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Regular design equations for the discrete reduced-order
Kalman filter

PETER HIPPE

In the presence of white Gaussian noises at the input and the output of a system Kalman
filters provide a minimum-variance state estimate. When part of the measurements can be re-
garded as noise-free, the order of the filter is reduced. The filter design can be carried out both
in the time domain and in the frequency domain. In the case of full-order filters all measure-
ments are corrupted by noise and therefore the design equations are regular. In the presence of
noise-free measurements, however, they are not regular so that standard software cannot readily
be applied in a time-domain design. In the frequency domain the spectral factorization of the
non-regular polynomial matrix equation causes no problems. However, the known proof of op-
timality of the factorization result requires a regular measurement covariance matrix. This paper
presents regular (reduced-order) design equations for the reduced-order discrete-time Kalman
filter in the time and in the frequency domains so that standard software is applicable. They also
allow to formulate the conditions for the stability of the filter and to prove the optimality of the
existing solutions.
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1. Introduction

In the absence of disturbances a state observer generates an estimate x̂ asymptoti-
cally approaching the real state x of the system. Disturbances, however, cause persistent
observation errors. In the presence of Gaussian white noise Kalman filters generate a
state estimate x̂ so that the observation error x̂− x has the smallest mean square in the
stationary case [1, 12]. If all measurements are corrupted by noise, the order of the filter
coincides with the order n of the system.

If κ of the measurements are not corrupted by noise, the order of the optimal filter is
reduced to n−κ, provided that a certain covariance matrix is regular, which is related to
the random signals disturbing an artificial output, namely the noisy measurements and
the time derivatives of the undisturbed outputs. This problem was originally investigated
in [3] and later applied to the discrete-time case (see [2, 14, 6, 16, 9]), and the refer-
ences therein). The time-domain design of the reduced-order filter amounts to solving
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a discrete-time algebraic Riccati equation (DARE). Different from the continuous-time
case, two different state estimates can be obtained from a discrete-time filter, namely the
a priori state estimate x̂ and the a posteriori state estimate x̂+. The former is obtained
from the noisy measurements up to the time instant k−1, whereas the latter results from
also using the noisy measurements at time k in an optimal way.

In the frequency domain the reduced-order Kalman filter is parameterized by the

polynomial matrices ˜̄D(z) and ˜̄D+
(z). The optimal matrix ˜̄D(z) can be obtained from a

polynomial matrix equation by spectral factorization, and the optimal ˜̄D+
(z) can sub-

sequently be computed from these results. To obtain an equivalent frequency-domain
version of the optimal filter, a special form of the DARE is required which was, e.g., in-
troduced in [17] and [4]. This DARE is formulated for a n×n covariance matrix P̄ which
is singular in the case of noise-free measurements. So far, the conditions for obtaining
a stable filter when using this DARE have not been presented. There exist solutions for
a regular time-domain design of the reduced-order Kalman filter, but the corresponding
DAREs cannot be used to derive an equivalent frequency-domain solution.

The DARE required for a frequency-domain formulation of the filter is not in a stan-
dard form to be solved for P̄. By an appropriate reformulation one can obtain an equation
which is solvable by standard software. In the continuous-time case, this form of the Ric-
cati equation still causes numerical problems since the Hamiltonian related to this system
has zeros at s = 0. Here in the discrete-time case, the Hamiltonian also has eigenvalues
at z = 0, but since this is inside the stability region, it causes no problems. Nevertheless,
also a regular reduced-order system description will be derived in the discrete-time case,
because it allows to obtain a regular frequency-domain design of the reduced-order filter
and yields the conditions which guarantee a stable filter.

After a formulation of the underlying problem in the time domain in Section 2 the
existing solution for the optimal filter is presented. Deriving a Riccati equation for a
modified filtering problem, which only yields the a priori state estimate, one obtains
a form a the DARE which can be solved for the rank deficient P̄. After an adequate
transformation of the state equations of the system one can subdivide this DARE into a
regular part and a vanishing part. The regular part characterizes a full-order filter problem
for a reduced-order system of the order n−κ which can be solved by standard software.
This full-order filtering problem also allows to derive conditions for the optimal reduced-
order filter to be stable, and it is shown how these conditions translate into conditions on
the original system.

