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On the application of control models technique
to investigation of some ecological

and economic problems

MARINA BLIZORUKOVA and VYACHESLAV MAKSIMOV

The paper discusses a method of auxiliary controlled models and the application of this
method to solving some problems of identification and robust control for differential equations.
The objects that the method is suggested to be used are two systems of nonlinear differential
equations describing some ecological and economic processes. Two solving algorithms, which
are stable with respect to informational noises and computational errors, are presented. The
algorithms are tested by model examples.
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1. Introduction

The paper addresses discussion of the uniform approach to two types of problems:
a dynamical inverse problem and a robust control problem. Two types of models are
considered: a dynamical model referring to main economic and climatic indices [1] and a
model describing the interaction between climate and biosphere [2, 3]. For other classes
of models (fault detection problem, phase field equations, feed bioreactor, equations
describing pollution propagation), this approach was discussed in [4–7]. Each of the
problems mentioned above is described briefly.

Problems of determining of some parameters through the information on equation’s
solutions are often called reconstruction (identification) problems. Therewith it is as-
sumed that the input information (results of measurements of current states of a dynam-
ical system) is available. As the parameters are unknown, they should be reconstructed.
One of the methods of solving similar problems was suggested in [8–11]. This method
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bases on the idea of the theory of ill-posed problems and actually reduces an identifi-
cation problem to a control problem for an auxiliary dynamical system-model. Regu-
larization of the problem under consideration is locally realized during the process of
choosing a positional control in the system-model. The method was applied to a num-
ber of problems described by some classes of ordinary differential equations as well as
by equations with distributed parameters. Different system’s characteristics varying in
time were under reconstruction, for example, unknown discontinuous inputs, initial and
boundary data, distributed disturbances, coefficients of an elliptic operator and so on. In
the present paper, we illustrate this method on example considering a dynamical model
connecting main economic and climatic indices.

Problems of robust control have aroused considerable interest in control theory. In a
general way, these problems can be characterized as follows. Let a dynamical system be
given. A control and unobserved disturbance simultaneously act on the system. A range
of changing admissible disturbances is rather wide and is somehow a priori described.
A signal on system’s current states is received in the process of system’s motion. It is
required to construct a feedback control law guaranteeing a desired mode for system’s
trajectory regardless of a concrete disturbance. We illustrate one of the approach to solve
similar problems [12, 9] by example considering a model describing the interaction be-
tween climate and biosphere [2, 3].

2. Dynamical inverse problem

A dynamical model connecting main economic and climatic indices was suggested
in [1]. This model is oriented to develop an economic strategy directed to deceleration
of global warming. The main goal of the analysis of the model is to provide the means
for tackling the following question: whether the reduction of emissions of greenhouse
gases is justified from the economical viewpoint or not. The model takes into account
global processes: it is assumed that the structure of economy is the same for all countries;
the climate change is characterized by the average value of the temperature on Earth’s
surface and so on. This model contains three types of parameters.

1. Constant parameters (their list is presented in tables 2.3 and 2.4 on page 21 [1]).

2. Functions that are considered (for simplicity of the analysis) as exogenous with
respect to the model and are a priori given.

3. Inner functions that are connected to one another and to exogenous parameters by
means of some algebraic and differential equations. The list of these functions is
presented in table 2.3. (see [4]), and the model equations are presented in table 2.2.
The list of functions is as follows:

µ(t) is a rate of emissions reduction with respect to uncontrollable emissions,



ON THE APPLICATION OF CONTROL MODELS TECHNIQUE TO INVESTIGATION
OF SOME ECOLOGICAL AND ECONOMIC PROBLEMS 401

E(t) is emissions of greenhouse gases GHGs (CO2 (carbonic acid gas) and
chlorine-fluorine carbons only),

M1(t) = (M(t)−590) is an excess of mass of GHGs in the atmosphere in com-
parison with the pre-industrial period,

T (t) is an average atmospheric temperature (on Earth’s surface),
T1(t) is an average deep-ocean temperature,
I(t) is a gross investment,
K(t) is a capital stock,
F(t) is an atmospheric radiative forcing from GHGs,
O(t) is a forcing of exogenous GHGs (i.e., of gases, which are considered as

uncontrollable; there are all GHGs, besides CO2 (carbonic acid gas) and
chlorine-fluorine carbons),

A(t) is a level of technology,
σ(t) is ratio of GHGs emissions to global output,
L(t) is a population at time t, also equal to labor inputs,
Q(t) is a gross world product.

