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Simulation-based design of monotonically convergent
iterative learning control for nonlinear systems

KAMEN DELCHEV

This paper deals with a simulation-based design of model-based iterative learning control
(ILC) for multi-input, multi-output nonlinear time-varying systems. The main problem of the
implementation of the nonlinear ILC in practice is possible inadmissible transient growth of the
tracking error due to a non-monotonic convergence of the learning process. A model-based non-
linear closed-loop iterative learning control for robot manipulators is synthesized and its tuning
depends on only four positive gains of both controllers – the feedback one and the learning one.
A simulation-based approach for tuning the learning and feedback controllers is proposed to
achieve fast and monotonic convergence of the presented ILC. In the case of excessive growth
of transient errors this approach is the only way for learning gains tuning by using classical
engineering techniques for practical online tuning of feedback gains.

Key words: simulation-based design, iterative learning control, nonlinear dynamic sys-
tems, learning controller, feedback controller

1. Introduction

Iterative learning control (ILC) is designed to improve the tracking performance of
repetitive processes. The ILC is based on the idea that the information from previous trial
is used to update the control law in order to obtain better performance of the assigned
task in the next trial [1-5]. Some similar definitions of ILC are quoted by Ahn et al. in
[1]. A common feature of them is the "repetition" of the assigned-task performance and
the usage of the information of previous trial (passes, iterations, cycles or repetitions).
Thus, the ILC is applicable for industrial robots working in a repeatable manner in the
determined environment [1].

Like most of the existing control methods, the ILC can be categorized as linear
(LILC) or nonlinear (NILC) iterative learning control. LILC is an ILC for linear sys-
tems [1,2] or linearized nonlinear systems [2]. If the linear approximation of a nonlinear
dynamics results in great uncertainties, the corresponding LILC may fail to ensure the
admissible tracking accuracy [3]. In this case, one should resort to nonlinear models and
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nonlinear iterative learning control (NILC) [2-4,6-8]. In this paper, a nonlinear multiple-
input-multiple-output (MIMO) dynamic model of a horizontal robot arm is considered.

On the other hand, the dynamic systems can be time-invariant or time-varying
[7,9,10].

A classical offline ILC scheme for a MIMO plant with a feedback controller at-
tached is depicted in Fig. 1, where: P represents the plant; C is a feedback controller;

Figure 1. Learning control scheme with a feedback controller attached.

the vector of the input trajectory ul is the feed-forward term of the control law; ql is the
actual vector of the output trajectory; qd is the vector of the desired output trajectory.
The learning controller {L,K} improves ul by using the tracking error of the output
trajectory qd − ql multiplied by a learning gain matrix K (P-type learning) and/or the
error derivative q̇d− q̇l multiplied by a learning operator matrix L (D-type learning) [7].
If the learning operator is based on the dynamic model of the plant then the ILC can
be specified as a model-based one [3,6]. In this study, we propose a model-based NILC
with a feedback controller attached.

With respect to the learning controller (learning update law), ILC can be categorized
as P-type, D-type, I-type, PI-type, PD-type, and PID-type (with respect to the state-space
equations which describe the ILC scheme in Fig. 1) [1,9]. In similar way, a closed-loop
ILC can be classified according to the type (P, PD, PID ...) of the attached feedback
controller. Thus, the resultant controller-based classification of a closed-loop ILC can be
P-P or P-PD, or PD-D, or any other combination of types of the learning and feedback
controllers correspondingly [9]. In this work we present a PD-P type NILC.

Classical linear feedback control (PD or PID) has many applications in practice, but
the linear PD/PID control of nonlinear and uncertain systems is not adequate for pre-
cise tracking [11,9]. Thus the combination of nonlinear feedback control and nonlinear
iterative learning control is an effective approach to achieve good tracking performance
[9]. On the other hand, a linear PD/PID controller for single-input-single-output (SISO)
systems is easy to tune by using classical online techniques [12-14] because only 2-3
parameters have to be adjusted. Therefore, all efforts at minimization of the number of
tuning parameters (learning and feedback gains) are reasonable. In this paper, we pro-
pose model-based nonlinear learning and feedback controller for robotic manipulators
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and this controller can be tuned by only four parameters so that classical engineering
techniques can be used for simulation-based tuning of these parameters.

