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Neuro-fuzzy control design of processes
in chemical technologies

LENKA BLAHOVÁ, JÁN DVORAN and JANA KMEŤOVÁ

The paper presents design of neuro-fuzzy control and its application in chemical technolo-
gies. Our approach to neuro-fuzzy control is a combination of the neural predictive controller
and the neuro-fuzzy controller (Adaptive Network-based Fuzzy Inference System - ANFIS).
These controllers work in parallel. The output of ANFIS adjusts the output of the neural predic-
tive controller to enhance the control performance. Such design of an intelligent control system
is applied to control of the continuous stirred tank reactor and laboratory mixing process.
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1. Introduction

Processes in chemical technology are usually complicated and exhibit large varia-
tions in their behavior and control. Some issues can be caused by nonlinear behavior of
the controlled processes or by not exactly known parameters, and other reasons. Distur-
bances can also affect the operation of such processes. Model based control strategies
can suffer from inaccuracy of mathematical models of the controlled processes. Various
control techniques have been proposed and employed for control of chemical processes,
such as adaptive control [4, 7, 11], robust control [6, 20], predictive control [12, 14],
intelligent control etc. Nowadays, intelligent control has gained a lot of attention as a
design control method.

There are different methods of intelligent controllers design, such as fuzzy control,
neural networks, genetic algorithms or expert systems. Appropriate combinations of
these methods provide another design possibilities. Known approach to controller design
is combination of fuzzy control and neural networks. Both methods provide good prop-
erties and complement each other well. Resulting controllers are suitable for the control
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of complex or difficult processes, such as chemical reactors, distillation columns, heat
exchangers, etc.

This paper describes neuro-fuzzy control which is a combination of two methods of
intelligent system control [15, 18]. Parallel connection of the neural predictive controller
[21] and the neural-fuzzy controller [5] should provide better performance in terms of
smaller overshoots and better tracking. Predictive control strategies employ a model of
the process to predict the future response over a specified horizon [9, 16]. The model
designed by artificial neural network does not need exact mathematical description of
the plant. ANFIS is the neuro-fuzzy controller. This control method represents a neural
network approach to the design of fuzzy inference systems and bases on the input-output
data of the system under consideration [13, 22]. In our case, ANFIS is used mainly as an
assistant controller, which can improve set-point tracking properties.

Suitability of the proposed control system is shown in this paper by simulation re-
sults and a real-time control application to the laboratory mixing process. For the simu-
lation purposes, CSTR was chosen as the controlled process, and serves as an example
to illustrate properties of the proposed control system. In the second case, a laboratory
continuous stirred tank reactor was controlled and used as a mixer to prepare of NaCl
solution with a required concentration.

2. Neuro-fuzzy control

Our design of an intelligent control system comprises two controllers. These con-
trollers are connected in parallel to a feedback control loop as shown in Fig. 1, where w
represent the reference value, e is the set-point error, u is the input to the process and y
is the output of the process. The first controller is the neural predictive controller and the
second one is the neuro-fuzzy controller of the ANFIS type. These controllers are de-
signed separately to achieve better regulatory performance than the control performance
of the neural predictive controller.

Figure 1. Neuro-fuzzy control scheme.

The neural predictive controller is considered as the main controller. ANFIS in this
system is an assistant controller improving the performance of the independent predic-
tive neural controller.
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2.1. Neural predictive control

The term MBPC (Model-Based Predictive Control) concerns several different con-
trol techniques [16, 23]. All of them bases on the same idea. The block diagram in Fig. 2
illustrates the model predictive control process.

Figure 2. Model-based predictive control scheme.

The controller uses a neural network (NN) model to predict future process responses
to potential control signals. The NN model is trained off-line, in batch, using training
algorithms which uses data collected from the operation of the plant. The procedure of
the network parameters selection is called training of the network. NN model of the
controlled plant is two-layered network with a sigmoid transfer function of the neurons
in the hidden layer and a linear transfer function in the output layer. This structure is
shown in Fig. 3, where u(t) is the system input, y(t) is the plant output, ym(t + 1) is
the NN plant model output, TDL blocks are the tapped delay lines where the previous
values of the input signals are stored, IW i, j is the weighting matrix from the input layer j
to the layer i, LW i, j is the weighting matrix from the layer j to the layer i. The prediction
error between the plant output and the NN output is used as the NN training signal. The
NN model uses previous inputs and previous plant outputs to predict future values of the
plant output.

