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Hierarchical filtration
for distributed linear multisensor systems

ZDZISŁAW DUDA

In the paper two filtration algorithms for distributed multisensor system are presented.
The first one is derived for a linear dynamical system composed of local subsystems described
by local state equations. Local estimates are sent to a central station to be fused and formed
an optimal global estimate. The second algorithm is derived for a system observed by local
nodes that determine estimates of the whole system using local information and periodically
aggregated information from other nodes. Periodically local estimates are sent to the central
station to be fused. Owing to this a reduced communication can be achieved.

Key words: multisensor system, distributed Kalman filtering, decentralized filtration, hi-
erarchical fusion, aggregated information

1. Introduction

Multisensor systems find applications in many areas such as aerospace, robotics, im-
age processing, military surveillance, medical diagnosis. The advantage of using these
systems over a systems with a single sensor results from e.g. improved reliability, ro-
bustness, extended coverage, improved resolution e.t.c. In these systems an optimal state
estimation problem is one of the critical concerns.

Theoretically, state estimate can be determined by using Kalman filter in a central-
ized structure. Conventional Kalman filtration requires that all process measurements are
sent to a central station which determines an estimate of the state system. The central-
ized architecture produces an optimal estimate in a minimum mean square error (MMSE)
sense, but it may imply low survivability and requires high processing and communica-
tion loads.

In order to integrate data from distributed sensors estimation fusion algorithms and
appropriate architectures are proposed. The fusion approach has been researched for
years and some results are known. In [4, 5, 9] a centralized optimal state estimate is
calculated from estimates determined by local nodes. The global estimate is equivalent
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to the optimal centralized one. In [1, 2, 3] are presented fusion algorithms guaranteed
local optimality, only.

Fusion algorithms are realized in different structures.
In a hierarchical structure local nodes process its sensor data to form local estimates.

These estimates are sent to a central node to be fused. The hierarchical structure has the
advantage (as compared with a centralized one) of lower communication, lower process-
ing cost and increased reliability. It is possible that information flows from local nodes
to the central node and also from the central node to local nodes (feedback architecture).
Owing to this an accuracy of local estimates can be improved.

In a fully decentralized structure the central node is absent. Each sensor node can
operate independently of other component and communication between nodes is one to
one. From communication constraints point of view it is useful for local nodes to send
information as transformed data. It has been discussed e.g. in [4, 9, 10, 11, 12, 13].
Reduced communication can be also achieved by lower rate of communication from
local nodes to the central node in comparison with the sensor observation rate. This
approach is proposed e.g. in [2, 6, 8].

In the paper two filtration algorithms for large scale multisensor systems are pre-
sented. In the section 4 a state estimation for a system with local dynamical models con-
nected with local measurement nodes is considered. In the section 5 an original proposal
of a hierarchical fusion architecture is presented. In this structure local nodes determine
estimates of the whole system using local information and periodically aggregated in-
formation from other nodes. Periodically local estimates are sent to the central node to
be combined.

2. Preliminaries

It is well known that a minimum mean square error (MMSE) estimate x̂ of a
random signal x given information i⃗ is a conditional expectation x̂ = E(x|⃗i). For dy-
namical systems a state estimate x̂n+1| j at time n+ 1 given measurement information
i⃗ j = [iT0 , i

T
1 , ..., i

T
j ]

T at time j has the form

x̂n+1| j = E(xn+1 |⃗i j). (1)

Thus, for j = n+1 we have

x̂n+1|n+1 = E(xn+1 |⃗in+1) = E(xn+1 |⃗in, in+1) (2)

where i⃗n+1 = [⃗iTn , i
T
n+1]

T . If the random vector [xT
n+1 ,⃗ i

T
n , i

T
n+1]

T is gaussian, then

x̂n+1|n+1=E(xn+1 |⃗in+1)=E(xn+1 |⃗in, in+1)=E(xn+1 |⃗in)+E(xn+1 |̃in+1|n)−Exn+1 (3)

where

ĩn+1|n = in+1−E(in+1 |⃗in) (4)
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If the random vector [xT
n+1, ĩ

T
n+1|n]

T is gaussian then

E(xn+1 |̃in+1|n) = Exn+1 +Pxn+1 ĩn+1|n
P−1

ĩn+1|n ĩn+1|n
(̃in+1|n−Eĩn+1|n) (5)

where Pαβ denotes the covariance matrix of the random vectors α and β.
Under above assumptions, (3) can be written in the form

x̂n+1|n+1 = x̂n+1|n +Kn+1[in+1−E(in+1 |⃗in)] (6)

where

x̂n+1|n = E(xn+1 |⃗in) (7)

and

Kn+1 = Pxn+1 ĩn+1|n
P−1

ĩn+1|n ĩn+1|n
. (8)

The equations (6)-(8) are used for determination of a state estimate x̂n|n given available
information i⃗n.

