence y0, y1. From (23) we have[
x01

x02

]
=

[
1 0

1.5 2

]−1[
y0

y1 −u0

]
=

[
2y0

y1 −1.5y0 −u0

]
for arbitrary u0

or[
x01

u0

]
=

[
1 0

1.5 1

]−1[
y0

y1 −2x02

]
=

[
y0

y1 −1.5y0 −2x02

]
for arbitrary x02.

Example 2 Consider the fractional system (1) for α = 0.6 with the matrices

A =

 0.4 1 0
0 0.2 1
0 1 0.4

 , B =

 0
0
1

 , C =

[
1 0 0
0 0 1

]
, D =

[
0
0

]
. (24)

Using (14) and (24) we obtain

Φ1 = Aα = A+ Inα =

 1 1 0
0 0.8 1
0 1 1

 , Φ2 = A2
α + c1In =

 1.12 1.8 1
0 1.76 1.8
0 1.8 2.12


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and the matrix

H =

 C 0 0
CΦ1 CB 0
CΦ2 CΦ1B CB

=



1 0 0 0 0
0 0 1 1 0
1 1 0 0 0
0 1 1 1 0

1.12 1.8 1 0 0
0 1.8 2.12 1 1


. (25)

The matrix (25) has full column rank. Using elementary row operations [5] we can re-
duce the equation 

1 0 0 0 0
0 0 1 1 0
1 1 0 0 0
0 1 1 1 0

1.12 1.8 1 0 0
0 1.8 2.12 1 1




x01

x02

x03

u0

u1

=



y01

y02

y11

y12

y21

y22


(26)

to the form

1 0 0 0 0
0 0 1 1 0
0 0 0 0 0
0 1 0 0 0

1.12 1.8 1 0 0
0 1.8 2.12 1 1




x01

x02

x03

u0

u1

=



y01

y02

y11 − y01 + y02 − y12

y12 − y02

y21

y22


. (27)

From (27) it follows that the condition (11) is met if and only if

y11 − y01 + y02 − y12 = 0. (28)

Omitting the third equation in (27) we obtain
1 0 0 0 0
0 0 1 1 0
0 1 0 0 0

1.12 1.8 1 0 0
0 1.8 2.12 1 1




x01

x02

x03

u0

u1

=


y01

y02

y12 − y02

y21

y22

 (29)
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and 
x01

x02

x03

u0

u1

=


1 0 0 0 0
0 0 1 1 0
0 1 0 0 0

1.12 1.8 1 0 0
0 1.8 2.12 1 1



−1
y01

y02

y12 − y02

y21

y22



=


1 0 0 0 0
0 0 1 0 0

−1.12 0 −1.8 1 0
1.12 1 1.8 −1 0
1.254 −1 0.216 −1.12 1




y01

y02

y12 − y02

y21

y22



=


y01

y12 − y02

−1.12y01 −1.8y12 −1.8y02 + y21

1.12y01 +1.8y12 −0.8y02 − y21

1.254y01 +0.216y12 −1.216y02 −1.12y21 + y22



(30)

The solution (30) is unique since the matrix (25) has full column rank.

Case 2. D ̸= 0.

Note that if D ̸= 0 and n > 2 then does not exist a nonsingular matrix P̄ ∈ ℜnp×np

such that
H̄ = P̄Ĥ (31)

where

Ĥ =



C D 0 ... 0
CAα CB D ... 0
CA2

α CAαB CB ... 0
...

...
... ...

...
CAn−1

α CAn−2
α B CAn−3

α B ... CB

0
0
0
...
D


(32)

and the matrix H̄ is defined by (10b). For example C D 0 0
CΦ1 CB D 0
CΦ2 CΦ1B CB D

 ̸=

 Ip 0 0
0 Ip 0

c1Ip 0 Ip


 C D 0 0

CAα CB D 0
CA2

α CAαB CB D

 . (33)
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Theorem 7 Let D ̸= 0 and m + 1 ­ p. Then the equation (10a) has the solution
x0,u0,u1, ...,un−1 for any given output sequence y0,y1, ...,yn−1 if and only if

rank H̄ = pn. (34)

Moreover, the equation has the unique solution

z̄ = H̄−1y (35)

if m+1 = p and it has many solutions if m+1 > p.

Proof is similar to the proof of Theorem 4.

Theorem 8 Let D ̸= 0 and p > m + 1. Then the equation (10a) has a solution
x0,u0,u1, ...,un−1 for any given output sequence y0,y1, ...,yn−1 if and only if the con-
dition

rank[H̄ y] = rank H̄ (36)

is met. Moreover, the equation has the unique solution if

rank H̄ = (m+1)n. (37)

Proof is similar to the proof of Theorem 5.