The known polynomial matrix equation for the design of the reduced-order Kalman
filter in the frequency domain is based on the left MFD of the full-order system whereas
the polynomial matrix ˜̄D(z), resulting from the spectral factorization of this polynomial
matrix characterizes a system of reduced order. This is a consequence of the rank defi-
cient measurement covariance matrix multiplying the denominator matrix of the system.
Unfortunately, proofs of optimality of the spectral factor are only known in the case,
where the measurement covariance is not singular. In [9] it has been observed that, on
the one hand, optimality of the result can only be checked by computing the correspond-
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ing time-domain results and, on the other hand, that all examples investigated so far have
shown that the resulting ˜̄D(z) is indeed optimal.

In Section 3 it is demonstrated, that the polynomial matrix ˜̄D(z) resulting from the
non-regular polynomial matrix equation can also be obtained from a regular polynomial
matrix equation. This regular polynomial matrix equation is derived from the reduced
regular DARE in the time domain. As an additional result, the conditions on the MFD of
the system are presented which guarantee the stability of the reduced-order filter result-
ing from the frequency-domain design.

Concluding remarks are presented in Section 4.

2. The filter design in the time domain

Considered are linear time-invariant discrete-time systems of the order n, with p
inputs u and q stochastic inputs w

x(k+1) = Ax(k)+Bu(k)+Gw(k) (1)

and it is assumed that the pair (A,G) is controllable. Part of the m outputs y are ideal
measurements, so that one has[

y1(k)

y2(k)

]
=

[
C1

C2

]
x(k)+

[
v1(k)

0

]
(2)

where y2 ∈ Rκ, 0 < κ ¬ m, is the undisturbed measurement and y1 ∈ Rm−κ is the dis-
turbed measurement with v1 ∈ Rm−κ the measurement noise. Defining[

C1

C2

]
=C (3)

it is assumed that the pair (A,C) is observable. The stochastic inputs {w(k)} and {v1(k)}
are independent, zero-mean, stationary Gaussian white noises with

E{w(k)wT (ℓ)} = Q̄δkℓ (4)

E{v1(k)vT
1 (ℓ)} = R̄1δkℓ (5)

where

δkℓ =

{
1, k = ℓ,

0, otherwise
(6)

It is assumed that the covariance matrices Q̄ and R̄1 are real and symmetric, where Q̄ is
positive-semidefinite and R̄1 is positive-definite. The initial state x(0) = x0 is not corre-
lated with the disturbances, i.e., E{x0wT (k)}= 0 and E{x0vT

1 (k)}= 0 for all k ­ 0.
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It is assumed that the covariance matrix

Φ =C2GQ̄GTCT
2 (7)

is positive definite. It characterizes the influence of the input noise on y2(k+1)=C2x(k+
1). Thus the covariance matrix

R̄ =

[
R̄1 0
0 Φ

]
(8)

with respect to y1(k) and y2(k+1) is positive definite. This is a standing assumption in
the design of reduced-order Kalman filters (see, e.g., [1, 10, 13]), because it assures a
filter order n−κ, which is required to obtain a minimum-variance state estimate x̂.

Consider the n−κ linear combinations

ζ(k) = T x(k) (9)

and the κ ideal measurements y2 which can be used to represent the state x of the system
as

x(k) =

[
C2

T

]−1[
y2(k)
ζ(k)

]
= Ψ2y2(k)+Θζ(k) (10)

This shows that the relations
Ψ2C2 +ΘT = In (11)

and
C2Ψ2 = Iκ, C2Θ = 0, T Θ = In−κ, T Ψ2 = 0 (12)

are satisfied. Then the reduced-order Kalman filter for such systems is described by

ζ̂(k+1) = T (A−L+
1 C1)Θζ̂(k)+

[
T L+

1 T (A−L+
1 C1)Ψ2

][ y1(k)

y2(k)