The main advantages of the offline closed-loop ILC for robotic manipulators are as
follows. The ILC minimizes trajectory-tracking errors that arise from the unmodeled dy-
namics. The ILC procedure, can avoid closed-loop stability problems because at the end
of the ILC procedure the feedback terms of the control input are getting reduced, so the
feed-forward controller gets domination over the feedback controller [11]. The calcula-
tion of the ILC control update is offline and the maximum available information for the
robot motion can be utilized. Anyway, the ILC applicability suffers from the following
basic problems. An admissible number of iterations should produce the desired tracking
accuracy. Therefore, the ILC procedure must be convergent with a high rate of conver-
gence [6,9]. In spite of the small enough initial tracking error the ILC could fail due to
non-monotonic convergence that results in a big transient error as it is shown in Fig. 2
[1,5,6,8,9,10,15].

Figure 2. Maximal tracking error of TT3000 robot, emax
l [rad] vs. iterations.

Computer simulations presented in [5,8,15] reveal the non-monotony of maximal
tracking errors versus iterations, which leads to inapplicability of the corresponding
ILC. Therefore, the monotonic convergence of the learning procedure can prevent the
break-up of the mechanical system of the robot due to possible high overshoots of the
desired trajectory [1]. With regard to the conditions for monotonic convergence of the
ILC, numerous publications are available and most of them consider linear dynamic sys-
tems [1]. A monotonically convergent ILC for nonlinear systems (Hamiltonian systems)
is proposed in [16], but an assumption for large enough feedback gains must be valid.
Similar ideas of monotonically SPD-PD type ILC, for a specific class of nonlinear time-
varying systems, based on increasing feedback gains are addressed in [9]. Unfortunately,
this class of nonlinear systems is a subclass of systems defined by equation (1) and it can
not describe the dynamic behaviour of robotic manipulators. Following these works and
the ideas of accelerating the ILC convergence reported in [2], in this paper we present a
simulation-based design of monotonically convergent PD type ILC for nonlinear time-
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varying systems. It has to be mentioned, that we propose an engineering approach to
practical synthesis of a monotonically convergent ILC law while the general solution of
the problem of transient errors (see Fig. 2) is presented in [8] and this solution does not
concern the monotony of the ILC procedure.

Therefore, the main objective of the present study is the synthesis of nonlinear
model-based PD-type learning controller and a P-type nonlinear feedback controller,
for nonlinear time-varying dynamic systems of robotic manipulators. These controllers
should have a minimum number of parameters to be tuned [5], so that classical tech-
niques can be adopted for simple tuning of these parameters. Then the algorithm for
simulation-based tuning of the synthesized controllers is proposed in order to ensure
fast and monotonic convergence of the ILC process. The investigation of convergence
rate and monotony of the synthesized ILC is based on the simulation of the dynamics
of TT3000 SCARA-type robot of SEIKO Instruments Inc. Thus, the existence of mono-
tonically convergent ILC algorithm, with high rate of convergence, can be proven using
computer simulations.

This paper is organized as follows. Section 2 presents a synthesis of PD-P ILC for
uncertain nonlinear time-varying systems that describe the dynamics of robotic manip-
ulators. Section 3 presents the dynamic model of TT3000 SCARA-type robot as well
as two sets of dynamic parameter estimations for a realistic computer simulation of the
uncertain robot dynamics. The learning and feedback control gains of a PD-P type mono-
tonic NILC of the TT3000 robot are determined from a computer simulation in Section
4. Conclusions are presented in Section 5.

2. Synthesis of PD-P type ILC for robotic manipulators

In this section we present the main result of this paper: a model-based nonlinear
learning controller (learning update law) and a model-based nonlinear feedback con-
troller (feedback control term) for robotic manipulators. These controllers are easy to
tune, so classical techniques [12-14] for tuning SISO PD feedback linear controllers can
also be used for synthesized MIMO nonlinear controllers.

