www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

10.2478/v10170-011-0030-2

Archives of Control Sciences
Volume 22(LVIII), 2012
No. 4, pages 389-397

Flexible job shop problem — parallel tabu search
algorithm for multi-GPU

WOIJCIECH BOZEJKO, MARIUSZ UCHRONSKI and MIECZY StAW WODECKI

In the paper we propose a new framework for the distributed tabu search algorithm de-
signed to be executed with the use of a multi-GPU cluster, in which cluster of nodes are
equipped with multicore GPU computing units. The proposed methodology is designed spe-
cially to solve difficult discrete optimization problems, such as a flexible job shop scheduling
problem, which we introduce as a case study used to analyze the efficiency of the designed
synchronous algorithm.

Key words: jobs scheduling, flexible manufacturing, parallel algorithm, discrete optimiza-
tion

1. Introduction

The paper considers solving of a flexible job shop problem, which can be summa-
rized as follows. There is a given set of tasks and a set of machines. Each task consists of
a number of operations that must be performed on a machine from a set of dedicated ma-
chines in the given order. Operations’ execution cannot be interrupted and the machine
can perform at most one task at a given point in time. The aim is to find such a schedul-
ing (assigning operations to machines in time) that minimizes the maximum completion
time criterion of tasks’ execution (Cyax). The difficulty lies within generalization of the
classical job shop problem (job shop), thus it belongs to a class of strongly NP-complete
problems.

The literature proposes a variety of methods, ranging from simple and fast prior-
ity algorithms to complex algorithms based on the division and constraint method. In
addition, exact algorithms basing on presentation of the solution in the form of disjunc-
tive graphs were proposed by Pinedo ([9]). Nevertheless, the method is ineffective in
reference to time for instances of more than 20 tasks and 10 machines. There is also a

W. Bozejko is with Institute of Computer Engineering, Control and Robotics, Wroctaw University of
Technology, Janiszewskiego 11-17, 50-372 Wroctaw, Poland. M. Uchrofiski is with Wroctaw Centre of
Networking and Supercomputing, Wyb. Wyspariskiego 27, 50-370 Wroctaw, Poland. M. Wodecki is with
Institute of Computer Science, University of Wroctaw, Joliot-Curie 15, 50-383 Wroctaw, Poland. Corre-
sponding author is M. Wodecki, email: mwd @ii.uni.wroc.pl

Received 08.10.2012.

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

390 W. BOZEJKO, M. UCHRONSKI, M. WODECKI

big number of approximate, mainly metaheuristics, algorithms proposed. We can refer
here to the works of Dauz‘e re-Pére the Pauli [4] Mastrolilli and Gambardella [7] (tabu
search algorithm) and Gao et al. [6] (hybrid genetic algorithm.) The overview of cur-
rent trends in paralleling of flexible job shop problem can be found in the monograph of
Bozejko [2].

In this paper we propose a new model of a distributed tabu search algorithm (fabu
search), of metaheurystics dedicated to solving difficult problems of discrete optimiza-
tion, such as the considered flexible job shop problem, using ‘a cluster architecture’ con-
sisting of nodes equipped with the GPU units (multi-GPU) with distributed memory. We
determine the theoretical number of processors for which speedup measure (speedup)
takes the maximum value. Computational experiments were conducted on the multi-
GPU NVIDIA Tesla S2050 installations with a 6-core CPU processor.

2. Problem formulation

The considered problem of parallel ordering of machines denoted in the literature by
FJ|m|Cpmax, can be formulated as follows: there is a given a set of tasks 7 = {1,2,...,n}
to be performed on machines from the set M = {1,2,...,m}. There is a division of a
machine set into types, i.e. into such subsets of machines that have the same functional
properties. The task is a sequence of certain operations. Each operation must be per-
formed on the appropriate type of machine in the set time. The problem lies within the
allocation of tasks to machines of the appropriate type and the designation of order of
operations on machines to minimize the execution time of all tasks.