Figure 3. Structure of the neural network plant model.
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The controller requires enough amount of computational resources because opti-
mization algorithm is performed at each sample time to determine the optimal control
input. The model predictive control method is based on the receding horizon technique.
The neural network model predicts the process response over a specified time horizon.
The predictions are used by a numerical optimization program to determine the control
signal which minimizes the following performance criterions

J (t,u(k)) =
N2

∑
i=N1

(w(t + i)− ym (t + i))2 +λ
Nu

∑
i=1

(
u′ (t + i−1)−u′ (t + i−2)

)2 (1)

Here N1, N2 and Nu define the horizons over which the tracking error and the control
increments are calculated. Variable u′ is the tentative control signal, w is the desired
response and ym is the network model response. Parameter λ determines the relation of
the control increments and the tracking errors in the criterion index.

The controller consists of the neural network model and the optimization block. The
optimization block determines the values of u′ which minimizes J, and then the optimal
u is the input into the process.

2.2. ANFIS

Neuro-fuzzy systems combine neural networks and fuzzy logic and have recently
gained a lot of interest in research and application. A specific approach in the neuro-
fuzzy development is ANFIS (Adaptive Network-based Fuzzy Inference System) [13].
ANFIS uses a feed-forward network to search for fuzzy decision rules that perform well
for a given task. Using input-output data set, ANFIS creates a Fuzzy Inference System
for which the membership function parameters are adjusted using a combination of back
propagation and the least squares method. ANFIS architecture of the first-order Takagi-
Sugeno inference system is shown in Fig. 4 [22]. Output f of the ANFIS controller is
the response to input x and y, wi are the firing strengths and w̄i are the normalized firing
strengths.

Figure 4. ANFIS system architecture.
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3. Simulations and experimental results

In this section we apply the proposed control approach to two examples of chemical
technology. The first is simulator of CSTR control and the second is real-time control of
a laboratory process.

3.1. Simulation control of CSTR

Process model

Consider CSTR (Fig. 5) [16] with a first-order irreversible parallel reaction according
to scheme:

A k1−→ B

A k2−→C
(2)

A simplified dynamic mathematical model of such CSTR can be represented as follows:

dcA

dt
=

q
V

cvA −
q
V

cA − k1cA − k2cA (3)

dcB

dt
=

q
V

cvB −
q
V

cB + k1cA (4)

dcC

dt
=

q
V

cvC − q
V

cC + k2cA (5)

dϑ
dt

=
q
V

ϑv −
q
V

ϑ− Ak
V cpρ

[ϑ−ϑc]+
Qr

V cpρ
(6)

dϑc

dt
=

q
Vc

ϑvc −
q
Vc

ϑc +
Ak

Vcρccpc
[ϑ−ϑc] (7)

Rate of the reaction strongly depends on the temperature

ki = ki∞e
−Ei
Rϑ (8)

The reaction heat can be calculated as follows:

Qr = k1 cAV (−∆rH1)+ k2 cAV (−∆rH2) (9)

Temperature of the reaction mixture ϑ [K] is a controlled variable and volume flow
rate of the coolant, qc [m3min−1] is the input variable. The process state variables are:
molar concentrations of A, B and C (cA, cB and cC [kmol m−3]), temperatures of the
reaction mixture ϑ [K], and the coolant ϑc [K]. Model parameters are summarized in
Tab. 1.
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Figure 5. Scheme of the chemical reactor.

Table 11. Parameters of the chemical reactor.