3. Model of a system and a problem statement

Consider a linear system described by the equation

xn+1 = Anxn +wn (9)

where xn is a state, An is a system matrix, wn is a state noise. It is assumed that
x0 ∼ N(x̄0,X0), wn ∼ N(w̄n,Wn) and xn ∈ Rk, wn ∈ Rk, An ∈ Rk×k. Additionally, wn is
a gaussian white noise process independent of the gaussian initial state x0.

Let there exist M local measurement nodes with measurement equations

yi
n = C̄i

nxi
n + ri

n, i = 1, ...,M (10)

where

xi
n = D̄i

nxn (11)

is a local state described by a local state equation

xi
n+1 = Ai

nxi
n +wi

n, i = 1,2, ...M. (12)

It is assumed that wi
n ∼ N(w̄i

n,W
i
n), ri

n ∼ N(0,Ri
n), wn, ri

m and wi
n, ri

mare gaussian white
noise processes independent of each other and of the gaussian initial state xi

0; xi
n ∈ Rki ,

yi
n ∈ Rpi

, C̄i
n, D̄

i
n,A

i
n are known matrices with appropriate dimensions.

Equation (12) may be treated as a local model connected with the local measurement
node.

For the above model first, in the section 4, the distributed estimation fusion algorithm
is derived. Then, in the section 5, for D̄i

n = 1 in (11), an algorithm of state filtration
realized in a hierarchical, partially decentralized, fusion architecture is proposed.
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4. Kalman filtration for i⃗n+1 = [⃗yT
n ,y

T
n+1]

Let us consider a state filtration for the system (9) with the measurements model (10)
and (11). Equation (10) can be written in the form

yi
n =Ci

nxn + ri
n (13)

where

Ci
n = C̄i

nD̄i
n. (14)

Denote by yn = [y1T
n , ...,yMT

n ]T , y⃗n+1 = [yT
0 , ...,y

T
n ,y

T
n+1]

T = [⃗yT
n ,y

T
n+1]

T , ỹn+1|n =

yn+1−E(yn+1 |⃗yn) and i⃗n = y⃗T
n , in+1 = yT

n+1. The vector yn can be written in the form

yn =Cnxn + rn (15)

where Cn = [C1T
n , ...,CMT

n ]T , rn = [r1T
n , ...,rMT

n ]T , Rn = ErnrT
n = blockdiag{R1

n, ...,R
m
n }.

For the system described by (9) and (15) the random vectors [xT
n+1, y⃗

T
n ,y

T
n+1]

T ,
[yT

n+1, y⃗
T
n ]

T and [xT
n+1, ỹ

T
n+1|n]

T are gaussians. Thus the estimate

x̂n+1|n+1 = E(xn+1 |⃗yn+1) (16)

results from (6)–(8) and has the classical form

x̂n+1|n+1 = x̂n+1|n +Kn+1(yn+1− ŷn+1|n) (17)

where ŷn+1|n = E(yn+1 |⃗yn) =Cn+1x̂n+1|n and

x̂n+1|n = E(xn+1 |⃗yn) = Anx̂n|n + w̄n. (18)

The matrix gain Kn+1 can be found from (8) as

Kn+1 = Pn+1|nCT
n+1(Cn+1Pn+1|nCT

n+1 +Rn+1)
−1 (19)

where the a priori error covariance matrix has the form

Pn+1|n = E(x̃n+1|nx̃T
n+1|n) = AnPn|nAT

n +Wn. (20)

A posteriori error covariance matrix Pn|n is given by

Pn|n = Ex̃n|nx̃T
n|n = (1−KnCn)Pn|n−1. (21)