Theorem 9 The equation (10a) has unique solution only if the fractional system (1) is
observable.

Proof The equation (10a) has the unique solution only if the matrix H̄ has full column
rank and this implies the full rank of the matrix H̄.

Example 3 Consider the fractional system (1) for α = 0.6 with the matrices A, B, C

given by (24) and D =

[
0
1

]
. In this case the matrix

H̄ =

 C D 0
CΦ1 CB D
CΦ2 CΦ1B CB

0
0
D

=



1 0 0 0 0 0
0 0 1 1 0 0
1 1 0 0 0 0
0 1 1 1 1 0

1.12 1.8 1 0 0 0
0 1.8 2.12 1 1 1


(38)
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is nonsingular. Using (10a)) and (38) we obtain

x01

x02

x03

u0

u1

u2


=



1 0 0 0 0 0
0 0 1 1 0 0
1 1 0 0 0 0
0 1 1 1 1 0

1.12 1.8 1 0 0 0
0 1.8 2.12 1 1 1



−1

y01

y02

y11

y12

y21

y22



=



1 0 0 0 0 0
−1 0 1 0 0 0
0.68 0 −1.8 0 1 0
−0.68 1 1.8 0 −1 0

1 −1 −1 1 0 0
0.038 0 1.216 −1 −1.12 1





y01

y02

y11

y12

y21

y22



=



y01

y11 − y01

0.68y01 −1.8y11 + y21

y02 +1.8y11 −0.68y01 − y21

y01 − y02 − y11 + y12

0.038y01 +1.216y11 − y12 −1.12y21 + y22


.

(39)

4. Positive systems

Case 1. D = 0.

From Definition 1 and Theorem 1 it follows that for positive fractional systems

H ∈ ℜpn×((m+1)n−m)
+ , H̄ ∈ ℜpn×(n+1)m

+ , y ∈ ℜpn
+ , z ∈ ℜ(m+1)n−m

+ , z̄ ∈ ℜ(m+1)n
+ (40)

Definition 3 [3, 8] A square matrix A (a vector) is called the monomial matrix (vector)
if its every row and its every column contains only one positive entry (one positive
component) and the remaining entries (components) are zero.

Lemma 1 The inverse matrix A−1 of a matrix A ∈ ℜn×n
+ is the positive matrix

A−1 ∈ ℜn×n
+ if and only if A is monomial matrix.



156 T. KACZOREK

Theorem 10 Let D = 0 and (m + 1)n − m ­ np. Then the equation (9a) has a so-
lution x0 ∈ ℜn

+, ui ∈ ℜm
+, i = 0,1, . . . ,n − 2 for any given output sequence yi ∈ ℜp

+,
i = 0,1, . . . ,n−1 if and only if the following conditions are satisfied:

1. the condition (12) is met,

2. the matrix H contains np linearly independent monomial columns.

Moreover, the equation has the unique solution

z = H−1
m y (41)

if the matrix H contains only one monomial matrix Hm and many solutions if it contains
more than one such monomial matrices.

Proof The equation (9a) has a solution for any given sequence yi ∈ℜp
+, i= 0,1, . . . ,n−1

if and only if the condition (12) is met. By Lemma 1 the solution is nonnegative x0 ∈ℜn
+,

ui ∈ ℜm
+, i = 0,1, . . . ,n−2 for the output sequence if the matrix H contains at least one

monomial matrix Hm ∈ ℜpn×pn
+ . The solution (41) is unique if the matrix H contains

only one monomial matrix and many solutions if it contains more than one such
monomial matrices.

Theorem 11 Let D = 0 and np > (m + 1)n − m. Then the equation (9a) has a so-
lution x0 ∈ ℜn

+, ui ∈ ℜm
+, i = 0,1, . . . ,n − 2 for any given output sequence yi ∈ ℜp

+,
i = 0,1, . . . ,n−1 if and only if the following conditions are satisfied:

1. the condition (17) is met,

2. the matrix H ′ ∈ℜpn×((m+1)n−m)
+ contains (m+1)n−m linearly independent mono-

mial rows.