We consider a nonlinear MIMO dynamic model of a robot based on the Lagrange’s
formulation of equations of motion in the space of generalized coordinates:

A(q)q̈+b(q, q̇)+Dq̇+g(q)+ f = u, (1)

where: q≡ q(t), t ∈ [0,T ], is the n×1 vector of generalized coordinates (joint angles),
qi ∈ [Qmin

i ,Qmax
i ], i = 1, ...,n; A(q) is the n× n symmetric positive-definite inertia ma-

trix; the n×1 vector b(q, q̇) takes into account the Coriolis and centrifugal torques; D =
diag{δ1, ... ,δn} denotes the diagonal n×n matrix of the coefficients of viscous friction;
g(q) is the n×1 vector representing gravity torques; f = [ f1 sign(q̇1), ..., fn sign(q̇n)]

T

is the vector of coefficients of Coulomb friction and u = ul +uc is the n× 1 vector of
generalized torques where ul ≡ ul(t) and uc ≡ uc(q, q̇, t) are feed-forward and feed-
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back terms, respectively. The allowable set of generalized torques is a rectangular hyper-
parallelepiped: ui ∈ [−Umax

i ,Umax
i ]. The state-space form of Eq. (1) describes the learn-

ing scheme in Fig. 1 for robot manipulators [7].
The synthesis of PD-P ILC consists of three steps: first, synthesis of an update control

law, then, synthesis of a feedback control law, and finally, specification of a learning
operator.

We assume the following notations: h(·) = h and H(·, ·) = H.
For the nonlinear MIMO dynamic model in (1), we propose the following nonlinear

PD update control law:

ul+1 = ul +L[q̈d− q̈l +Lv(q̇d− q̇l)+Lp(qd−ql)], (2)

where: l = 0,1, ...,N, qd is an attainable and desired trajectory, and ql is the output
trajectory at the lth iteration; L = L(ql+1(t)), is a learning operator; u0 = u0(t) is the
initial feed-forward control input; t : t ∈ [0,T ] is the tracking time and [0, T ] is the robot
tracking time interval; Lv and Lp are learning control gains.

Then, we consider the following stabilizing feedback control term proposed in [17]

uc = Â[q̈d +Kv(q̇d− q̇l)+Kp(qd−ql)]+ b̂+ D̂q̇l + ĝ+ f̂, (3)

where Kv and Kp are the feedback gains, and Â, b̂, D̂, ĝ, and f̂ are the corresponding
estimates of A, b, D, g, and f in (1). In [17] it is proven that Kv and Kp could be positive
constants to ensure stability of the feedback controller.

The following sufficient condition for robustness and convergence of the considered
update control law (2), for robotic manipulators is proven in [7]:∥∥I−LA−1∥∥¬ ρ < 1, (4)

where I is the identity matrix of size n; A is the inertia matrix in the dynamic equations
of motion (1); L is the learning operator that is to be specified, and ||...|| is the Euclidean
matrix norm.

Unfortunately, a learning operator that satisfies the sufficient condition (4) cannot be
obtained directly from the inequality (4) because the inertia matrix A of an actual robot
is not exactly known and only an estimation Â of A could be available through identifica-
tion [18,19]. That is why, following Arimoto’s ideas from [2] for better convergence rate,
we consider a learning operator to be as close as possible to the inertia matrix. Therefore,
we propose the learning operator to be identically equal to Â, i.e. L ≡ Â [15,6]. From
(4) we obtain the sufficient condition for convergence in case of L≡ Â.∥∥∥I− Â A−1∥∥ < 1. (5)

Now we are in a position to present the simulation-based design of the learning and
feedback control gains of the synthesized in equations (2) and (3) update and feedback
control laws, correspondingly. Before specifying the values of the learning and feedback
gains to ensure high rate monotonic convergence for the proposed PD-P ILC, we are
going to describe in the next section the dynamic model of considered robot manipulator
– TT3000 of SEIKO Instruments Inc.
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3. Dynamic model of TT3000 robot

In this paper, we consider a dynamic model of TT-3000 SCARA-type robot of
SEIKO Instruments Inc. [18]. The kinematic scheme is shown in Fig. 3.