Schematically, the connections between the inner functions can be pictured in the
following way:

T ∗∗ −→ Ω
↑ ↑ ↘
F µ Q
↑ ↓ ↙ ↑ ↖

M∗1 ←− E K∗ ←− I

Here, the functions marked by the asterisk are solutions of linear differential equations
of the first order. The function T (t) is a solution of the linear differential equation of the
second order.

If we pass from the discrete model suggested by the authors to the “continuous” one,
then the equations of the model Σ take the form:

Ṫ (t) = c1T (t)+ c2T1(t)+ c3F(t), t ∈ [0,ϑ]
Ṫ1(t) = c4(T (t)−T1(t))
Ṁ1(t) = βE(t)−δMM1(t)
K̇(t) = −δKK(t)+ I(t),

(1)

where t is time, ϑ is a terminal time moment,

F(t) = 4.1 · log2

(
1+

M1(t)
590

)
+O(t),
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E(t) = (1−µ(t))σ(t)Q(t),

Q(t) = (1−b1µ(t)b2)/(1+θ1T (t)θ2)A(t)K(t)γL(t)1−γ.

Initial state of Σ, {T (0),T1(0),M1(0),K(0)}, is assumed to be known and a priori
given. Functions µ(t) and I(t) are considered as control parameters determining a strat-
egy of global control of climate and economy. The numerical analysis of the model
is performed in [4]. The direct problem is solved, namely, possible strategies (rules of
forming µ(t) and I(t)) are specified, and system’s dynamics is computed.

The comparative analysis of simulation results for different structures is performed.
In addition, the analysis of sensitivity of the results with respect to some model parame-
ters is delivered.

Our aim differs from the aim of [4]. We deal with the inverse problem. It consists of
the following. Let us assume that some function I(t) is known. Neglecting small values
(b1 = 0,0686, ϑ1 = 0,00144), we transform the system (1) to the form

Ṫ (t) = c1T (t)+ c2T1(t)+ c5 · log2

(
1+

M1(t)
590

)
+ c3O(t), t ∈ [0,ϑ]

Ṫ1(t) = c4(T (t)−T1(t))

Ṁ1(t) = E1(t)(1−µ(t))−δMM1(t)

K̇(t) = −δKK(t)+ I(t),

(2)

where E1(t) = βσ(t)A(t)K(t)γL(t)1−γ. Hereinafter, we consider the system Σ of the form
(2). The problem under consideration may be formulated in the following way. At fre-
quent enough time moments

τi ∈ ∆ = {τi}m
i=0, τi+1 = τi +δ, τ0 = 0, τm = ϑ,

values of T (τi) and T1(τi) are inaccurately measured. Results of measurements (vectors
ξh

i = {ξh
1i,ξ

h
2i} ∈ R2) satisfy the inequalities

|T (τi)−ξh
1i|2 + |T1(τi)−ξh

2i|2 ¬ h2, (3)

where h ∈ (0,1) is a level of informational noise. It is required to design an algorithm
allowing us to reconstruct (synchronously with the process) unknown M1(t) and µ(t).
This is the most important formulation of the dynamical reconstruction problems being
investigated in the present paper.

The scheme of algorithms for solving such problems is given in Fig. 1.
According to this scheme, an auxiliary dynamical system M (a model) is introduced.