Moreover, the equation has the unique solution

z = H̃−1
m y (42)

where H̃m is the monomial matrix consisting of linearly independent monomial rows

Proof For np > (m+1)n−m the equation (9a) has a solution if and only if the condition
(17) is met. By Lemma 1 the solution is nonnegative x0 ∈ ℜn

+, ui ∈ ℜm
+, i = 0,1, . . . ,n−2

for a nonnegative sequence yi ∈ ℜp
+, i = 0,1, . . . ,n − 1 if and only if the matrix H ′

contains monomial matrix H̃m ∈ ℜ((m+1)n−m)×((m+1)n−m)
+ . The solution (42) is unique

since the matrix H ′ contains only one monomial matrix H̃m.

Example 4 Consider the fractional positive system (1) for α = 0.5 and with the matrices

A =

[
0 0
a 1

]
, B =

[
0
1

]
, C = [ 0 1 ],D = [0] (43)
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Find the values of the coefficient a of A for which it is possible to compute the initial
condition x0 ∈ ℜ2

+ and the input u0 ­ 0 for a given output sequence yi > 0, i = 0,1. In
this case

Aα = A+ Inα =

[
0.5 0
a 1.5

]
∈ ℜ2×2

+ for a­ 0 (44)

and the matrix

H =

[
C 0

CA CB

]
=

[
0 1 0
α 1 1

]
∈ ℜ2×3

+ (45)

has only one linearly independent monomial column for all values of the coefficient a.
The conditions of Theorem 10 are not satisfied and it is not possible to compute x0 ∈ ℜ2

+

and u0 ­ 0 for the given yi ­ 0, i = 0,1 for any values of the coefficient a. Note that the
pair (Aα, C) is not observable for any values of a.

Case 1. D ̸= 0.

Theorem 12 Let D ̸= 0 and m + 1 ­ p. Then the equation (10a) has a nonnegative
solution x0 ∈ ℜn

+, ui ∈ ℜm
+, i = 0,1, . . . ,n− 1 for any given output sequence yi ∈ ℜp

+,
i = 0,1, . . . ,n−1 if and only if the following conditions are satisfied:

1. the condition (34) is met,

2. the matrix H̄ ∈ ℜpn×((m+1)n−m)
+ contains (m+1)n−m linearly independent mono-

mial rows.

Moreover, the equation has the unique solution

z̄ = H̄−1
m y (46)

if the matrix H̄ contains only one monomial matrix H̄m and it has many solutions if it
contains more than one such monomial matrices.

Proof is similar to the proof of Theorem 10.

Theorem 13 Let D ̸= 0 and p > m + 1. Then the equation (10a) has a nonnegative
solution x0 ∈ ℜn

+, ui ∈ ℜm
+, i = 0,1, . . . ,n− 1 for any given output sequence yi ∈ ℜp

+,
i = 0,1, . . . ,n−1 if and only if the following conditions are satisfied:

1. the condition (17) is met,

2. the matrix H̄ ∈ ℜpn×(m+1)n
+ contains (m + 1)n linearly independent monomial

rows.
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Proof is similar to the proof of Theorem 11.

Remark 1 The equation (10a) has the unique nonnegative solution only if the positive
pair (Aα, C) is observable.

Example 5 Consider the positive fractional system (1) with α = 0.5 and the matrices

A =

[
0 0
a 1

]
, B =

[
0
1

]
, C = [ 1 0 ], D = [1] (47)

Find the values of the coefficient a of A for which it is possible to compute the initial
condition x0 ∈ ℜ2

+ and the input u0 ­ 0, i = 0,1 for a given output sequence yi ­ 0,
i = 0,1. The matrix Aα is given by (44) and the matrix

H̄ =

[
C D

CAα CB
0
D

]
=

[
1 0 1 0

0.5 0 0 1

]
(48)

has two linearly independent monomial columns. The equation

[
1 0 1 0

0.5 0 0 1

]
x10

x20

u0

u1

=

[
y0

y1

]
(49)

has the solution u0 = y0, u1 = y1 for x10 = 0 and arbitrary x20 and any value of the
coefficient a­ 0.

5. Concluding remarks

The problem of computation of initial conditions and inputs for given outputs of the
fractional standard and positive discrete-time linear systems has been formulated and
solved. Two cases D = 0 and D ̸= 0 have been considered for standard and positive sys-
tems. Necessary and sufficient conditions have been established for existence of solution
to the problem. It has been shown that there exist the unique solutions to the problem
only if the pair (Aα, C) of the system is observable. The computation of initial conditions
and inputs for given outputs can be considered as a generalized observability problem of
fractional standard and positive linear systems. The considerations have been illustrated
by numerical examples.

The considerations can be extended to the fractional standard and positive 2D linear
systems. An extension of these considerations for continuous-time linear systems is an
open problem.
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