Figure 3. Kinematic scheme of SCARA-type horizontal robot arm.

3.1. Equations of motion

The Lagrange’s formulation of equations of motion for this robot is:

Aq̈+b+Dq̇+ fc = u, (6)

where [18]

A =

[
a11(q) a12(q)
a12(q) a22(q)

]
, b = [−β sinq2(2q̇1q̇2 + q̇2

2),β q̇2
1 sinq2]

T,

D =

[
d1 0
0 d2

]
, fc = [ fc1sign (q̇1), fc2sign (q̇2)]

T, u = [u1,u2]
T, (7)

q = [q1,q2]
T, q̇ = [q̇1, q̇2]

T, q̈ = [q̈1, q̈2]
T,

a11(q) = α+2βcosq2, α = I1 +m1s2
1 + I2 +m2(I2

1 + s2
2),

a12(q) = χ+βcosq2, β = m2l1s2,

a22(q) = χ, χ = I2 +m2s2
2,

(8)

and di, i = 1, 2 is viscous friction, fci is Coulomb friction, li is the length of the link
given in the specifications of the robot, si is the position of the centre of the mass, mi
is the total mass of the link, and Ii is the inertia of the link about its centre of the mass,
u is the vector of generalized torques, u = ul +uc, and ul , uc are the feedforward and
feedback terms described by (2) and (3) respectively.
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3.2. Model parameters

If the model parameters α, β, χ and the viscous friction di, i= 1, 2, and the Coulomb
friction fci are estimated, the inertia matrix A(q) = [ai j], i, j = 1,2 could be calculated
and the robot dynamics could be simulated through numerical solution of the associated
differential equations given in (6)–(8).

For the realistic computer simulation of the PD-P NILC procedure, proposed in the
next section, we are going to use two sets of model parameters of the TT3000 robot
which are reported in [18]. The first set of model parameters, called the standard ones,
is provided by the manufacturer. We use this set to calculate the left-hand side of (6)
(the virtual robot arm of TT-3000). The second set of dynamic parameters is estimated
in [18] by means of an effective identification method. We use it to calculate the control
input u (the right-hand side of (6)). Using inaccurate values of estimated dynamic pa-
rameters (uncertain robot dynamics) the simulation of a learning control of robot motion
corresponds to a great extent to the same learning process of an actual robot.

Table 1 shows the comparison between experimentally estimated values of the model
parameters α̂, β̂ and χ̂ [18], and the assumed standard values of α, β and χ.

Table 9. Estimated and standard values of the model parameters.

Standard
parameters
×10−2

α β χ d1 d2 fc1 fc1

[Nm2] [Nm2] [Nm2] [Nms] [Nms] [Nm] [Nm]
65.962 15.056 14.534 17.29 12.49 6.46 3.44

Experimental
estimations
×10−2

α̂ β̂ χ̂ d̂1 d̂2 f̂c1 f̂c1

[Nm2] [Nm2] [Nm2] [Nms] [Nms] [Nm] [Nm]
65.553 14.718 18.478 17.29 12.49 8.13 5.51

4. Simulation results

In this section we present simulation-based tuning of the learning control gains in (2),
(L≡ Â), and the feedback gains given in (3) to obtain monotonic, high-rate convergence
of the proposed PD-P NILC for TT3000 robotic manipulator. All simulation programs
were written in MATLAB-6 R12 and executed on a personal computer with Intelr
CoreTM Duo CPU E8500@3.16GHz. Suppose that a desired trajectory is defined in the
space of generalized coordinates as follows:

qd
1(t) =−0.25cos(2t)+0.25

(9)
qd

2(t) =−0.5cos(t)+0.5
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where t ∈ [0, 2π].
Given the desired trajectory in (9) and using the standard model parameters and the

parameter estimations described in Tab. 1, from equations (6), (2) and (3) we obtain the
differential equations of the model-based PD-P NILC controller for TT3000 robot