Let O = {1,2,...,0} be the set of all operations. The set can be broken down into
sequences corresponding to the tasks, where the task j € 7 is a sequence of o operations,
which will in turn be performed on the respective machines (in the technological line).

The operations are indexed by numbers (/;_1 +1,...,/j_1 +0;), in which [; =Y1_, 0; is
the number of first operations j = 1,2,...,n, where [p =0, and 0o =)", 0;. The set of
machines M = {1,2,...,m} can be broken into ¢ subset of machines of the same type

(slots), wherein i-th (i = 1,2,...,q) type M includes m; machines, which are indexed
with numbers (#;_1 + 1,...,t,_1 +m;), including t; = Z;: 1 m; as the number of the first i
type,i=1,2,...,q, where 1o = 0, and m =}/ m;.

Operation v € O should be performed in a slot u(v), i.e. on one of the machines from
the set M*(") in time p,,;, where j € MM, Let

OfF={veo: uv) =k}

be a set of operations performed in k-th (k=1,2,...,g) slot. The sequence of operations
set

Q: [Q17Q27"'7Qm]7

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

FLEXIBLE JOB SHOP PROBLEM — PARALLEL TABU SEARCH ALGORITHM FOR MULTI-GPU 391

such as for every k =1,2,...,q

tg—1+my

Ok: U Ql and QimQj:®7i#j7i7j:1727"'7m7

i=t_1+1

we call an allocation of operation set O to the machines of the M set. The sequence
[Qi1Hl Qi-1F2 | Q%1+™] is allocation of operations to machines in i-th slot (in
short allocation in i-th slot). In some particular cases a given machine might not per-
form any operation. Then, in the process of operation allocation there is an empty set of
operations in a slot to be performed by this particular machine.

If operations were allocated to the machines, then designation of the optimum time
for the operation (including the order of operations on the machines) is reduced to the
solution of the classical scheduling problem, namely the job shop problem.

Let K = [K},K>, ..., K], be the sequence of sets, where K; € 20 i=1,2,...,m. In
particular the elements of this sequence might be empty sets. By X we denote a set of
all such sequences. Power of the K set equals 2/0'| x 210°1 x .. x 2/9"I.

If Q is a free allocation of operation to a machine, then Q € X (undoubtedly, the
set K contains also sequences which are not acceptable, i.e. they are not allocations of
operations to machines). For any sequence of sets K = [K}, K>, ..., K] (K € K) by I1;(K)
we denote a set of all permutations of elements from K;. Next, let

T(K) = (11 (K), M2 (K), ..., T (K))
be a concatenation (joining) of m sequences (permutations), where m;(K) € IT;(K). Thus,
R(K) S H(K) =11 (K) X HZ(K) X, ,Hm(K)

It is easy to notice that if K = [K|,K3,...,Ky] is a certain allocation of operations
to machines, then a set m;(K) (i = 1,2,...,m) contains all the permutations (possible
sequences of execution) of operation from the set K; on i machine. Next, let

@ = {(K,n(K)): K € K A n(K) € TI(K)},

be the set of pairs whose first element is a sequence of sets, the second - concatenation
of permutations of the elements of these sets. Any feasible acceptable solution of the
problem is a pair (Qn(Q)) € ®, where Q is the assignment of operations to machines,
and T(Q) is concatenation of permutations designating the order of operations assigned
to each machine. By ®° C ® we denote the set of feasible solutions.

2.1. Graph representation of the solution

Any feasible solution ® = (Q,m(Q)) € ®° (where Q is an assignment of operations
to machines, and w(Q) is a sequence of operations’ execution on each machine) of the
considered problem can be presented in the form of a directed graph with burdened
vertices (of network) G(®) = (V,R UE(®)), where ¥ is a set of vertices, and R U
E(®) is a set of arcs, wherein:

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

392 W. BOZEJKO, M. UCHRONSKI, M. WODECKI

1) ¥ = 0U{s,c}, where s i c are additional (fictitious) operations representing, re-
spectively, the ‘start” and ‘end’. Vertex v € 9\ {s,c} can be characterized with
two features:

e A(v) — number of the machine on which we perform the operationv € O,

® pya) — Wweight of vertex equalling to time of operation v € O on
A(v)machine.

