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Two steps piecewise affine identification
of nonlinear systems

JURAJ ŠTEVEK, ALEXANDER SZŰCS, MICHAL KVASNICA, MIROSLAV FIKAR and ŠTEFAN KOZÁK

Given a set of input-output measurements, the paper proposes a method for approximation
of a nonlinear system by a piecewise affine model (PWA). First step of the two-stage procedure
is identification from input-output data, in order to obtain an appropriate nonlinear function in
analytic form. The analytic expression of the model can be represented either by a static non-
linear function or by a dynamic system and can be obtained using a basis function expansion
modeling approach. Subsequently we employ nonlinear programming to derive optimal PWA
approximation of the identified model such that the approximation error is minimized. More-
over, we show that approximation of multivariate systems can be transformed into a series of
one-dimensional approximations, which can be solved efficiently using standard optimization
techniques.

Key words: piecewise affine systems, piecewise linear, approximation, nonlinear systems,
orthogonal polynomials, basis function expansion

1. Introduction

Mathematical model of real plants plays a vital role in many control-oriented tasks,
including, but not limited to, model validation, control design, and analysis of closed-
loop systems. In order to perform these tasks accurately and efficiently, the model has to
be capture the plant’s behavior well enough in all operating regimes, while being simple
enough to be able to processed by algorithms available in control theory. Nonlinear plant
models are traditionally employed when high model accuracy is desired. However, the
nonlinear nature of such models poses significant difficulty in control design and analy-
sis, theory of which is usually based on linear models. Therefore it is a standard practice
to linearize the nonlinear model around a selected operating point. The downside being
that the linearized model is only accurate when the plant operates close to the selected
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linearization point. More recently, the concept of hybrid systems [3] has been frequently
adopted to model real plants. Hybrid systems allow to approximate nonlinear models by
multiple linearizations around several operating points. Such an approximation, from a
mathematical point of view, corresponds to a Piecewise Affine (PWA) system [15] com-
posed of a finite number of distinct linear (or affine) dynamics with associated regions
of validity. Compared to standard linear model, PWA models provide higher approxima-
tion accuracy, while the underlying piecewise linear nature of such models renders sub-
sequent tasks (e.g. model validation, control synthesis, analysis, etc.) easier compared to
full nonlinear models.

Parameters of PWA models, i.e. regions of validity and associated linear dynamics,
can be obtained in two ways. If the analytical form of the nonlinear model to be ap-
proximated is fully available, one can manually select multiple linearization points and
subsequently use the HYSDEL language [16] to describe the PWA system manually.
Alternatively, one can use the method of [8] which employs nonlinear optimization to
automatically determine regions of validity and corresponding linear dynamics. The re-
sulting PWA approximation is optimal in the sense that it minimizes the error between
the original nonlinear model and its PWA approximation. Disadvantage of these ap-
proaches is that they cannot be applied if the nonlinear plant characteristics are only
available in the form of input-output data. Another class of approaches is based on hy-
brid identification techniques which apply clustering techniques to classify measured
data into operating regions, see e.g. [13, 5]. The crucial downside of these approaches
is twofold. First, they are computationally expensive, since they are based on solving
mixed-integer optimization problems and are therefore limited to low-dimensional prob-
lems only. Second, there is no guarantee that the union of operating regions, obtained by
clustering, cover the whole area of parameters of interest without creating “holes” where
the model would be undefined. Several other methods have been proposed for fitting
general piecewise linear functions to (multidimensional) data. A triangular nested parti-
tioning was exploited in [7]. A non-parametric approach based on local piecewise (affine
or polynomial) regression was presented in [6]. Both methods lead to regular division of
the function domain. A heuristic method for fitting a convex piecewise linear function to
a given set of data was presented in [10].