A(ql+1)q̈l+1 +∆b+∆Dq̇l+1 +∆f = ul + Â(ql)(ël +Lvėl +Lpel)
(10)

+Â(ql+1)(q̈d +Kvėl+1 +Kpel+1)

where: l = 0,1, ...,N is the iteration number; ∆A = A(ql+1
2 ,α, β, χ)− Â(ql+1

2 , α̂, β̂, χ̂)
and ∆b = b(ql+1

1 ,ql+1
2 ,α, β, χ)− b̂(ql+1

1 ,ql+1
2 , α̂, β̂, χ̂); ∆D = D(d1,d2)− D̂(d̂1, d̂2), and

∆f= f(ql+1
1 ,ql+1

2 , fc1, fc2)− f̂(ql+1
1 ,ql+1

2 , f̂c1, f̂c2). The trajectory-tracking error is defined
as el : el = qd(t)−ql(t), t ∈ [0,2π]. As the basic postulates of classical ILC described
in [1] are required, the repetition of the initial setting is satisfied and therefore the initial
conditions are: ql

1(0) = qd
1(0) = 0, ql

2(0) = qd
2(0) = 0, q̇l

1(0) = q̇d
1(0) = 0, and q̇l

2(0) =
q̇d

2(0) = 0. Also we assume that u0(t) ≡ 0. One of the advantages of using numerical
simulation is the ability to track the desired trajectory qd assuming that there are no
limits on ql and ul . Further, we will use this assumption to examine large tracking errors.

First of all, it has to be proven that the above proposed PD-P iterative learning al-
gorithm is uniformly asymptotically convergent. Therefore, using equations (7) and (8),
and model parameters in Tab. 1, and assuming that z = cosq2, z ∈ [−1,1] from the con-
dition given by inequality (5) we obtain the sufficient condition for convergence of the
proposed learning procedure (Eq. (10)) for TT3000 robot:∥∥∥I− Â(z, α̂, β̂, χ̂) A−1(z,α, β, χ)

∥∥ < 1. (11)

The calculation of the left hand side of the inequality (11) for z ∈ [−1,1] is depicted in
Fig. 4.

Figure 4. Graph of
∥∥∥I− Â(z) A−1(z)

∥∥ ,z = cos(q2),z ∈ [−1,1].
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Referring to the curve in Fig. 4 it can be seen that the condition (11) holds and the
existence of an asymptotically convergent PD-P NILC control law for TT3000 robot,
Eq. (10), is proven. It has to be mentioned that this convergence does not depend on the
values of the learning and the feedback gains given in (10).

Now we are aimed to prove the existence of a monotonic convergence of the pro-
posed PD-P NILC control algorithm in (10). For this purpose we will tune (by simu-
lation) the corresponding learning and feedback gains in order to ensure a high rate of
monotonic convergence of the learning algorithm.

Let us define maximal tracking error as:

emax
l = max

t
x∥el(t)∥ , el(t) = qd(t)−ql(t), t ∈ [0,T ], l = 1, ...,N

and the maximal error of the iterative learning procedure:

emax = max
l

x(emax
l ), l = 1, ...,N

Thus, the examination of emax
l in iterations reveals the convergence of the learning al-

gorithm and therefore, we shall investigate the monotony and the rate of the ILC con-
vergence by varying the learning and feedback gains and calculating the corresponding
maximal errors emax

l .
Assuming u0(t)≡ 0 and uc(q0, q̇0, t) = Â(q0)(q̈d +Kvė0 +Kpe0)+ b̂+ D̂q̇0 + ĝ+ f̂

we specify the initial maximal error emax
0 , as a result of the initial trajectory tracking.

If values of Kv and Kp are not specified properly, a significant maximal initial tracking
error is expected. That is why, varying values of Kv and Kp, we can examine the initial
error emax

0 by simulation of the initial tracking. In similar way we can vary the learning
gains Lv and Lp in order to investigate the convergence of emax

l by simulating the PD-P
NILC process.