]
+T Bu(k) (13)

(see [4, 9]). The optimal estimate ζ̂ results if the matrices L+
1 and Ψ2 are chosen such

that
L+

1 = AP̄CT
1 R̂−1 (14)

and
Ψ2 = P̃CT

2 X−1 (15)

In (14) and (15) the abbreviations

R̂ = R̄1 +C1P̄CT
1 (16)

P̃ = AP̄AT +GQ̄GT −AP̄CT
1 R̂−1C1P̄AT (17)
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and
X =C2P̃CT

2 (18)

have been used. By assumption, R̄1 is positive-definite and this implies that R̂ in (16)
is also positive-definite if P̄ is positive-semidefinite. It can further be shown that if Φ
in (7) is positive-definite and P̄ is positive-semidefinite then X is also positive-definite
(see Problem 1.2 in [1]). Consequently, the inverse matrices in (14) and (15) exist. The
stationary value P̄ of the error covariance

P̄(k) = E
{
(x(k)− x̂(k))(x(k)− x̂(k))T} (19)

is the positive-semidefinite matrix satisfying the DARE

P̄ = AP̄AT +GQ̄GT −
[

L+
1 Ψ2

][ R̂ 0
0 X

][
(L+

1 )
T

ΨT
2

]
(20)

(see [13, 10]). Since the measurements y2 =C2x are ideal, it is obvious that

C2P̄ = 0 (21)

The version (20) of the DARE can be used as a starting point for deriving the equiva-
lent frequency-domain solution of the filter (see Section 3). This DARE, however, is not
in a standard form to be solved for P̄.

The optimal minimum-variance a priori state estimate x̂ can be obtained as

x̂(k) = Θζ̂(k)+Ψ2y2(k) (22)

This estimate uses the disturbed measurements y1 up to the time k − 1. Here in the
discrete-time case an improved state estimate can be obtained when also using the actual
measurement y1 at time k in an optimal way. This yields the a posteriori state estimate

x̂+(k) = x̂(k)+Λ(y1(k)−C1x̂(k)) (23)

where the optimal Λ has the form

Λ = P̄CT
1 R̂−1 (24)

(see, e.g., [9]), so that L+
1 = AΛ. The a priori state estimate can also be obtained from an

estimator (13) where L+
1 is substituted by

L1 = ΘT L+
1 = (I −Ψ2C2)L+

1 (25)

and also the frequency-domain solution of the filter problem is based on an estimator
representation with L+

1 substituted by L1 [9]. As with the reduced-order Kalman Filter
in the continuous-time case the relation

C2L1 = 0 (26)
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is satisfied [9], whereas C2L+
1 ̸= 0 in general.

To obtain a regular DARE for the reduced-order Kalman filter, we first generate a
DARE containing L1 instead of L+

1 . From (25) and (14) follows

L+
1 = L1 +Ψ2C2AP̄CT

1 R̂−1 (27)

Substituting this in (20) and observing (17) and (18) the DARE obtains the form

P̄ = AP̄AT +GQ̄GT −
[

L1 Ψ2

]
X̃

[
LT

1

ΨT
2

]
(28)

where the abbreviation

X̃ =

[
R̂ C1P̄ATCT

2

C2AP̄CT
1 C2(AP̄AT +GQ̄GT )CT

2

]
(29)

has been used. Multiplying (28) from the left by I−Γ and from the right by I−ΓT with

Γ = GQ̄GTCT
2 Φ−1C2 (30)

it obtains the form
P̄ = ÃP̄ÃT +GQ̃GT − ÃP̄C̃T X̃−1C̃P̄ÃT (31)

where the quantities in (31) are defined by

Ã = A−GQ̄GTCT
2 Φ−1C2A (32)

Q̃ = Q̄− Q̄GTCT
2 Φ−1C2GQ̄ (33)

and

C̃ =

[
C1

C2A

]
(34)

as in the continuous-time case [8]. The manipulations to obtain the form (31) use the
facts that (I −Γ)P̄(I −ΓT ) = P̄ (see (21)), that (I −Γ)Q̄(I −ΓT ) = GQ̃GT (see (7) and
(33)) and that