In this work we propose to use a two-stage optimization-based approach to derive
PWA approximations of a nonlinear systems from input-output data. In the first stage
we fit the data with an analytic function of a low complexity by employing the basis
function expansion modeling approach (black box model). Output of this stage is an
algebraic function f of the measured data which minimizes the fitting error while keep-
ing the analytical form of f as simple as possible. In the second step we then apply
our optimization-based procedure, introduced in [8], to derive optimal PWA approxi-
mation f̃ of the fit f . We aim at obtaining the best possible PWA approximation f̃ of
a given complexity by minimizing the integrated squared error

∫
( f (z)− f̃ (z))2 dz. The

crucial benefit of such a two-stage procedure stems from the fact that we can derive the
PWA approximation with the rigorous property that the operating regions of the PWA
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approximation cover the whole space of parameters of interests. Moreover, we show that
approximation of multi-dimensional data boils down to a series of one-dimensional ap-
proximations, allowing for a fast and efficient construction of the PWA approximation.
We also illustrate that the proposed procedure features fast training, allows to tune ac-
curacy as a function of model complexity, and is applicable to a wide spectrum of static
and dynamic systems.

The paper is divided into six sections. After formally stating the problem in Sec-
tion 2, we give in Section 3 a direction how to use one-hidden layer neural network as
a tool for obtaining analytical form of an investigated system from input-output mea-
surements. The identification of the analytical form is characterized by convexity, fast
convergence, and adjustable accuracy. In Section 4 we show that an optimal PWA ap-
proximation of the identified network can be formulated and solved as a nonlinear pro-
gramming problem. We show that the problem boils down to solving a series of one-
dimensional approximations. The last section serves for demonstrating the proposed
method on two illustrative example, involving a static model of a Current-voltage char-
acteristic as well as a dynamic model of a benchmark system.

2. Problem formulation

In this paper we aim at addressing the following problem. We are given T samples
of input data zi ∈Ω⊂ Rnz from some closed and bounded set Ω, and the corresponding
measurements yi ∈R, i= 1, . . . ,T . We want to fit the data with a PWA function f̃ :Rnz→
R with N regions

f̃ (z) =


aT

1 z+ c1 if z ∈ R1,
...

aT
Nz+ cN if z ∈ RN ,

(1)

which satisfies two design requirements:

R1: f̃ is well defined [2] on Ω, i.e. it satisfies interior(Ri)∩ interior(R j) = Ø, ∀i ̸= j
and ∪iRi = Ω, i = 1, . . . ,N.

R2: f̃ is an optimal fit, i.e. it minimizes the fitting error efit = ∑T
i=1(yi− f̃ (zi))

2.

Solving this problem (i.e. determining regions R j ⊆Rnz and parameters a j ∈Rnz , c j ∈R,
j = 1, . . . ,N), however, is not trivial [8] if the input samples zi are vectors, i.e. when
nz > 1. The difficulty being how to divide the domain Ω into non-overlapping regions
R j without creating “holes”, i.e. guaranteeing that the union ∪ jR j completely covers Ω
if dimension(Ω)> 1.

To overcome this difficulty, we propose to split the search for the PWA function f̃
into two steps. In the first stage we fit the input data, represented by the (zi, yi) pairs,
with a nonlinear function y = f (z):
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Problem 1 Given are T samples of input data zi and the corresponding measurements
yi, i= 1, . . . ,T . Fit the data with a multivariable function f :Rnz→R such that the fitting
error efit = ∑T

i=1(yi− f (zi))
2 is minimized.

Once the analytical form of the fitting function f is available, in the second step we
search for its optimal PWA approximation:

Problem 2 Given is a nonlinear function f : Rnz → R and its domain Ω ⊂ Rnz . Find a
well-defined PWA approximation f̃ as in (1) such that the approximation error

eaprx =
∫
Ω

( f (z)− f̃ (z))2dz (2)

is minimized when the integral is evaluated over the whole domain Ω.

We will show in Section 4 how to solve Problem 2 if the following assumption holds:

Assumption 1 The multivariable nonlinear function f : Rnz → R can be repre-
sented as a sum of products of functions in single variables, i.e. f (z1, . . . ,znz) =

∑nz
i=1 αi

(
∏qi

j=pi
f j(z j)

)
. Here, αi are scalar coefficients and f j :R→R are scalar-valued

(possibly nonlinear) basis functions.

To guarantee that f satisfies this assumption, in Section 3 we propose to solve Prob-
lem 1 by employing an approach based on neural networks with a predefined set of basis
functions. The network then finds a simple combination of these basis functions which
provide a good fit.