This model operates on the time interval [0,ϑ] and has an input uh(t) and an output wh(t).
The process of synchronous feedback control of the systems Σ and M is organized on the
interval [0,ϑ]. This process is decomposed onto (m−1) identical steps. At the i-th step
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Figure 1. The scheme of solving algorithms.

which covers the time interval δi = [τi,τi+1), the following actions are fulfilled. First, at
the time moment τi according to the chosen rule U the functions

uh(t) = uh
i =U(τi,ξh

i ,w
h(τi)),

are calculated using measurements ξh
i and wh(τi). Then (till the moment τi+1) the control

u= uh(t), τi¬ t < τi+1, is fed into the input of the model M. The values ξh
i+1 and wh(τi+1)

are the results of the algorithm performance at the i-th step.
Thus, the inverse problem may be formulated as follows. In the sequel, a family of

partitions

∆h = {τi,h}mh
h=0, τi+1,h = τi,h +δ(h), τ0,h = 0, τmh,h = ϑ

of the interval [0,ϑ] is assumed to be fixed.

Dynamical inverse problem. It is required to indicate differential equations of the
model M

ẇh(t) = f1(ξh
i ,w

h(τi),uh
i ), t ∈ δh,i = [τi,h,τi+1,h), τi = τi,h, (4)

wh(0) = wh
0, wh(t) ∈ R4,

and the rule of choosing controls uh
i at the moments τi being a mapping of the form

U : {τi,ξh
i ,w

h(τi)}→ uh
i = {uh

i1,u
h
i2} ∈ R2 (5)

such that the convergence

ϑ∫
0

|uh
1(t)−M1(t)|2 dt→ 0,

ϑ∫
0

|uh
2(t)−µ(t)|2 dt→ 0 (6)

takes place whereas h tends to 0.
Here (see Fig. 1) uh(t) = {uh

1(t),u
h
2(t)}, uh

1(t) = uh
i1, uh

2(t) = uh
i2 for t ∈ δh,i.
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3. The algorithm for solving the inverse problem

Let us turn to the description of the algorithm for solving the inverse problem. From
the above, it is necessary to indicate the model (4) and the strategy U (5) providing the
convergence (6). Let a restriction on the rate of emissions reduction be known, i.e., we
know a number f > 0 such that

|µ(t)|¬ f for all t ∈ [0,ϑ].

From now on, it is assumed that we know numbers K,a1,a2 ∈ (0,+∞), a1 < a2, such
that each solution xµ(t), xµ(t) = {T (t),T1(t),M1(t),K(t)}, of the equation (2) satisfies
the following conditions

max
0¬t¬ϑ

∥xµ(t)∥¬ K, sup
0¬t¬ϑ

∥ẋµ(t)∥¬ K, M1(t) ∈ [a1,a2]. (7)

Here ∥xµ∥ is the Euclidean norm of the vector xµ.
Introduce some function α(h) : (0,1)→ R+ = {r ∈ R : r ­ 0} with the properties:

α(h)→ 0, δ(h)¬ h, (h1/6 +ω(h))/α(h)→ 0 as h→ 0.

Here ω(h) = ωE(δ)+ωM(δ), ωE(δ) and ωM(δ) are the modulus of continuity of func-
tions E1(t) and M1(t), respectively. The function α plays the role of a regularizator (a
smoothing functional). Let the model (4) has the form

ẇh(t) = c1ξh
1i + c2ξh

2i +4,1c3 log2

(
1+

uh
1i

590

)
+ c3Q(τi)

ẇh
1(t) = c4(ξh

1i−ξh
2i)

ẇh
2(t) = E1(τi)(1−uh

2i)−δMuh
1i

ẇh
3(t) = −δKK(τi)+ I(τi), t ∈ [τi,τi+1), τi = τi,h,

(8)

and the rule U of forming the control uh
i = {uh

i1,u
h
i2} is as follows

uh
1i = 590(2πh

i −1), (9)

uh
2i =


β(1)

i

/
α(h), if |β(1)

i |¬ α(h) f

f sign
(

β(1)
i

)
, otherwise.

(10)

The initial state of the model is

wh(0) = T (0), wh
1(0) = T1(0), wh

2(0) = M1(0), wh
3(0) = K(0).
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Here

πh
i =


−ci/(2h2/3), if − ci/(2h2/3) ∈ [b1,b2]

b1, if − ci/(2h2/3)< b1

b2, if − ci/(2h2/3)> b2,

b1 = log2(1+a1/590), b2 = log2(1+a2/590),

ci = 8,2c3S0
i ,

β(1)
i = E1(τi)(wh

2(τi)−uh
1i), S0

i = wh(τi)−ξh
i1.