An initial condition x̂0|0 results from (17)

x̂0|0 = x̂0|−1 +K0(y0−C0x̂0|−1) = x̄0 +K0(y0−C0x̄0). (22)
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The covariance matrix P0|−1 can be determined from (20) as

P0|−1 = Ex̃0|−1x̃T
0|−1 = E(x0− x̄0)(x0− x̄0)

T = X0. (23)

Kalman filter consists of (17)–(21) with the initial conditions (22)–(23).
The state estimate x̂n|n can be determined in a centralized structure with one central

processor using observations yi
n, i = 1,2, ...,M passed from M sensors. If the number

of sensors increases then the inverse of the matrix in (19) increases in proportion to the
square of its dimension and this approach becomes limited. In this case an advantage in
calculations gives an information filter described in the next section.

4.1. Information Kalman filtration

Let us notice that (17) can be written in the form

x̂n+1|n+1 = (1−Kn+1Cn+1)x̂n+1|n +Kn+1yn+1. (24)

It can be shown that

1−Kn+1Cn+1 = Pn+1|n+1P−1
n+1|n (25)

and

Kn+1 = Pn+1|n+1CT
n+1R−1

n+1. (26)

Inserting (25) and (26) to (24) gives

x̂n+1|n+1 = Pn+1|n+1P−1
n+1|nx̂n+1|n +Pn+1|n+1CT

n+1R−1
n+1yn+1. (27)

From (27) it results that

P−1
n+1|n+1x̂n+1|n+1 = P−1

n+1|nx̂n+1|n +CT
n+1R−1

n+1yn+1. (28)

Denoting by

x̂∗n+1|n+1 = P−1
n+1|n+1x̂n+1|n+1, x̂∗n+1|n = P−1

n+1|nx̂n+1|n (29)

and using the definition of Cn+1, Rn+1 and yn+1 we can write (28) in the form

x̂∗n+1|n+1 = x̂∗n+1|n +CT
n+1R−1

n+1yn+1 = x̂∗n+1|n +
M

∑
i=1

CiT
n+1(R

i
n+1)

−1yi
n+1. (30)

Equation (30) is a measurement – update information filter equation.
In order to determine x̂∗n+1|n multiply the both sides of (18) by P−1

n+1|n. Using (29) we
obtain

P−1
n+1|nx̂n+1|n = P−1

n+1|nAnPn+1|nP−1
n+1|nx̂n|n +P−1

n+1|nw̄n, (31)
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x̂∗n+1|n = P−1
n+1|nAnPn+1|nx̂∗n|n +P−1

n+1|nw̄n. (32)

Equation (32) is a time-update information filter equation.
It can be shown that a recursive form of the covariance matrix P−1

n+1|n+1 has the form

P−1
n+1|n+1 = P−1

n+1|n +CT
n+1R−1

n+1Cn+1 = P−1
n+1|n +

M

∑
i=1

CiT
n+1(R

i
n+1)

−1Ci
n+1. (33)

Finally, the Kalman information filter consists from (30) and (32) with (33) and (20).
Let us notice that information Kalman filter results from classical covariance filter.

But in the information filter it is possible to increase processing speed.
Summarizing, the measurement-update equations (30) and (33) are computationally

simpler than the equations (17) and (21). The time-update equation (32) with an appro-
priate matrixP−1

n+1|n is more complex than (18) and (20) but they do not depend on the
observations.

4.2. Hierarchical filtration

Consider a local state estimate of the system (12) based on the measurements yi
n

described by the model (10) i.e.

x̂i
n+1|n+1 = E(xi

n+1 |⃗yi
n+1) (34)

where y⃗i
n+1 = [yiT

0 , ...,yiT
n+1]

T = [⃗yiT
n ,yiT

n+1]
T . Thus the information estimate x̂i∗

n+1|n+1 re-
sults directly from the section 4.1 and has the form

x̂i∗
n+1|n+1 = x̂i∗

n+1|n +C̄iT
n+1(R

i
n+1)

−1yi
n+1 (35)

x̂i∗
n+1|n = (Pi

n+1|n)
−1Ai

nPi
n+1|nx̂i∗

n|n +(Pi
n+1|n)

−1w̄i
n (36)

with

Pi
n+1|n = Ai

nPi
n|nAiT

n +W i
n (37)

(Pi
n+1|n+1)

−1 = (Pi
n+1|n)

−1 +C̄iT
n+1(R

i
n+1)