3. Neural network for input-output mapping of nonlinear systems

The first stage of the procedure requires identification of the non-linear system in the
analytical form. This problem has been addressed in applied mathematics (multivariate
function approximation), statistics (nonparametric multiple regression) and in computer
science and engineering (artificial neural networks). It can be solved using a variety
of methods. The process of the identification is based on objective of the non-linear
regression. If the purpose of the regression analysis is to get a function for predicting
future values of the system, then the accuracy is the only important aspect of the model.
The measure of accuracy is often defined by the integral error or the expected error.

Depending on the application, other desirable properties of the approximation might
include rapid computability and smoothness of the identified model, i.e. that its low order
derivatives exists everywhere. In this work, moreover, it is required to obtain the model
in the separable analytical form (Assumption. 1).

In the literature, two basic approaches for the non-linear regression exist:
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• Parametric methods: the structure of the model is proposed a priori and unknown
parameters are estimated optimizing the objective.

• Non-parametric methods: structure of the model is not formed explicitly, but is
computed according to information derived from the data.

In the parametric modeling, the fundamental approach is to fit parametric function
f (x|{a j}P

1 ) to the training data most often by least-squares. The parameter estimates
are given by

{ã j}P
1 = argmin

{a j}P
1

N

∑
i=1

(
yi− f

(
x|{a j}P

1
)2
)

(3)

To the most extensively studied parametric models belongs additive function expansion

f (x) =
m

∑
k=1

αk fk(x) (4)

with some basis functions fk. The basis functions are mostly generated from one and the
same “parent function” κ(x) that is scaled and translated according to

fk(x) = κ(βk(x− γk)) (5)

The basis functions are thus characterized by the scale (dilatation) parameters βk and the
location (translation) parameters γk [9]. Depending on the choice of basis functions we
can deal with radial basis neural networks, one hidden layer sigmoidal neural networks,
wavelets etc. In the literature, the basis function expansion belongs to black box model
which interpretability does not play any important role. However, in the proposed pro-
cedure, it is possible to use any function expansion which satisfies user objectives and
Assumption 1.

In the following, we will just point out some of the possible regression techniques
applicable for further step.

Radial basis function networks: RBF neural network is an artificial neural network
that uses RBF functions as activation function in three layers structure (Fig. 1). They are
much used in function approximation, time series prediction, and control. The output,
y : Rn→ R of the network is given as

y(x) =
N

∑
i=1

αiρ(∥x− γi∥) (6)

where N is the number of neurons in the hidden layer, γi is the center vector for neuron
i, and αi ate the weights of the linear output neuron. The norm is typically taken to be
the Euclidean distance and the basis function is taken to be Gaussian

ρ(∥x− γi∥) = exp(−β∥x− γi∥2) (7)
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Figure 1. Architecture of a basis function network.

The analytical form (6) readily satisfies the Assumption 1.
Polynomial expansion: In system identification and control, an abundant attention

has been given to polynomial model structures. Such a polynomial expansion can be
modeled by three layer network depicted in Fig. 1. If the polynomial basis exhibits prop-
erty of orthogonality we address an Orthogonal Activation Function based Neural Net-
work (OAF-NN) [19, 12].

The hidden layer consists of neurons with orthogonal (preferably orthonormal) acti-
vation functions. The activation functions for these neurons belong to the same class of
orthogonal functions and no two neurons have the same order of activation function.

The network output is defined by a linear combination of weights

ŷ = f (z, ŵ) =
N1−1

∑
n1=0

Nm−1

∑
nm=0

ŵn1...nmϕnr...nm(z) = ΦT (z)ŵ, (8)

where z = [z1,z2, . . . ,zm]
T is an m-dimensional input vector, Ni is the number of neu-

rons corresponding to the i-th input and ŵ is the vector of weights between the hidden
and output layers. Functions ϕn1...nm(z) are orthogonal functions in m-dimensional space
given by

ϕn1...nm(z) =
m

∏
i−1

ϕni(zi), (9)

where ϕi(z) are one-dimensional orthogonal functions implemented by each hidden layer
neuron. For detailed topology of the network see [19]. Examples of orthonormal func-
tions are normalized Fourier (harmonic) functions, Legendre polynomials, Chebyshev
polynomials, Laguerre polynomials, Hermite polynomials, Walsh functions, and many
others [17].
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Due to the fact that the algebraic output of the OAF network satisfies Assumption 1,
it is possible to apply the technique described in Section 4.