Variable Unit Value Variable Unit Value

cvA kmol m−3 4.22 cpc kJ kg−1K−1 4.182

cvB kmol m−3 0 Vc m3 0.21

cvC kmol m−3 0 A m2 1.51

q m3min−1 0.015 K kJ min−1m−2K−1 42.8

ϑv K 328 E1/R K 9850

ρ kg m−3 1020 δrH1 kJ kmol−1 -8.6 ·104

cp kJ kg−1K−1 4.02 k1∞ min−1 1.55·1011

V m3 0.23 E2/R K 22019

qvc m3min−1 0.004 δrH2 kJ kmol−1 -1.82·104

ϑvc K 298 k2∞ min−1 4.55·1025

ρc jg m3 998

Control of CSTR in the nominal state

Firstly CSTR was simulated with a neural predictive controller (NNPC). To set-up
this controller, a neural network model was designed. Neural network model of CSTR
was trained off-line by the Levenberg-Marquardt back propagation method [14] based
on nonlinear process input and output data. Input data represented the volume flow rate
of the coolant, qc [m3min−1], and the output data were the temperatures of the reaction
mixtures, ϑ [K]. NN model had two delayed plant inputs, two delayed plant outputs and
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Figure 6. Training data for NN model of CSTR.

Figure 7. Validation data for NN model of CSTR.
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four neurons in the hidden layer. Results of the training for the training data are shown
in Fig. 6. Results of validation presents Fig. 7. Validation for test data is shown in Fig. 8.
In every case, the prediction error was sufficiently small and the process output and the
NN model output fitted well.

Figure 8. Test data for NN model of CSTR.

In the next step parameters of the neural predictive controller were set up. Predic-
tion horizon for the neural model output variable (N2) was set to the value of 10 and
the prediction horizon for the control variable (Nu) was assumed 8, and the weight-
ing parameter (λ) was set to the value of 0.05. Line search function for the predictive
control optimization was selected as the backtracking search [8] and sample time was
1 min. Simulating tool was MATLAB Neural Network Toolbox NNPC. Parameters of
the simulator were set experimentally to achieve best quality of the control performance.
Constraints of the control signal and the controlled variable were set based on the neural
network model: for control variable from 0 to 0.02 m3min−1 and for controlled variable
from 320 to 380 K. The designed neural predictive controller was used to control CSTR.
The controlled variable y(t) was the temperature of the reaction mixture, ϑ [K], and
the reference w(t) was the temperature of the reaction mixture to be achieved. Obtained
results are presented in Fig. 9.

Further step was experiments of CSTR control using neuro-fuzzy control consisting
of the neural predictive controller and the ANFIS controller. The ANFIS controller was
trained by a PID controller to ensure integration and differentiation properties in the
ANFIS. PID parameters were designed by the Smith-Murrill method in five training
periods and obtained mean square error value was 3.32·10−6. The ANFIS controller had
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Figure 9. Trajectory of the controlled variable y(t) (temperature of the reaction mixture, solid line) with
a neural predictive controller, reference variable w(t) (dashed line) (left) and the trajectory of the control
variable u(t) (volume flow rate of the coolant) with a neural predictive controller (right).

Figure 10. Membership functions for input variables e (a) and de (b) of the control of the CSTR.

two inputs: set-point error e, and difference of the set-point error de. Twelve bell shaped
membership function were chosen for the ANFIS input: seven for variable e and five for
variable de (Fig. 10). The controller had 35 rules and all ANFIS controller parameters
were chosen experimentally. Obtained simulation results are presented in Fig. 11.

To assess the suitability of the proposed intelligent control system, its performance
was compared with that of the neural predictive controller and a conventional PID
controller based on the normalized integration quality criteria of control (Tab. 2).
Integral squared error (ISE) and integral absolute errors (IAE) [16] are often used
criteria for the evaluation of the control performance quality and they were also used for
the comparison of the proposed controllers. Fig. 12 shows output behavior for all three
approaches.

Control of CSTR in the perturbed state

Tracking abilities of controllers proposed in the presence of disturbances is of ut-
most importance. Disturbances were applied as step changes of the input concentration
of substance A (cvA), input temperature of the reaction mixture (ϑv), input temperature



242 L. BLAHOVÁ, J. DVORAN, J. KMEŤOVÁ

Figure 11. Trajectory of the controlled variable y(t) (temperature of the reaction mixture, solid line) with
a neuro-fuzzy control, reference variable w(t) (dashed line) (left) and the trajectory of the control variable
u(t) (volume flow rate of the coolant) with a neuro-fuzzy control (right).

Figure 12. Comparison of controlled variable y(t) (temperature of the reaction mixture): reference variable
w(t) (dash-dotted line), controlled variable y(t) with a PID controller (dashed line), controlled variable y(t)
with an NNPC controller (dotted line), and controlled variable y(t) with an NFC controller (solid line).