Theorem 2 Let E1(t) > 0, t ∈ [0,ϑ]. Then the convergence (6) take place under choo-
sing the model equation in the form (4), (8) and the strategy U in the form (5), (9),
(10).

Proof. It can be easily seen that from results of [9] the following inequality follows

ϑ∫
0

|uh
1(t)−M1(t)|2 dt ¬Ch1/3. (11)

Estimate the variation of the value

ε(t) = |wh
2(t)−M1(t)|2 +α(h)

t∫
0

{|uh
2(τ)|2−|µ(τ)|2}dτ.

It can be easily seen that for t ∈ δi = [τi,τi+1) the following inequality is true:

ε(t)¬ ε(τi)+δ(h)
t∫

τi

|ẇh
2(τ)−M1(τ)|2 dτ+

(12)
t∫

τi

µi(τ)dτ+α(h)
t∫

τi

{|uh
i2|2−|µ(τ)|2}dτ,

µi(t) = 2(wh
2(τi)−M1(τi))(ẇh

2(t)− Ṁ1(t)), t ∈ δi.

Consider the value µi(t). We have for t ∈ δi

µi(t) =
4

∑
j=1

λ ji(t), t ∈ δi, (13)

where
λ1i(t) = 2β(2)

i (E1(τi)−E1(t)) ,
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λ2i(t) = 2β(2)
i

(
µ(t)−uh

2i

)
E1(τi),

λ3i(t) = 2β(2)
i (E1(t)−E1(τi))µ(t),

λ4i(t) = 2δMβ(2)
i

(
M1(t)−uh

1i

)
,

β(2)
i = wh

2(τi)−M1(τi).

Estimate each term in the right-hand part of the equality (13). From (7) and (11) it
follows that

λ1i(t)¬C1ω(δ), λ3i(t)¬C2ω(δ), t ∈ δi.

mh−1

∑
i=0

τi+1∫
τi

λ4i(t)dt ¬C3

ϑ∫
0

|M1(t)−uh
1(t)|dt ¬C4h1/6. (14)

In addition, the estimate

mh−1

∑
i=0

τi+1∫
τi

λ6i(t)dt ¬C5(h1/6 +wM(δ))

is valid. Then we have
λ2i(t)¬ λ5i(t)+λ6i(t),

λ5i(t) = 2β(1)
i (µ(t)−uh

2i), λ6i(t) = 2(uh
1i−M1(τi))(µ(t)−uh

2i).

Note that
uh

2i = argmin{−2β(1)
i u+αu2 : |u|¬ f}.

Therefore, in virtue of (3) we obtain

λ5i(τi+1)+α(h)
τi+1∫
τi

{|uh
i2|2−|µ(τ)|2}dτ = (15)

τi+1∫
τi

{[
2β(1)

i uh
i2 +α(h)|uh

i2|2
]
−
[
2β(1)

i µ(τ)+α(h)|µ(τ)|2
]}

dτ¬ 0.

Taking into account (13)–(15) and the inequality δ(h) ¬ h, we have for all i ∈ [1 : mh]
the following estimate

ε(τi)¬C(h1/6 +ω(δ(h)))¬C(h1/6 +ω(h)).

Further argument corresponds to the standard scheme (see, for example, [8–11]). The
theorem is proved.
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4. Problem of robust control

The model describing the interaction between climate and biosphere was suggested
in [2, 3] and was tested on real data. Applying modern methods of the mathematical
theory of optimal (program) control, the authors presented a qualitative analysis of the
model. They oriented to the problem of finding an optimal profile of CO2 emission max-
imizing a cumulative emission (here temperature climate changes should be taken into
account). Our aim differs from the aims of [2, 3]. We attract our attention to analyzing
the problem of robust control. According to the mathematical model Σ of the interaction
between climate and biosphere, we take the following system of equations [2]

Ṫ (t) = µ ln{C(t)/C0}−αT (t), t ∈ [0,ϑ]

Ċ(t) = −Pt(C,T )+(1− ε)m(t)N(t)+δt(T )S(t)+u(t)−Qoc(t),

Ṅ(t) = Pt(C,T )−m(t)N(t),

Ṡ(t) = εm(t)N(t)−δt(T )S(t).