In this section we have reviewed some of the many possible approaches for identify-
ing nonlinear system. Emphasis was on separability, accuracy and fast identification. In
the next section we provide the optimization-based procedure for deriving PWA approx-
imation from identified analytical form.

4. PWA approximation of neural network output

This section illustrates how to solve Problem 2 where the task is to approximate
a given nonlinear multivariable function f by a PWA function f̃ as in (1) such that
the approximation error (2) is minimized. Through the section we will assume that the
analytical form of f is known and that it satisfies Assumption 1. We remark that such an
assumption is fulfilled if f is obtained by the neural network approach of Section 3. First,
in Section 4.1 we illustrate how to derive optimal PWA approximation of scalar-valued
nonlinear functions in a single variable, i.e. when f :R→R. Subsequently, in Section 4.2
we extend the procedure to approximation of multivariable nonlinear functions f :Rnz→
R. Worth noting is that we will solve Problem 2 by a sequence of one-dimensional
approximations.

4.1. Functions in One Variable

First, we consider the one-dimensional case, i.e. approximating a nonlinear function
f : R→R by a PWA function f̃ (z) = aiz+ci if z ∈ Ri, i = 1, . . . ,N. Here, the domain Ω
of f is assumed to be a line segment [z, z]. Regions Ri define the partition of such a line
into N non-overlapping parts, i.e. R1 = [z, r1], R2 = [r1, r2], . . ., RN−1 = [rN−2, rN−1],
RN = [rN−1, z] with ∪iRi = [z, z]. Solving Problem 2 then reduces to find the slopes ai ∈
R, offsets ci ∈R and breakpoints ri ∈R such that the approximation error is minimized,
i.e.

min
ai,ci,ri

z∫
z

( f (z)− f̃ (z))2 dz (10a)

s.t. f̃ (z) =


a1z+ c1 if z ∈ [z, r1]

...
...

aNz+ cN if z ∈ [rN−1, z]

(10b)

z¬ r1 ¬ · · ·¬ rN−1 ¬ z, (10c)
airi + ci = ai+1ri + ci+1, i = 1, . . . ,N−1, (10d)

where (10d) enforces continuity of f̃ along the breakpoints ri. The IF-THEN based non-
linear constraint (10b) can be eliminated by observing that, by definition, regions Ri are
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non-overlapping and the integral in (10a) can hence be written as

z∫
z

(
f (z)− f̃ (z)

)2 dz =
N

∑
i=1

( ri∫
ri−1

(
f (z)− (aiz+ ci)

)2 dz
)
, (11)

with r0 = z and rN = z. The NLP (10) can therefore be written as

min
ai,ci,ri

N

∑
i=1

( ri∫
ri−1

(
f (z)− (aiz+ ci)

)2 dz
)

(12a)

s.t. z¬ r1 ¬ · · ·¬ rN−1 ¬ z, (12b)
airi + ci = ai+1ri + ci+1, i = 1, . . . ,N−1. (12c)

For simple nonlinear functions f , the integral in (12a) can be expressed in analytical
form in unknowns ai,ci,ri, along with the corresponding gradients. For more complex
expressions, the integrals can be evaluated numerically, e.g. by using the trapezoidal
rule. In either case, problem (12) can be solved to find a local optimum e.g. by using the
fmincon solver of MATLAB. Alternatively, global optimization methods [4, 1] can be
used that guarantees that an ε-neighborhood of the global optimum can be found.

Example 1 Consider the function f (z) = z3 for −1.5 ¬ z ¬ 1.5. The analytic form of
the integral (12a) is

N

∑
i=1

(
c2

i (ri + ri−1)+aici(r2
i − r2

i )+
a2

i

3
(r3

i − r3
i−1)−

−ci

2
(r4

i − r4
i−1)−

2ai

5
(r5

i − r5
i−1)+

1
7
(r7

i − r7
i−1)

)
,

with r0 = −1.5 and rN = 1.5. The PWA approximation of f (z) with N = 3 regions was
found by solving the NLP (12) using fmincon.The obtained PWA approximation is then
given by

f̃ (z) =


4.1797z+3.1621 if −1.5¬ z¬−0.8423
0.4257z if −0.8423¬ z¬ 0.8423
4.1797z−3.1621 if 0.8423¬ z¬ 1.5

The approximation accuracy increases by a factor of 10 when N = 5 regions is used, as
can be seen from Fig. 2.