The computer simulation of the PD-P learning process (Eq. (10) for the virtual
TT3000 robot consists of the following steps:

• Solution of the differential equation of motion (Eq. (10)) to obtain the resultant
output trajectory;

• Update of the control input according to the learning update law, (Eq. (2));

• Increment the iteration l = l + 1 number until the specified maximum l = N is
reached.

Based on the above analysis, we present the following algorithm for simulation-based
tuning of the learning and feedback gains of the PD-P learning controller (Eq. (10) to
achieve an acceptable initial error and fast monotonic convergence of emax

l :

• Solve the differential equation of motion (3) with initial u0(t), uc(q0, q̇0, t) and
Kv = Kp = 0 to examine the value of the initial error emax

0 , and equation (10)
with Kv = Kp = 0, and Lv = Lp = 0 to calculate at each iteration emax

l , and the
convergence of the maximal tracking error in the iteration domain;
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• If the initial error emax
0 is unacceptable, stepwise increase the values of the feed-

back gains following the ideas reported in [12]:

– First, increase Kp > 0 (Kv = 0 and Lv = Lp = 0), obtain the output trajectory
ql(t), t ∈ [0,T ] and compute the maximal tracking error emax

l at each iteration
l = 0,1, ...,N (N depends on the desired convergence accuracy). Make your
decision to repeat the simulation or to stop it depending on the simulation
results for reduction of emax

0 .
– If no satisfactory reduction of emax

0 is obtained, increase Kv > 0, (Lv = Lp = 0)
and compute emax

l in iterations. If needed, repeat the simulation (Eq. (3) and
Eq. (10)) until an acceptable initial error emax

0 is achieved.

• If the resultant error emax
l is not monotonic convergent with the iteration l =

0,1, ...,N and the learning error emax is inadmissible, then increase, in the same
way as described in the last two steps, the learning gains in order to achieve fast
monotonic convergence of the considered PD-P NILC algorithm.

The implementation of the first step of the above tuning algorithm results in the state
space trajectory at the first iteration and in the corresponding trajectory at the twentieth
iteration which are shown in Fig. 5a together with the desired trajectory.

Figure 5. a) The initial, twentieth, and desired trajectory; b) Convergence of the maximal tracking error
emax

l for Kv = 0, Lv = 0 and Kp = 0, Lp = 0.

In this case, the simulation result for the maximal tracking error emax
l in iterations

(l = 0,1, ...,20) is depicted in Fig. 5b. Obviously, the convergence rate is very good and
emax

l is monotonically decreasing but the initial error emax
0 is unacceptable. Therefore,

in the second step of the tuning algorithm the increasing of the feedback gain Kp > 0
(Kv = 0 and Lp = Lv = 0) results in the graphs shown in Fig. 6a.

Referring to Fig. 6a one may conclude that the reduction of emax
0 is not sufficient

and emax
0 reaches its minimum for Kp ≈ 1. In addition significant transient errors emax
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Figure 6. a) The profiles of maximal tracking error emax
l for Kv = 0, Lv = 0; and Kp = 0.3, 0.6, 0.9, 2,

Lp = 0 b) The profiles of maximal tracking error for Kv = 1, 2, 4, 8, Lv = 0 and Kp = 0, Lp = 0.

exist due to the non monotonic convergence of emax
l versus iterations. Anyway, in this

case, the convergence rate of emax
l is similar to the one shown in Fig. 5b. Note that

this examination is possible only by computer simulation because such large learning
errors emax, as shown in Fig. 6a, are inadmissible for a real robot due to the limits of
the generalized coordinates ql+1(t), t ∈ [0,T ]. Thus, we fix the value of Kp = 1 and
continuing the tuning algorithm we increase the feedback gain Kv => 0 (Lv = Lp = 0),
which yields the graphs plotted in Fig. 6b. Here we see a very good reduction of the initial
error emax