Table 12. Comparison of integral absolute error and integral square error of CSTR control.

Type of control IAE ISE

NFC 0.7838 0.9861

NNPC 0.9115 1.0500

PID 1.0000 1.0000

of the coolant (ϑvc), and the flow rate of the reaction mixture (q). Input concentration of
substance A (cvA) was changed in the range of ±10% of the nominal value. Input temper-
ature of the reaction mixture (ϑv) was changed in the range of ±8 K from the nominal
value. Input temperature of the coolant (ϑvc) was changed in the range of ±8 K from
the nominal value. Flow rate of the reaction mixture was changed in the range of ±15%
from the nominal value.



NEURO-FUZZY CONTROL DESIGN OF PROCESSES IN CHEMICAL TECHNOLOGIES 243

Figure 13. Comparison of the trajectory of the controlled variable y(t) (temperature of the reaction mix-
ture) for perturbed state; reference variable w(t) (dash-dotted line), controlled variable y(t) with an NNPC
controller (dotted line), and controlled variable y(t) with an NFC controller (solid line).

Figure 14. Comparison of the trajectory of the controlled variable y(t) (temperature of the reaction mix-
ture) for perturbed state; reference variable w(t) (dash-dotted line), controlled variable y(t) with an NNPC
controller (dotted line) and controlled variable y(t) with an NFC controller (solid line).

A comparison of the neural predictive controller and the neuro-fuzzy controller per-
formance tested in the presence of process parameter perturbations is shown in Figs. 13
and 14 (arrows point the time instants of the disturbances influence). As one can see, the
proposed controller performs significantly better in all considered cases.

3.2. Real-time control of a laboratory process

Process description

Multi-functional process control teaching system - Armfield PCT40 [1] is a sys-
tem enabling to test a wide range of technological processes, as a tank, heat exchanger,
continuous stirred tank reactor and their combinations [2, 3]. The PCT40 unit consists
of two process vessels, several pumps, sensors, and connection to the computer. Ad-
ditional equipment PCT41 and PCT42 constitute chemical reactor with a stirrer and a
cooling/heating coil. The plant is shown in Fig. 15.
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Figure 15. Multi-functional process control teaching system - Armfield.

Reactants can be injected into the reactor via normally closed solenoid valve or by a
proportional solenoid valve (PSV). Third possibility of feeding water into the reactor is
using one of the two peristaltic pumps.

The connection to the computer is realized via an I/O connector connected to MF624
multifunction PCL I/O card from Humusoft company. This configuration enables the use
of Matlab Real-time Toolbox and Simulink.

NaCl solution of 0.8555 mol/dm3 concentration is fed into the reactor by a peristaltic
pump. The performance of the pump can be set in the range of 0-100%. But for the pump
performance lower than 40% revolutions of the rotor are to small to transport the fluid
from the barrel. Volumetric flow rate of NaCl solution for all measurements was 0.00175
dm3/s. This represents 40% of the pump performance.

Water was dosed into the reactor by PSV. Application of PSV allowed for use of
flow-meter. The PSV can be set in the range of 0-100%, but the volumetric flow rate of
water for the PSV opening in the range of 0-30% was negligible.

Figure 16. Calibration curve for NaCl solution.
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For control purposes, the laboratory continuous stirred tank reactor is a system with
single input and single output. The control variable is the volumetric flow rate of water
(F) and the controlled variable is the conductivity of NaCl solution (G) inside the reactor.
The concentration c of NaCl was determined on basis of the measured conductivity and
the calibration curve (Fig. 16) as shown by equation (10). Used water was cold water
from the standard water distribution system. The volume of the solution in the reactor
was kept constant, 1 dm3 during all experiments.

c = 0.0144 G−0.0576 (10)

Figure 17. Training data for NN model of the laboratory process.