4.2. Multivariable Functions

The task is to approximate a given multivariable function f (z1, . . . ,znz) : Rnz → R
with domain Ω ⊂ Rnz by a PWA function f̃ (z1, . . . ,znz), defined over the same domain,
such that the approximation error (2) is minimized.
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Figure 2. Graph of f (z) = z3 (solid line) and the PWA approximations f̃ (z) (dashed lines).

Definition 1 [18] A function f (z1, . . . ,znz) is called separable if it can be expressed as a
sum of functions of a single variable, i.e. f (z1, . . . ,znz) = f1(z1)+ · · ·+ fn(znz).

If f (z1, . . . ,znz) is readily separable (e.g. when f (z1,z2) = ez1 +sin(z2)), its optimal PWA
approximation can be obtained by applying the 1D scenario of Section 4.1 to the indi-
vidual components of the function, i.e. f̃ (z1, . . . ,znz) = f̃1(z1)+ · · ·+ f̃n(znz). The total
number of regions over which the PWA approximation f̃ is defined is hence given by
∑nz

j=1 N j, where N j is the pre-specified complexity of the j-th approximation f̃ j(z j).
Any nonlinear non-separable function f satisfying Assumption 1 can be converted

into the separable form by a simple change of variables [18]. To introduce the procedure,
consider a non-separable function f (z1,z2) = z1z2 with domain Ω := [z1, z1]× [z2, z2].
Define two new variables

y1 = (z1 + z2), y2 = (z1− z2). (13)

Then it is easy to verify that 1/4(y2
1−y2

2) = z1z2. The coordinate transformation therefore
transforms the original function into a separable form, where both terms (y2

1 and y2
2) are

now functions of a single variable. The procedure of Section 4.1 can thus be applied
to compute PWA approximations of fy1(y1) := y2

1 and fy2(y2) := y2
2, where the function

arguments relate to z1 and z2 via (13). Note that fy1(·) and fy2(·) have different domains,
therefore their PWA approximations f̃y1(y1) ≈ y2

1 and f̃y2(y2) ≈ y2
2 will, in general, be

different. Specifically, the domain of fy1(·) is [y
1
, y1] with y

1
= min{z1 + z2 | z1 ¬ z1 ¬

z1, z2 ¬ z2 ¬ z2} and y1 = max{z1 + z2 | z1 ¬ z1 ¬ z1, z2 ¬ z2 ¬ z2}. Similarly, the
domain of fy2(·) is [y

2
, y2], which boundaries can be computed by respectively mini-

mizing and maximizing z1− z2 subject to the constraint [z1, z2]
T ∈Ω. The overall PWA

approximation f̃ (z1,z2)≈ z1z2 then becomes

f̃ (z1,z2) = 1/4( f̃y1(z1 + z2)− f̃y2(z1− z2)). (14)
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For any points z1,z2 the value f̃ (z1,z2) is obtained by subtracting the PWA function
f̃y2(·) evaluated at the point z1− z2 from f̃y1(·) evaluated at z1 + z2, followed by a linear
scaling.

The procedure naturally extends to multi-variable functions represented by the prod-
uct of two nonlinear functions of a single variable, i.e. f (z1,z2) = f1(z1) f2(z2). Here, the
transformation (13) becomes

y1 = f1(z1)+ f2(z2), y2 = f1(z1)− f2(z2). (15)

Therefore, 1/4(y2
1− y2

2) = f (z1,z2) still holds. Let fy1(y1) := y2
1 and fy2(y2) := y2

2. The
domain of fy1(·) is [y

1
, y1] and dom fy2(·) = [y

2
, y2] with

y1 = min{ f1(z1)+ f2(z2) | [z1, z2]
T ∈Ω}, (16a)

y1 = max{ f1(z1)+ f2(z2) | [z1, z2]
T ∈Ω}, (16b)

y
2
= min{ f1(z1)− f2(z2) | [z1, z2]