(16)

Here t is time,

T (t) is the average atmospheric temperature (on Earth’s surface),

C(t) is the total amount of carbon in the atmosphere,

N(t) and S(t) are the amounts of carbon in the biota and in the soil, respectively,

Qoc(t) = σ((C(t)−C0)−ν(D(t)−D0)),

Pt(C,T ) = P0(1+a1T )(1+a2(C−C0)),

δt(T ) = δ0(1+a3T ), m(t) = m0(1.087+a4t),

D(t) is the carbon content in the ocean.

Values of model parameters are give in [2, p. 30]. Assuming that Ṅ = Ṡ = 0, i.e., the
carbon amounts in the biota and in the soil do not change, we should deal with system
(16) in the form

Ṫ (t) = µ ln{C(t)/C0}−αT (t),

Ċ(t) = −Pt(C,T )+(1− ε)m(t)N +δt(T )S+u(t)−Qoc(t).
(17)

In the sequel, we consider the system Σ in the form (17).
The problem under consideration is stated as follows. At discrete, frequent enough,

time moments

τi ∈ ∆ = {τi}m
i=0, τi+1 = τi +δ, τ0 = t0, τm = ϑ,
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the value of T (τi) is inaccurately measured. Results of measurements (elements ξh
i ∈ R)

satisfy the inequalities
|T (τi)−ξh

i |¬ h, (18)

where h ∈ (0,1) is a level of informational noise.

Condition 1. Some mode of changing the annual temperature T = T∗(t) and the total
amount of carbon in the atmosphere C =C∗(t) is assumed to be given:

x∗(t) = {T∗(t),C∗(t)}.

Upper and lower bounds u(t) and Qoc(t) for changing the atmospheric emission are
known. Namely, we have numbers e1, e2, 0 < e1 < e2 and g1, g2, 0 < g1 < g2 such that

u(t) ∈ [e1,e2], Qoc(t) ∈ [g1,g2] for all t ∈ T.

The number ε > 0 is given. It is required to construct an algorithm of feedback control of
the system (17) providing fulfilment of the following condition. Whatever the unknown
possible disturbance Q = Qoc(t) ∈ [g1,g2] may be, the distance between xh(t) and x∗(t)
at all moments t ∈ [0,ϑ] should not exceed the value of ε provided the values of h and δ
are sufficiently small.

Here

xh(·) = {T (·),C(·)}= {T (·;U(·;ξ),Qoc(·)),C(·;U(·;ξ),Qoc(·))}

is the trajectory of Σ generated by the unknown disturbance Qoc(t) ∈ [g1,g2] and the
control u(t) = uh(t;ξ) = U(τi,ξi) ∈ [e1,e2], which is formed according to the feedback
principle.

The scheme of algorithms for solving the problem is given in Fig. 2. An auxiliary

Figure 2. The scheme of solving algorithm.

dynamical system M (a model) is introduced. This model operates on the time interval
[0,ϑ] and has the input vh(t) and the output wh(t). The process of synchronous feed-
back control of the systems Σ and M is organized on the interval [0,ϑ]. This process
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is decomposed onto (m− 1) identical steps. i-th step is carried out during the time in-
terval δi = [τi,τi+1) and the following actions are fulfilled. First, at the time moment τi
according to the chosen rules U and V , the functions

uh(t) = uh
i =U(τi,vh

i ,x∗(τi)), (19)

vh(t) = vh
i =V (τi,ξh

i ,w
h(τi)), t ∈ δi (20)

are calculated using measurements ξh
i and wh(τi). Then (till the moment τi+1) the control

u = uh(t), τi ¬ t < τi+1, is fed onto the input of the system Σ and the control v = vh(t),
τi ¬ t < τi+1, into the input of the model M. The values ξh

i+1 and wh(τi+1) are the results
of the algorithm performance at the i-th step. Thus, the complexity of solving of these
problems is reduced to appropriate choice of the model M and the functions U and V .