0 , so we assume that emax
0 = 0.06028[rad] for Kp = 1 and Kv = 8 (Lv = Lp = 0)

satisfies the desired tracking accuracy in the first iteration. Note that in this case, the
convergence of emax

l , l = 0,1, ...,80, is not monotonic and the convergence rate is not so
good as the one shown in Fig. 5b. Thus, we can increase the learning gain Lp > 0 (Lv = 0,
Kp = 1, Kv = 8) in order to ensure fast monotonic convergence of the considered PD-P
learning algorithm (Eq. (10)). The simulation results for emax

l , l = 0,1, ...,60, and Lp = 1,
Lp = 2, Lp = 4, and Lp = 8 (Lv = 0, Kp = 1, Kv = 8) are shown in Fig. 7a).

The examination of Fig. 7a reveals that the convergence of emax
l is not monotonic

and the maximal learning errors emax
l for Lp = 4, and Lp = 8 exceeds the initial error

emax
0 , and consequently, it is reasonable to assume that Lp = 2.

Finally, we have to increase step-by-step the learning gain Lv > 0 (Lp = 2, Kp = 1,
Kv = 8). The resultant graphs of emax

l , l = 0,1, ...,40, where Lv = 1, Lv = 2, Lv = 4 and
Lv = 8, are shown in Fig. 7b.

Given feedback gains Kp = 1 and Kv = 8, and learning gains Lp = 2 and Lv = 8,
the corresponding curve of emax

l shows very fast monotonic convergence of the maximal
tracking error versus iterations. The final accuracy at iteration 40 is emax

40 = 3.6057e−6,
taking into account that the accuracy of the Runge-Kutta method for all computer simula-
tions is 1.0e−6. Thus, the implementation of the tuning algorithm for simulation-based
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Figure 7. a) The profiles of maximal tracking error for Kv = 8, Lv = 0 and Kp = 1, Lp = 1, 2, 4, 8; b) The
profiles of maximal tracking error for Kv = 8, Lv = 1, 2, 4, 8 and Kp = 1, Lp = 2.

design of monotonically convergent PD-P NILC (Eq. (10)) for TT3000 robotic manipu-
lator is completed by deriving the above values of the learning and feedback gains.

5. Conclusions

We came to the following conclusions:

• A model-based PD-P type (with respect to the state state-space form of Eq. (1))
nonlinear iterative learning control for robotic manipulators is proposed. The PD-P
ILC parameter design consists of two steps: specification of the learning operator
L (for D-type ILC) and design of the learning (for P-type ILC), and feedback (for
P-type feedback) gains.

• The learning operator is specified as equal to an estimate of the inertia matrix in
the dynamic equations of the robot motion, (L≡ Â), and the uniform asymptotic
convergence of the proposed PD-P learning algorithm for TT3000 robot (equation
(10)) is proven by numerically validation of the corresponding sufficient condition
(11).

• The constant learning gains are multiplied by L in the learning update law (2)
which implies a nonlinear learning controller and the constant feedback gains are
multiplied by Â in the feedback control law (3) which implies a nonlinear feedback
controller. So, the PD-P ILC tuning depends on only four positive gains: Kp and
Kv of the feedback controller, Lp and Lv, and of the learning one. The number of
these gains does not depend on the system dimension. Thus, classical engineering
techniques can be used for tuning by simulations of both controllers. Moreover,
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in the case of excessive growth of transient errors (see Fig. 6a), the computer
simulation of the proposed learning procedure is the only way for learning gains
tuning.

• A simulation-based design of the feedback and the learning gains, respectively,
is performed for TT3000 robot. Thus, it was shown by numerical simulation
that a monotonically convergent model-based nonlinear PD-P NILC for TT3000
SCARA-type robot exists and in this case the convergence rate is very high.

• The existence of powerful robot control devices equipped with high-quality dis-
plays and accurate CAD-oriented methods for identification of model parameters
ensures the applicability of the proposed simulation-based approach for design of
monotonically-convergent nonlinear iterative learning controllers.
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