T ∈Ω}, (16c)

y2 = max{ f1(z1)− f2(z2) | [z1, z2]
T ∈Ω}, (16d)

which can be computed by solving four NLP problems. Finally, since all expressions are
now functions of a single variable, the PWA approximations f̃1(z1) ≈ f1(z1), f̃2(z2) ≈
f2(z2), f̃y1(y1)≈ fy1(y1), and f̃y2(y2)≈ fy2(y2) can be computed by solving the NLP (12).
The overall optimal PWA approximation f̃ (z1,z2)≈ f (z1,z2) then becomes

f̃ (z1,z2) = 1/4
(

f̃y1

(
f̃1(z1)+ f̃2(z2)

)
− f̃y2

(
f̃1(z1)− f̃2(z2)

))
. (17)

The evaluation procedure is similar as above, i.e., given the arguments z1 and z2, one first
evaluates z̃1 = f̃1(z1) and z̃2 = f̃2(z2). Subsequently, one evaluates ỹ1 = f̃y1(·) with the
argument z̃1 + z̃2, then ỹ2 = f̃y2(·) at the point z̃1− z̃2. Finally, f̃ (z1,z2) = 1/4(ỹ1− ỹ2).
Separation of multi-variable functions with more than two terms can be performed in
an inductive manner. Consider f (z1,z2,z3) = f1(z1) f2(z2) f3(z3). First, approximate the
product f1(z1) f2(z2) by a PWA function of the form of (17), which requires four PWA
approximations

f̃1(·)≈ f1(·), f̃2(·)≈ f2(·), f̃y1(·)≈ y2
1, f̃y2(·)≈ y2

2,

with y1 and y2 as in (15). Let fa(z1,z2) := f1(z1) f2(z2). Then f (z1,z2,z3) =
fa(z1,z2) f3(z3), which can again be approximated as a product of two functions. Specif-
ically, define

y3 = fa(·)+ f3(z3), y4 = fa(·)− f3(z3), (18)

and hence fa(z1,z2) f3(z3) = 1/4(y2
3− y2

4). The domains over which y2
3 and y2

4 are to be
approximated are, respectively, [y

3
, y3] and [y

4
, y4] with

y
3
= min{ f1(z1) f2(z2)+ f3(z3) |z ∈Ω}, (19a)
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y3 = max{ f1(z1) f2(z2)+ f3(z3) |z ∈Ω}, (19b)
y4 = min{ f1(z1) f2(z2)− f3(z3) |z ∈Ω}, (19c)

y4 = max{ f1(z1) f2(z2)− f3(z3) |z ∈Ω}, (19d)

and z = [z1, z2, z3]
T . Subsequently, three additional PWA approximations

f̃y3(y3)≈ y2
3, f̃y4(y4)≈ y2

4, f̃3(z3)≈ f3(z3)

are to be computed over the corresponding domains. The aggregated optimal PWA ap-
proximation f̃ (z1,z2,z3)≈ f (z1) f (z2) f (z3) consists of 7 individual approximations and
is given by

f̃ (·) = 1/4
(

f̃y3

(
f̂a + f̃3(z3)

)︸ ︷︷ ︸
ŷ3

− f̃y4

(
f̂a− f̃4(z3)

)︸ ︷︷ ︸
ŷ4

)
. (20)

Here, f̂a is the function value f̃a(z1,z2) ≈ f1(z1) f2(z2) at z1 and z2, where f̃a(·) is ob-
tained from (17), i.e.:

f̂a = 1/4
(

f̃y1

(
f̃1(z1)+ f̃2(z2)

)︸ ︷︷ ︸
ŷ1

− f̃y2

(
f̃1(z1)− f̃2(z2)

)︸ ︷︷ ︸
ŷ2

)
. (21)

Then the overall PWA approximation f̃ (z1,z2,z3) can be evaluated, for any z1, z2, z3 ∈Ω,
by computing function values of respective approximations in the following order:

Step 1: ŷ1 = f̃y1( f̃1(z1)+ f̃2(z2)),

Step 2: ŷ2 = f̃y2( f̃1(z1)− f̃2(z2),

Step 3: ŷ3 = f̃y3(1/4(ŷ1− ŷ2)+ f̃3(z3)),

Step 4: ŷ4 = f̃y4(1/4(ŷ1− ŷ2)− f̃3(z3)),

Step 5: f̃ (z1,z2,z3) = 1/4(ŷ3− ŷ4).