In the sequel, a family of partitions

∆h = {τi,h}mh
h=0, τi+1,h = τi,h +δ(h), τ0,h = 0, τmh,h = ϑ

of the interval [0,ϑ] is assumed to be fixed. So, the problem may be formulated as fol-
lows.

Problem of robust control. It is required to indicate differential equations of the
model M

ẇh(t) = f1(ξh
i ,w

h(τi),vh
i ), (21)

t ∈ δh,i = [τi,h,τi+1,h), τi = τi,h,

wh(0) = wh
0, wh(t) ∈ R,

and the rule of choosing controls uh
i and vh

i at the moments τi being a mapping of the form
(19), (20) such that for h ∈ (0,h∗(ε)), δ = δ(h) ∈ (0,δ(h∗(ε)) the following inequality
holds

max
t∈[0,ϑ]

∥xh(t)− x∗(t)∥R2 ¬ ε. (22)

5. The algorithm for solving the robust control problem

Let us turn to the description of the algorithm for solving the robust control problem.
It follows from the above, that it is necessary to indicate the model (21) and the strategies
U and V (19), (20) assuring the inequality (22). Assume the numbers K,a1,a2 ∈ (0,+∞),
a1 < a2, to be known and such, that each solution x(t), x(t) = {T (t),C(t)}, of the equa-
tion (17) satisfies the following conditions

max
0¬t¬ϑ

∥x(t)∥¬ K, sup
0¬t¬ϑ

∥ẋ(t)∥¬ K, C(t) ∈ [a1,a2].

Introduce some function γ(h) : (0,1)→ R+ with the properties:

γ(h)→ 0, δ(h)¬ h, (h1/6 +ωC(h))/γ(h)→ 0 as h→ 0.



410 M. BLIZORUKOVA, V. MAKSIMOV

Here ωC(h) is the modulo of continuity of function C(t). Let the model (21) have the
form

ẇh(t) = µ ln{vh
i /C0}−αξh

i , t ∈ [τi,τi+1), wh(0) = ξh
0 (23)

and the rules U and V of forming the controls uh
i and vh

i are as follows

vh
i =C0exp(πh

i ), (24)

uh
i =

 e1 if C∗(τi)− vh
i > 0

e2, otherwise.
(25)

Here

πh
i =


−ci/(2h2/3), if − ci/(2h2/3) ∈ [b1,b2]

b1, if − ci/(2h2/3)< b1

b2, if − ci/(2h2/3)> b2,

b1 = ln(a1/C0), b2 = ln(a2/C0), ci = 2µ(wh(τi)−ξh
i ).

Let the following condition be fulfilled.

Condition 2. There exists a measurable (by Lebesgue) function ϕ(t) ∈ [e1−g2,e2−g1]
such that the prescribed mode x∗(t) = {T∗(t),C∗(t)} satisfies the relations

Ṫ∗(t) = µ ln{C∗(t)/C0}−αT∗(t),

Ċ∗(t) = −P(C∗,T∗)+(1− ε)m(t)N +δ(T∗)S+ϕ(t),

with the initial state
T∗(0) = T (0), C∗(0) =C(0).

Theorem 3 The inequality (22) holds under choosing the model equation in the form
(21), (23) and the strategies U and V in the form (19), (20), (24), (25).

Proof. While choosing the control vh
i in the form (24), one can obtain the estimate

ϑ∫
0

|vh(t)−C(t)|2 dt ¬Ch1/3 (26)

by analogy with (11). Estimate the variation of

ε(t) = |T (t)−T∗(t)|2 + |C(t)−C∗(t)|2.

It can be easily seen that for t ∈ δi = [τi,τi+1) the following inequalities are true:

ν1(t) = |C(t)−C∗(t)|2 ¬ ν1(τi)+λ(t;τi)+L(t,τi)+(t− τi)Oh(t− τi), (27)
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ν2(t) = |T (t)−T∗(t)|2 ¬ ν2(τi)+