(I −Γ)[L1 Ψ2]X̃ = ÃP̄C̃T (35)

To show (35), it is helpful to write (29) as

X̃ =

[
R̂ R̂L+T

1 CT
2

C2L+
1 R̂ C2(P̃+L+

1 R̂L+T
1 )CT

2

]
(36)

and for notational convenience we use the abbreviation

Σ = GQ̄GTCT
2 (37)
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Using (26), (25) and (12) the left hand side SL = (I−Γ)[L1 Ψ2]X̃ of (35) can be written
as

SL =

[
L+

1 −Ψ2C2L+
1

... Ψ2 −ΣΦ−1
]

X̃ (38)

or with (36)

SL =

[
L+

1 R̂−ΣΦ−1C2L+
1 R̂

... (39)

L+
1 R̂L+T

1 CT
2 +Ψ2C2P̃CT

2 −ΣΦ−1C2P̃CT
2 −ΣΦ−1C2L+

1 R̂L+T
1 CT

2

]
Now observing Ψ2C2P̃CT

2 = P̃CT
2 (which follows from (18) and (15)) and inserting P̃ =

AP̄AT +GQ̄GT −L+
1 R̂L+T

1 one obtains

SL =

[
AP̄CT

1 −ΣΦ−1C2AP̄CT
1

... AP̄ATCT
2 −ΣΦ−1C2AP̄ATCT

2

]
(40)

when using (14) and (7) and this is exactly the result of the right hand side of (35).
The DARE (31) is in the standard form with a regular R̄> 0 (see (8)). Due to the rank

deficient P̄ the Hamiltonian of the DARE has eigenvalues at z = 0. In the continuous-
time case eigenvalues at s = 0 cause problems when applying the MATLAB R⃝ function
lqe to solve the corresponding ARE (see [8]). The function dlqe, however, directly yields
the solution P̄, since z = 0 is inside the stability region. Therefore, the derivation of a
reduced DARE is not a necessity for obtaining P̄ by standard software. However, in view
of deriving a regular frequency-domain solution for the filter (see Section 3) the reduced
version of the DARE is also considered here.

By a regular state transformation x̄(k) = T̄ x(k) with

T̄ =

[
∗
C

]
(41)

the state equations (1)–(2) of the system can always be transformed into

x̄(k+1) = Āx̄(k)+ B̄u(k)+ Ḡw(k) (42)

y(k) = C̄x̄(k)+

[
v1(k)

0

]
(43)

with

Ā = T̄ AT̄−1, B̄ = T̄ B, Ḡ = T̄ G,

[
C̄1

C̄2

]
=CT̄−1 =

[
0 Im−κ 0
0 0 Iκ

]
(44)
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or in components[
x̄1(k+1)

x̄2(k+1)

]
=

[
A11 A12

A21 A22

][
x̄1(k)

x̄2(k)

]
+

[
B1

B2

]
u(k)+

[
G1

G2

]
w(k) (45)

y1(k) =
[

C̆1 0
]

x̄(k)+ v1(k) (46)

y2(k) =
[

0 Iκ

]
x̄(k) (47)

with x̄1 ∈ Rn−κ, 0 < κ¬ m, x̄2 ∈ Rκ and C̆1 = [0 Im−κ].
If the transformed matrices (44) are inserted in (31)–(34) the solution P̄x̄ = T̄ P̄T̄ T of

the DARE has the form

P̄x̄ =

[
P̄r 0

0 0κ

]
(48)

and the DARE (31) then consists of a regular (upper left) part

P̄r = ArP̄rAT
r +GrQ̃GT

r −ArP̄rCT
r X̃−1CrP̄rAT

r (49)

while the rest is vanishing. The matrices in (49) are defined by

Ar = A11 −G1Q̄GT
2 Φ−1A21 (50)

Gr = G1 (51)

and

Cr =

[
C̆1

A21

]
(52)

so that the reduced-order Kalman filter can be regarded as a regular full-order filter for
the reduced system (Ar,Gr,Cr). The feedback matrix Lr is defined by