Such an inductive procedure can be repeated ad-infinitum to derive PWA approxima-
tions of any multi-variable function which satisfies Assumption 1. In general, the PWA
approximation consists of 2p+ n individual PWA functions, where n is the number of
variables in f (z1, . . . ,znz) and p is the number of products between individual subfunc-
tions f j(z j). As an example, for f (·) := α1 f1(z1) f2(z2) f4(z4)+α2 f3(z3) f5(z5) we have
p = 3. We remark that inclusion of scalar multipliers α j into the PWA description (20)–
(21) is straightforward and only requires linear scaling of the corresponding terms.

Remark 1 Since the approximation procedure is always transformed to a linearization
of a sequence of one-dimensional functions and such transformation is driven by (17)
the overall approximation error will be (directly) proportional to one-fourth of the sum
of errors emerging during the approximation of the quadratic functions.
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Remark 2 In general, we can guarantee continuity of the final PWA approximation re-
gardless of the state space dimension, because in each case the approximation tools are
linear or affine functions of the given independent variable, which are obviously contin-
uous, since the domains for both functions are represented by the set of real numbers.

5. Examples

In this section, two identification experiments were conducted. The proposed
algorithm has been implemented in MATLAB and utilized in experiments.

Example 2 (Static model of Current-Voltage characteristics). In this example we use
OAF network in the first phase of identification and compare results with two existing
approaches. The results of the identification study show the potential of the technique.

A simple modeling problem of a static system is considered. The two-dimensional
nonlinear model of a GLASMONT n-channel transistor [14] was employed to prepare
input-output data for the identification experiment. The Current-Voltage characteristics
Ids(Vgd ,Vgs) of the system are captured in Fig. 3(a). The indices ds, gd and gs denote
drain-source, gate-drain, and gate-source, respectively.

From a modeling point of view the system is quite unique. Prepared data does not
exhibit any noise, typical for electrical measurements. This example is provided to illus-
trate and compare capabilities of the proposed modeling technique.

Chebyshev polynomials up to the fourth order were used in OAF network for this
experiment. The first step of the identification gave the following formula of the OAF
network

IOAF(Vgd ,Vgs) = 0.072Vgd
4−0.065Vgd

3−0.46Vgd
2−0.43Vgd

−0.072Vgs
4 +0.065Vgs

3 +0.46Vgs
2 +0.43Vgs−0.49 ·10−15 (22)

The OAF model (22) has no mixed product terms, therefore it is in a Generalized Fourier
Series form.

In the second step, four different approximations were performed, corresponding to
four different subdivisions of the domain. The approximation results are compared with
existing approaches [5, 7]. Tab. 5 compares three quantitative parameters of the identifi-
cation. It summarizes final number of linear regions of the PWA model Reg, mean square
error MSE and computation time T. The proposed technique is labeled as PWA-OAF in
the table. Due to the fact that breaking points are defined for each dimension indepen-
dently in case of PWA-OAF model, the results in each row of Tab. 5 are comparable.
Results of HL-CPWL technique are taken from [7] without computational time. The re-
sults of K-mean cluster technique were obtained from simulation using HIT toolbox [5].
The clustering technique failed to complete in case of many linear regions. In Fig. 3, the
nonlinear function Ids and its OAF and PWA-OAF approximations are shown (each case
corresponding to a given subdivision).
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(a) The I-V characteristics of the GLASMONT
nonlinear model [14].
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(b) The I-V characteristics of the OAF approx-
imation.
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(c) The I-V characteristics of the PWA-OAF
model (4 regions).
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(d) The I-V characteristics of the PWA-OAF
model (6 regions).

Figure 3. The Current-Voltage characteristics approximation results.

It is first observed that the proposed two-stage approximation does not raise MSE.
The OAF technique provides tunable accuracy of the polynomial model (22). Its accu-
racy is influenced mainly by the number of neurons in hidden layer.

It is observed that independent linearization segments in each dimension are in gen-
eral beneficial for convergence. The accuracy of approximation improves with increasing
number of segments. Due to the convex training of the OAF network the overall identi-
fication process exhibits favorable computational times.
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Table 1. Setup, results and comparison (Example 2).