Weights of added vertices p; = p. = 0.

n

0j—1
2) R = 'U1 .Ul {(lj71+i,lj71+i—|-l)}U {(S,lj,1+l)}U {(lj,1—|—oj,c)}].
=1 i=

The set R has arcs connecting consecutive operations of the same task, and
arcs from the vertex s to the first operation of each task and the arcs of the last
operation of each task to the top of the c.

mn ‘Ok|7l . .
3 2O)= U U Am@),mi+ 1))}
— 1=
It is easy to notice that arcs from the set Z£(®) combine operations performed on
the same machine (7t is a permutation of the operations performed on the machine
My, i.e., the operation of a set O).

Arcs from the set & determine the order of operations’ execution in the tasks (techno-
logical order), and arcs from the set £(®) the order of operations on each machine.

Remark 1 A pair of ® = (Qn(Q)) € ® is a feasible solution to the considered problem
if and only when the graph G(®) does not contain cycles .

The sequence of vertices (vi,va,...,v) graph G(®) such that (v;,vi+1) € R UE(O)
fori=1,2,...,k—1is called a path (or a thread) from vertex v; to vi.

By C(v,u) we denote the longest path (called the critical path) in the graph graph
G(@®) of vertex v to u (v,u € V) and the L(v,u) length (the sum of the weights of
vertices) of the path.

It is easy to see that the time to perform all the operations Cp,x(®) according to the
allocation of operations Q and the order (scheduling) m(Q) is equal to the length L(s,c)
of a critical path C(s,c) in the graph G(®). Solving the job shop problem with parallel
machine boils down to determining such feasible solution ® = (Q,7(Q)), for which the
corresponding graph G(®) has the shortest critical path, i.e. minimizing the L(s,c).

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

FLEXIBLE JOB SHOP PROBLEM — PARALLEL TABU SEARCH ALGORITHM FOR MULTI-GPU 393

3. Parallel tabu search algorithm

In general, the method of tabu search (tabu search) is an iterative improvement of
the current solution by local search. It begins with a certain initial (starting) solution.
Then, we generate its surroundings (neighborhood) and determine the best solution in
this neighborhood, which is taken as a starting solution for the next iteration. It is possi-
ble to increase the value of the goal function (in determining of a new starting solution),
so as to increase the chance of achieving the global minimum. Such movements ‘up-
wards’ should be nevertheless controlled in some way, because otherwise after reaching
a local minimum there would be rapid return to it. To prevent in new iterations the gen-
eration of solutions recently considered (the formation of cycles), we retain them in
memory (their attributes) on the list of banned solutions, so-called tabu list (short term
memory).

The first attempt to classify parallel tabu algorithms was made by Vo8 [10], referring
to the classic division of parallel algorithms by Flynn [5] into SIMD, MIMD, MISD
and SISD models. VoB8’s classification is placed ‘close to’ the general classification of
parallel metaheuristic methods taking as a subject matter the distribution of number of
paths, granulation and cooperation. Vo3 proposed the division of parallel tabu algorithms
into four categories in reference to the fact whether parallel search threads compete for
the same or different starting solutions and whether they use the same or different search
strategy:

o SPSS (Single (Initial) Point Single Strategy) — one initial solution, one search strat-
egy; model allowing for parallelism only at the lowest level, such as counting goal
functions or parallel neighborhood search,

o SPDS (Single (Initial) Point Different Strategies) — all processors start with the
same initial solution, but they use different search strategies (e.g., different lengths
of tabu list, different items stored in the tabu list, etc.)

e MPSS (Multiple (Initial) Point Single Strategy) — processors begin operation from
different initial solutions, using the same search strategy,

e MPDS (Multiple (Initial) Point Different Strategies) — processors begin operation
from different initial solutions, using different search strategies, it is the widest
class, embracing all previous categories as its special cases.