Lr = ArP̄rCT
r X̃−1 (53)

It is known that the full-order Kalman filter for the system (Ar,Gr,Cr) is stable if the
pair (Ar,GrQ̃0) has no uncontrollable eigenvalues on the unit circle, where

Q̃ = Q̃0 Q̃T
0 (54)

( [5]). Introducing
Q̄ = Q̄0 Q̄T

0 (55)

and
Q̂ = I − Q̄T

0 GT
2 Φ−1G2Q̄0 (56)
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it is easy to show that
Q̃0 = Q̄0 Q̂ (57)

when taking
C2G = C̄2Ḡ = G2 (58)

into account. Given the above condition for a stable filter in terms of Ar and Gr, it is of
interest to know the corresponding condition for the non-reduced system (Ā, Ḡ,C̄). The
answer is contained in the following lemma.

Lemma 10 If the system

x̄(k+1) = Āx̄(k)+ ḠQ̄0w(k) (59)

y2(k) =
[
0 Iκ

]
x̄(k) (60)

does not have zeros which are located on the unit circle, then the pair (Ar,GrQ̃0) has no
uncontrollable eigenvalues on the unit circle and vice versa.

Proof If z = zi is a non-controllable eigenvalue of the pair (Ar,GrQ̃0) then

rank
[

ziI −Ar
... GrQ̃0

]
< n−κ (61)

(see, e.g., [11]).
Now define the system matrix

P(z) =


zIn−κ −A11 −A12 G1Q̄0

−A21 zIκ −A22 G2Q̄0

0 −Iκ 0

 (62)

which characterizes the zeros of the system (59)–(60) (see [15]). If the system (59)–(60)
has a zero at z = zi, then rank P(zi)< n+κ.

Using the unimodular matrix

UL =


In−κ −G1Q̄GT

2 Φ−1 0

0 Iκ 0

0 0 Iκ

 (63)

and the unimodular matrix

UR =


In−κ 0 0

0 Iκ 0

Q̄T
0 GT

2 Φ−1A21 0 Iq

 (64)
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one obtains

ULP(zi)UR =


ziI −Ar ∗ GrQ̃0

0 ∗ G2Q̄0

0 −Iκ 0

 (65)

Since it has been assumed that rank G2Q̄0 = κ (see (7)) the result (65) shows that the
system (59)–(60) has a zero at z = zi if and only if z = zi is an uncontrollable eigenvalue
in the pair (Ar,GrQ̃0) and vice versa. This is, of course, not only true for the transformed
system (59)–(60) but also for the original system (A,GQ̄0,C2).

3. The filter design in the frequency domain

In the frequency domain, the system (1)–(2) or (42)–(43) is described by

y(z) = Fw(z)w(z)+

[
v1(z)

0

]
(66)

with
Fw(z) =C(zI −A)−1G = C̄(zI − Ā)−1Ḡ (67)

Given the left coprime MFD

Fw(z) = D̄−1(z)N̄w(z) (68)

the reduced-order Kalman filter related to the a priori state estimate x̂ is parameterized
by the polynomial matrix ˜̄D(z) resulting by spectral factorization of the right hand side
of ˜̄D(z)X̃ ˜̄DT

(z−1) = D̄(z)

[
R̄1 0

0 0

]
D̄T (z−1)+ N̄w(z)Q̄N̄T

w (z
−1) (69)

where
Γr

[˜̄D(z)
]
= Γr [D̄κ(z)] (70)

with the row-reduced polynomial matrix

D̄κ(z) = Π

{
D̄(z)

[
Im−κ 0

0 z−1Iκ

]}
(71)

(see [9, 10]). Here, Γr[·] denotes the highest row-degree-coefficient matrix and Π[·] tak-

ing the polynomial part. How the polynomial matrix ˜̄D+
(z) related to the a posteriori

state estimate x̂+ is obtained from ˜̄D(z) is described in [9, 10].
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In [9] the solution (69)–(71) is presented without rigorous proof, because the poly-
nomial matrix equation (69) contains a singular measurement covariance matrix on the
right hand side, and the known proofs of optimality of ˜̄D(z) are formulated for full-order
filters with regular measurement covariance matrices.