PWA OAF model HL CPWL model [7] HIT-PWA model [5]

Case Reg. MSE T [s] Reg. MSE T [s] Reg. MSE T [s]

1 4 1.012e-7 2.159 4 9.31e-4 – 4 1.103e-7 19.96
2 6 1.659e-8 2.48 – – – 9 6.022e-8 39.93
3 8 5.4e-9 4.23 16 2.23e-4 – 16 5.22e-8 70.29
4 12 2.457e-9 4.72 36 5.6e-5 – – – –

Example 3 (Narendra-Li Benchmark system). In this example we consider identifica-
tion of a complex nonlinear discrete-time system with one input and one output. The
system was originally proposed and discussed by Narendra and Li in [11] and has been
considered in numerous discrete-time identification examples.

The discrete-time equations of the Narendra-Li system are:

x+1 =

(
x1

1+ x2
1
+ p1

)
sin(x2)

x+2 = x2 cos(x2)+ x1e
−(x2

1+x2
2)

p2 +
u3

1+u2 + p3 cos(x1 + x2)

y =
x1

1+ p4 sin(x2)+ p5 sin(x1)

(23)

Two input-output data records with 300 samples each, one for estimation and one for
validation purposes were prepared. The system was excited by a harmonic signal u(t) =
sin(2πt/10)+ sin(2πt/25) which varies within the bounds [−2,2] for t = 0,1, . . . ,299
seconds.

As in the previous example, the basis function expansion with OAF was use in the
first step of the procedure. Chebyshev polynomials up to third order were used in OAF
network for this experiment. The first step of the identification gave the following for-
mula of the network

y(k) = 0.41y3(k−1)− y2(k−1) (0.133u(k−1)+0.061)

− y(k−1)
(
0.16u2(k−1)+0.339u(k−1)−0.344

)
+1.16u2(k−1)−1.55u3(k−1)+1.196u(k−1)−0.13

(24)

The output consists of two mixed terms and two terms of single variable.
In second step of the approximation, each term was approximated individually.

Three different approximations were performed, corresponding to different number of
linearization regions for each term. Tab. 2 summarizes mean square error MSE, compu-
tational time T , and final number of regions for each term individually. Results in Tab. 2



TWO STEPS PIECEWISE AFFINE IDENTIFICATION OF NONLINEAR SYSTEMS 385

Table 2. Setup and results (Example 3).

PWA OAF model

Case MSE Time
Regions

term 1 term 2 term 3 term4

1. 3.43e-1 9.68 15 15 7 7
2. 3.79e-1 8.67 13 13 5 5
3. 3.2e-0 4.23 8 8 2 2

relate to model excited by validation signal u(t) = sin(2πt/10)− sin(2πt/25). The ex-
periment showed good generalization capabilities of the identified model by feeding in
an unknown signal input not previously used for training (Fig. 4). The complexity of the
final model depends on the segmentation of the algebraic formula (24). Yet, the mixed
terms of the algebraic formula are linearized independently. It is possible to achieve a
lower number of linear regions by approximation in the same points. It is also worth to
mention that existing identification techniques which support identification of dynamic
systems [5, 13] failed to converge.

6. Conclusion

Piecewise affine (or linear) functions and approximations have many applications in
global optimization, non-linear control, pattern detection or function compression. We
have proposed a two step an approximation method for static and dynamic systems that
transforms them into PWA systems of fixed complexity. The original system behavior
is characterized by input-output measurements. The first step of the procedure identifies
the system by a basis function expansion network. In the second step, we solve a se-
ries of one-dimensional problems to approximate the nonlinear system by PWA model.
The procedure is optimal in regard to objectives in both stages. However, two steps
of the method can introduce addition approximation error into final model. Also, no
stability analysis of the proposed method was investigated. Numerical examples sug-
gest, however, that the method works very well in practice. It also competes favorably
with existing approximation methods in accuracy, number of linearization segments, and
computational complexity.
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(a) Input training signal.
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(b) Input validation signal.
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(c) Time responses of the Narendra-Li system,
OAF network and PWA-OAF model for training
input signal.
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(d) Time responses of the Narendra-Li system,
OAF network and PWA-OAF model for valida-
tion input signal.

Figure 4. Narendra-Li benchmark system characteristics, example 3.
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