+(T (τi)−T∗(τi))

t∫
τi

[µ(lnC(t)− lnC∗(t))+α(T (τi)−T∗(τi))]+(t− τi)O
(1)
h (t− τi),

mh−1

∑
i=0

O(1)
h (t− τi)¬ K2,

mh−1

∑
i=0

Oh(τi+1− τi)¬ K1,

where

λ(t;τi) = (C(τi)−C∗(τi))

t∫
τi

[Pτ(C∗,T∗)−Pτ(C,T )+(δτ(T )−δτ(T∗))S,

L(t,τi) = (C(τi)−C∗(τi))

t∫
τi

[uh
i −Qoc(τ)−φ(τ)]dτ. (28)

Here constants K1, K2 do not depend on h, uh, Qoc, and φ. It can be easily seen that

λ(t;τi)¬ c1(t− τi)ν1(τi)+ c2

t∫
τi

ε(τ)dτ. (29)

Note that, in virtue of the inequality C(t)­ a1 > 0,

| lnC(t)− lnC∗(t)|¬
|C(t)−C∗(t)|

a1
.

In this case

ν2(t)¬ (1+ c3(t− τi))ν2(τi)+ c4

t∫
τi

ε(τ)dτ. (30)

Then we obtain

L(t;τi)¬ (C(τi)− vh
i )

t∫
τi

[uh
i −Qoc(τ)−φ(τ)]dτ+

+(vh
i −C∗(τi))

t∫
τi

[uh
i −Qoc(τ)−φ(τ)]dτ.
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Taking into account (24), by analogy with [12], we derive the inequality

(vh
i −C∗(τi))

t∫
τi

[uh
i −Qoc(τ)−φ(τ)]dτ¬ 0. (31)

Moreover, by (26) it follows that

mh−1

∑
i=0
|C(τi)− vh

i |
τi+1∫
τi

|uh
i −Qoc(τ)−φ(τ)|dτ¬ (32)

¬ c5

{ ϑ∫
0

|C(t)− vh(t)|dt +δ(h)ωC(δ(h))
}
¬

¬ c6{δ(h)ωC(δ(h))+h1/6}.
Taking into account (13)–(32) and the inequality δ(h) ¬ h, we have for t ∈ [τi,τi+1] the
following estimate

ε(τi)¬ (1+ c7(t− τi))ε(τi)+ c8

t∫
τi

ε(τ)dτ.

In virtue of Gronwall’s inequality, we conclude that

ε(t)¬ (1+ c9(t− τi))ε(τi), t ∈ [τi,τi+1].

Further argument corresponds to the standard scheme (see, for example, [12]). The the-
orem is proved.

6. Results of computer modeling

The algorithms described above were tested on computers.

Example 1. In Figures 3–4, the results of computer modeling of the dynamic inverse
problem are presented for the following case:

c1 = c2 = c3 = 1, σ = 1+0.5t,
c4 = 0.5, Q(t) = 5sin(t),
δk = 0.65, L(t) = 1,
δm = 0.0833, µ(t) = 1+0.5t,
β = 0.1, I(t) = 1 = 0.15t2,

γ = 0.1, A(t) = 2t1/2.
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The parameters are as follows:

f = 2, a1 = 30, a2 = 60.

The initial conditions for the system are the following:

T (0) = 1, T 1(0) = 0.5,
M(0) = 50, K(0) = 10.

Figure 3. Result of simulation of the example 1 for δ = 0.001

Figure 4. Result of simulation of the example 1 for δ = 0.0001
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Example 2. In Figures 5–7 the results of computer modeling of the problem of robust
control correspond to the following data:

C0 = 617, P0 = 60,
a1 = 0.05, N = 690,
a2 = 0.00047, δ0 = 0.00005,
S = 1229, µ = 0.172,
M(t) = 0.087(1.087+0.00633t).

The parameters are as follows:

e1 = 5, g1 = 10,
e2 = 30, g2 = 20.

The initial conditions for the system are the following:

T (0) = 0.64, C(0) = 162.

Figure 5. Result of simulation of the example 2 for δ = 0.03
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Figure 6. Result of simulation of the example 2 δ = 0.003

Figure 7. Result of simulation of the example 2 δ = 0.0003

7. Conclusion

We consider the problems of identification and robust control for differential equa-
tions describing some ecological and economic processes. We present solving algo-
rithms, which are based on the method of auxiliary feedback controlled models.
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