Control of the laboratory process

Similarly to simulations presented above, a neural network model of the laboratory
process was obtained. The neural network model of the laboratory process was trained
off-line by the Levenberg-Marquardt back propagation method [14] based on the input
and output data. Input data represent the flow of water into the process and output data
are the conductivity of NaCl solution. The structure of NN model was the same: two
delayed plant inputs, two delayed plant outputs and four neurons in the hidden layer.
Results of the training for the training data are shown in Fig. 17, for the validation data
in Fig. 18 and for test data in Fig. 19. In every case, the prediction error was sufficiently
small and the process output and the NN model output fitted well.
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Figure 18. Validation data for NN model of the laboratory process.

Figure 19. Test data for NN model of the laboratory process.



NEURO-FUZZY CONTROL DESIGN OF PROCESSES IN CHEMICAL TECHNOLOGIES 247

Figure 20. Trajectory of the controlled variable y(t) (conductivity of NaCl solution, solid line) with a neural
predictive controller, reference variable w(t) (dashed line) (left) and the trajectory of the control variable
u(t) (water flow rate) with a neural predictive controller (right).

Firstly the neural predictive controller was set up. Prediction horizon N2 for the out-
put was 4, the prediction horizon for the control (Nu) was 2, the weighting parameter λ
was 0.05. Line search function for the predictive control optimization was selected as the
backtracking search [8] and sample time was 1 s. MATLAB Neural Network Toolbox
NNPC was used and all parameters were set experimentally to achieve the best quality
of the control performance. Boundary values of the control and the controlled variable
were set based on the neural network model: for control variable from 0 to 12·10−3

dm3s−1 and for controlled variable from 0 to 70 mS. The controlled variable y(t) was
the conductivity G [mS] of NaCl solution, control variable u(t) was the water flow rate
F [dm3/s], and the reference w(t) was the conductivity of NaCl solution which corre-
sponded to the required concentration of NaCl solution (see eqn. (10)). Obtained results
are presented in Fig. 20.

In the second step, the laboratory process was controlled with the neuro-fuzzy con-
trol. The ANFIS was trained by a PI controller which was designed according to the
Strejc method [16] in five training periods with mean square error equal to 1.35. The
ANFIS controller had two inputs: set-point error e, and difference of set-point error de.
Seven bell shaped membership functions were chosen for the ANFIS input: four for
variable e and three for variable de (Fig. 21). It had 12 rules and all ANFIS controller
parameters were chosen experimentally. Obtained experimental results are presented in
Fig. 22.

To assess the suitability of the proposed intelligent control system, the control trajec-
tory was compared to that of the neural predictive controller and a conventional PI con-
troller based on the normalized integration quality criteria of control (Tab. 3). Integral
squared error (ISE) and integral absolute error (IAE) [16] were used for the comparison
of the proposed controllers. In Fig. 23, the comparison of the controlled variables can be
seen.
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Figure 21. Membership functions for input variables e (a) and de (b) to the control of the laboratory process.

Figure 22. Trajectory of the controlled variable y(t) (conductivity of NaCl solution, solid line) with a neuro-
fuzzy control, reference variable w(t) (dashed line) (left) and the trajectory of the control variable u(t)
(water flow rate) with a neuro-fuzzy control (right).

Table 13. Comparison of integral absolute error and integral square error of the control of the laboratory
process.

Type of control IAE ISE

NFC 0.3858 0.2592

NNPC 0.6909 0.3640

PID 1.0000 1.0000

4. Conclusions

In this paper, an intelligent control system was proposed. It consists of two con-
trollers: neural predictive controller and ANFIS controller. The main goal of the result-
ing control system was to enhance the profile of the controlled variable by manipulating
the control variable. The results reported here indicate, that comparing the neural predic-
tive controller, neuro-fuzzy controller and PI controller, the neuro-fuzzy control scheme
shows the best performance.
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Figure 23. Comparison of the trajectory of the controlled variable y(t) (conductivity of NaCl solution) of
the proposed approach, reference variable w(t) (dashed line), controlled variable y(t) with a PID controller
(dash-dotted line), controlled variable y(t) with an NNPC controller (dotted line) and controlled variable
y(t) with an NFC controller (solid line).

Simulation and experimental results obtained demonstrate the usefulness and ro-
bustness of the proposed control system, and the general advantages of this technique in
control applications.
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[5] R. BABUŠKA and H. VERBRUGGEN: Neuro-fuzzy methods for nonlinear system
identification. Annual Reviews in Control, 2003, 73-85.
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