The polynomial matrix equation (69) was derived on the basis of the DARE (20). As
shown in Section 2, the reduced-order Kalman filter can also be designed on the basis
of the regularized DARE (49) with a regular measurement covariance matrix R̄, i.e., one
can design the reduced-order Kalman filter as a regular full-order filter for the reduced
system (Ar,Cr,Gr).

Introducing the left coprime MFD of

Fr(z) =Cr(zI −Ar)
−1Gr (72)

namely
Fr(z) = D̄−1

r (z)N̄wr(z) (73)

and the polynomial matrix ˜̄Dr(z) parameterizing the full-order Kalman filter related to
the parameters (Ar,Gr,Cr, P̄r) according to

D̄−1
r (z)˜̄Dr(z) =Cr(zI −Ar)

−1Lr + Im (74)

(see [9, 7]), the Riccati equation (49) can be transformed into the polynomial matrix
equation ˜̄Dr(z)X̃ ˜̄DT

r (z
−1) = D̄r(z)R̄D̄T

r (z
−1)+ N̄wr(z)Q̃N̄T

wr(z
−1) (75)

by similar steps as in the derivation of (69) from (20) in [9]. This is a regular polynomial
matrix equation with R̄ > 0 and consequently the polynomial matrix ˜̄Dr(z) obtained by
spectral factorization of the right hand side of (75) with

Γr

[˜̄Dr(z)
]
= Γr [D̄r(z)] (76)

(see [9, 7]) parameterizes the optimal full-order Kalman filter for the reduced-order sys-
tem (72) in the frequency domain.

If this ˜̄Dr(z) is identical with ˜̄D(z) obtained from the spectral factorization of (69), it
follows that the solution procedure presented in [9] yields indeed the optimal results.

Given the transformed system description (42), (43) and the MFD (68), i.e., a de-
nominator matrix D(z) such that D̄κ(z) as defined in (71) is row reduced. Then define
the MFD

C̄(zI − Ā)−1 = D̄−1(z)N̄x(z) (77)

with D̄(z) as in (68) and N̄x(z) partitioned according to

N̄x(z) = [N̄x1(z) N̄x2(z)] (78)

where N̄x1(z) has n−κ columns and N̄x2(z) has κ columns.
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Theorem 3 The polynomial matrix ˜̄Dr(z) resulting from (75) is identical with ˜̄D(z) re-
sulting from (69) if the polynomial matrices in the MFD (73) are chosen as

N̄wr(z) = N̄x1(z)G1 (79)

and

D̄r(z) = [N̄x1(z) N̄x2(z)]

[
0n−κ,m−κ G1Q̄GT

2 Φ−1

0κ,m−κ Iκ

]
+ D̄(z)

[
Im−κ 0

0 0κ

]
(80)

The polynomial matrix ˜̄D(z) = ˜̄Dr(z) parameterizes a stable filter if the pair(
D̄(z)

[
Im−κ 0

0 0κ

]
, N̄w(z)Q̄0

)
(81)

has no greatest common left devisor with zeros on the unit circle.

Proof Comparing (72) and (73) and observing (79) and (51) one can conclude that for
arbitrary G1

Cr(zI −Ar)
−1 = D̄−1

r (z)N̄x1(z) (82)

Writing (77) in the modified form D̄(z)C̄ = N̄x(z)(zI − Ā) and using (45) – (47) one
obtains

D̄(z)

[
C̆1

0

]
= N̄x1(z)(zI −A11)− N̄x2(z)A21 (83)