We propose the use of a distributed algorithm, tabu search multitrack version (model
multiple-walk, Alba [1]) based on the MPDS model, Multiple starting Point Different
Strategies. In addition, the MPI (Message Passing Interface) library was used for com-
munication between distributed computing threads run on the GPU devices concurrently
counting the value of the goal function (see Fig. 1).

Let us consider a single cycle of data broadcast with use of the MPI communication
library, implementing tree-based broadcast scheme (broadcasting), and then we take into
consideration the computation time on a multi-GPU cluster and collecting (including
tree-diagram of logarithmic time complexity) of the obtained results. Let us suppose that

www.czasopisma.pan.pl P N www.journals.pan.pl
N
~—

394 W. BOZEJKO, M. UCHRONSKI, M. WODECKI
MPI multi-GPU MPI multi-GPU MPI
(_J% I—A_\
| tabu search thread — GPU 1 | tabu search thread — GPU 1
I tabu search thread — GPU 2 I tabu search thread — GPU 2
| tabu search thread | tabu search thread
| tabu search thread — GPU p [| tabu search thread — GPU p [

Figure 1. Skeleton of the Multi-Level Tabu Search metaheuristic.

a single communication procedure between two nodes of the cluster takes time 7;.y, the
sequence tabu search algorithm takes Ty, and parallel T4 ai1e1caic = % (p is the number
of cores in GPU devices.) Thus, the total computation time in a single communication
cycle equals

Tseq

Tp = 2Tcomm logzp + Tcalc = 2Tcomm logz p + p .

seq

By increasing the number of processors parallel computation time (%) is decreasing,
while the communication time (27, 10g p) is increasing. We look for such number of

processors p (let us call it p*) in which 7, is minimal. By designating aa:f = 0 we obtain
2Tcomm N T:veq -0 (1)
pln2 p?
and then T 2
* seq 1l
p=p =5)
2Tcomm

which gives us the optimal number of processors p* that minimizes the value of the
parallel computing time 7,.

4. Solution method

We propose a solution to the considered flexible job shop problem divided in two
stages, firstly, considering the problem of assigning operations to machines, secondly,
solving the classic job shop problem (job shop) generated for this assignment. With the
use of the tabu search algorithm in each step there is a neighborhood generated repre-
senting the assignment of operations to machines. Every element of the neighborhood
represents a classic job shop problem (the second stage), and the best solution found for

www.czasopisma.pan.pl N www.journals.pan.pl
N
<

FLEXIBLE JOB SHOP PROBLEM — PARALLEL TABU SEARCH ALGORITHM FOR MULTI-GPU 395

this problem which makes it possible to select the best element of the neighborhood in
the first stage. After scattering the calculations on a cluster using the MPI communica-
tion library, the value of the goal function is determined in one of the GPU. Proposed
tabu search method uses MPDS strategy according to Vo Bclassification, in which opti-
mization of classic job shop problem is made with the use of TSAB algorithm proposed
by Nowicki and Smutnicki [8].

5. Computational experiments

A parallel algorithm for multi-GPU solving of a flexible job shop problem was im-
plemented in C language with CUDA and MPI parallel computing libraries run on multi-
GPU NVIDIA Tesla S2050 installation with a computing server equipped with 6-core
Intel Core 17 X980 CPU, working under control of a 64 -bit Linux operating system
Ubuntu 10.04. Test instances were taken from the work of Brandimarte [3]. Figure 2
and Table 3 present the speedup values (speedup) obtained for the implementation of
MPI + CUDA Tesla S2050 GPU. Corresponding columns in Table 3 mean:

e o —number of operations in the considered instance of flexible job shop problem,

e scpy — value of absolute speedup (i.e., compared to the time of sequential algo-
rithm run on the CPU),

e sgpy — value of relative, orthodox speedup (compared to the time of sequential
algorithm run on a single core GPU).