This allows to show that N̄x1(z)(zI −Ar) = D̄r(z)Cr which then proves that the pair (79)
and (80) constitutes a left MFD of (72). Inserting (79) and (80) in (75) it is straightfor-
ward to show, that the right hand sides of the polynomial equations (69) and (75) coin-

cide, so that ˜̄D(z)X̃ ˜̄DT
(z−1) = ˜̄Dr(z)X̃ ˜̄DT

r (z
−1). Since X̃ is positive definite, this shows

that ˜̄D(z) = ˜̄Dr(z). This proves the first part of the theorem.
Since (75) represents a regular full-order filter problem for the reduced system

(Ar,Gr,Cr), the filter parameterized by ˜̄Dr(z) is optimal and stable if the pair(
D̄r(z) , N̄wr(z)Q̃0

)
(84)

has no common greatest left devisor UL(z) with zeros on the unit circle ( [5]).
Two polynomial matrices are relatively left coprime if they satisfy the Bezout iden-

tity. If they contain a non-unimodular greatest common left devisor UL(z), the identity
matrix is replaced by UL(z) ( [11]).
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If the pair (84) contains a non-unimodular greatest common left devisor UL(z) there

exist solutions Ȳ0r(z) and X̄0r(z) =

[
X̄0r1(z)

X̄0r2(z)

]
of the Diophantine equation

N̄x1(z)G1Q̃0Ȳ0r(z)+ D̄r(z)

[
X̄0r1(z)

X̄0r2(z)

]
=UL(z) (85)

(see, e.g., [9]).
If, on the other hand, the pair (81) contains a non-unimodular greatest common left

devisor UL(z) there exist solutions Ȳ0(z) and X̄0(z) =

[
X̄01(z)

X̄02(z)

]
of the Diophantine equa-

tion [
N̄x1(z)G1 + N̄x2(z)G2

]
Q̄0Ȳ0(z)+ D̄(z)

[
I 0

0 0κ

][
X̄01(z)

X̄02(z)

]
=UL(z) (86)

where the fact has been exploited, that N̄w(z) = N̄x(z)Ḡ (compare (77) with (67) and
(68)). Given the solutions Ȳ0r(z) and X̄0r(z) of (85) the polynomial matrices

X̄01(z) = X̄0r1(z) (87)

X̄02(z) = 0 (88)

and
Ȳ0(z) = Q̂Ȳ0r(z)+ Q̄T

0 GT
2 Φ−1X̄0r2(z) (89)

solve the equation (86).
Given the solutions Ȳ0(z) and X̄0(z) of (86) the polynomial matrices

X̄01r(z) = X̄01(z) (90)

X̄0r2(z) = G2Q̄0Ȳ0(z) (91)

and
Ȳ0r(z) = Q̂Ȳ0(z) (92)

solve the equation (85). This shows that if the pair (84) does not contain a greatest
common left devisor with zeros on the unit circle, then also the pair (81) does not contain
such a greatest common left devisor and vice versa. This proves the second part of the
theorem.
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4. Conclusions

Due to the singular measurement covariance matrix standard software cannot be
used to solve the DARE of the reduded-order Kalman filter for the rank deficient covari-
ance matrix P̄ of the estimation error. This DARE, however, can be reformulated so that
standard software becomes applicable. By applying an appropriate state transformation
to the original system, a modified form of the DARE results which can be subdivided
into a regular part, yielding a regular P̄r, and a vanishing part. The regular part defines
a reduced-order system such that the full-order filter for it coincides with the reduced-
order filter for the original system. This regular part also characterizes the conditions
which guarantee a stable filter. These conditions for the parameters of the reduced-order
system can be used to define the conditions for the original full-order system guarantee-
ing a stable reduced-order filter.

The polynomial matrix equation defining the parameterizing polynomial matrix ˜̄D(z)
of the reduced-order filter in the frequency domain also contains a singular measurement
covariance matrix. This does not cause problems when applying spectral factorization to
obtain ˜̄D(z). However, neither a proof of optimality nor the conditions for the stability
of the filter were known so far. Based on the reduced-order model of the system in the
time domain, a regular full-order filter design also becomes possible in the frequency
domain. This allows to prove the optimality of the results obtained by the known non-
regular factorization and it also allows to formulate the conditions on the MFD of the
original full-order system which guarantee a stable filter.
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