The speedup value was determined on the basis of formula: s = ;“q where Ty, is the

time of calculation of sequential algorithm and 7, is the time of the parallel algorithm
running.

The obtained results indicate that the use of parallel methods for determining the
value of the goal function in metaheuristics solving flexible job shop problem resulted in
shortening of computational time for number of more than 120 operations. The obtained
mean absolute speedup of 2.5-fold (in reference to the CPU), and more than 120-fold
relative orthodox speedup (in reference to the GPU) for instances of 200 and 300 opera-
tions.

6. Summary

In this paper we propose a parallel algorithm for solving difficult problems of dis-
crete optimization, such as tasks scheduling flexible job shop problem in parallel and
distributed architectures without shared memory. Example of this type of architecture
are the cluster nodes equipped with GPU devices (so-called multi-GPU clusters), re-
cently growing in popularity. The presented multi-step methodology for the construction

www.czasopisma.pan.pl P N www.journals.pan.pl
N
~—

396 W. BOZEJKO, M. UCHRONSKI, M. WODECKI

sCPU —+—

25

15

speedup

0.5

100 150 200 250 300

Figure 2. Speedup for test examples of Brandimart [3].

Table 3. Speedup for MPI+CUDA implementation on GPU Tesla S2050.

instance | o | Scpu | Scpu instance | o | Scpu | Sgru
MkO1 60 | 0.18 | 11.32 || Mk06 150 | 1.12 | 121.33
Mk02 60 | 0.19 | 12.53 || MkO7 100 | 0.57 | 49.92
MkO3 120 | 1.15 | 122.38 || MkO8 200 | 2.52 | 335.24
Mk04 120 | 0.46 | 34.20 || Mk09 200 | 2.65 -
MkO05 60 | 0.63 | 47.70 || MKkI10 300 | 2.61 -

of parallel algorithms can be particularly effective for large-scale instances of difficult
discrete optimization problems, such as flexible scheduling problems with parallel ma-
chines and discrete transport systems.

References

[1] E. ALBA: Parallel Metaheuristics. A New Class of Algorithms. Wiley & Sons Inc.,
2005.

[2] W. BOZEJKO: A new class of parallel scheduling algorithms. Wroctaw University
of Technology Publishing House, 2010.

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

FLEXIBLE JOB SHOP PROBLEM — PARALLEL TABU SEARCH ALGORITHM FOR MULTI-GPU 397

[3] P. BRANDIMARTE: Routing and scheduling in a flexible job shop by tabu search.
Annals of Operations Research, 41 (1993), 157-183.

[4] S. DAUZERE-PERES and J. PAULI: An integrated approach for modeling and solv-
ing the general multiprocessor job shop scheduling problem using tabu search. An-
nals of Operations Research, 70(3), (1997), 281-306.

[S] M.J. FLYNN: Very highspeed computing systems. Proceedings of the IEEE, 54
(1966), 1901-1909.

[6] J. GAO, L. SUN and M. GEN: A hybrid genetic and variable neighborhood descent

algorithm for flexible job shop scheduling problems. Computers & Operations Re-
search, 35 (2008), 2892-2907.

[7] M. MASTROLILLI and L.M. GAMBARDELLA: Effective neighborhood functions
for the flexible job shop problem. J. of Scheduling, 3(1), (2000), 3-20.

[8] E. NOwWICKI and C. SMUTNICKI: An advanced tabu search algorithm for the job
shop problem. J. of Scheduling, 8(2) (2005), 145-159.

[9] M. PINEDO: Scheduling: theory, algorithms and systems, Englewood Cliffs, NJ,
Prentice-Hall, 2002.

[10] S. VoB: Tabu search: Applications and prospects. In: D.Z. Du and P.M. Pardalos
(Eds.), Network Optimization Problems, World Scientific Publishing Co., Singa-
pore 1993, 333-353.

	Tekst1: 10.2478/v10170-011-0030-2