−1C̄i
n+1. (38)

From (35) and (38) it results that

C̄iT
n+1(R

i
n+1)

−1yi
n+1 = x̂i∗

n+1|n+1− x̂i∗
n+1|n (39)

and

C̄iT
n+1(R

i
n+1)

−1C̄i
n+1 = (Pi

n+1|n+1)
−1− (Pi

n+1|n)
−1. (40)
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Let us notice that CiT
n+1(R

i
n+1)

−1yi
n+1 and CiT

n+1(R
i
n+1)

−1Ci
n+1 in (30) and (33), using

(39)and (40) can be written in the form

CiT
n+1(R

i
n+1)

−1yi
n+1 = D̄iT

n C̄iT
n (Ri

n+1)
−1yi

n+1 = D̄iT
n (x̂i∗

n+1|n+1− x̂i∗
n+1|n)

(41)
CiT

n+1(R
i
n+1)

−1Ci
n+1 = D̄iT

n C̄iT
n (Ri

n+1)
−1C̄i

nD̄i
n = D̄iT

n [(Pi
n+1|n+1)

−1− (Pi
n+1|n)

−1]D̄i
n

and finally (30) and (33) can be written as

x̂∗n+1|n+1 = x̂∗n+1|n +
M

∑
i=1

D̄iT
n (x̂i∗

n+1|n+1− x̂i∗
n+1|n) (42)

P−1
n+1|n+1 = P−1

n+1|n +
M

∑
i=1

D̄iT
n [(Pi

n+1|n+1)
−1− (Pi

n+1|n)
−1]D̄i

n. (43)

Equations (42) , (43) with (32) and (20) summarise partially decentralized filtration.
For D̄i

n = 1 we have that xi
n = xn, Ai

n = An, wi
n = wn. It means that local nodes

determine the estimate of the system (9) based on the measurement model (13). This
case is generally considered in a literature.

We can treated the global estimate performed by the central processor as over-
head. In this case it needs information of the difference D̄iT

n (x̂∗in+1|n+1 − x̂∗in+1|n) and
[D̄iT

n [(Pi
n+1|n+1)

−1−(Pi
n+1|n)

−1]D̄i
n] from local nodes. There the communication between

local nodes is not needed.

5. Aggregated filtration

Consider the system (12)-(10) for D̄i
n = 1. It means that the state xn described by (9)

is measured by local nodes according to a measurement model

yi
n = C̄i

nxn + ri
n. (44)

Let

mi
lk = Di

lkyi
lk, l = 0,1, ..., i = 1, ...,M (45)

be aggregated, at every k units, information of the ith local sensor. It is assumed that the
vector mi

lk is the vector of smaller dimension than yi
lk. The aggregated information of the

whole system has the form

mlk = Dlkylk = DlkClkxlk +Dlkrlk (46)

where mlk = [m1T
lk , ...,m

MT
lk ]T ,ylk = [y1T

lk , ...,y
MT
lk ]T ,Dlk = diag{Di

lk, i = 1, ...,M},Clk =
[C1T

lk , ...,CMT
lk ]T ,rlk = [r1T

lk , ...,rMT
lk ]T .
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Denote by y⃗i
n = [yiT

1 , ...,yiT
j , ...y

iT
n ]T , j ̸= lk, l = 0, ..., int[n

k ], m⃗lk =

[mT
k , ..,m

T
2k, ..,m

T
lk]

T . The estimation problem considered in this section is to find
the state estimates in the form:

x̂n|n,i = E(xn |⃗yi
n, m⃗lk), for lk < n < (l +1)k, l = int

[n
k

]
(47)

and

x̂lk|lk,i = E(xlk |⃗yi
lk−1, m⃗lk), for l = 0,1, ... (48)

Proposed algorithm may be used in a hierarchical partially decentralized structure. The
ith local subsystem determines the state estimate using its own local information y⃗i

n and,
at every k units, aggregated information m⃗lk received from other subsystems. The local
estimatesx̂lk|lk,i, i = 1,2, ...,M are transmitted every k units to a central node where
global state estimate is reconstructed.

Notice that for Di
lk equal to a unit matrix (Di

lk = 1) , all global information available
at time lk is used for filtration. For Di

lk = 0 no information is transmitted from the ith
subsystem to other subsystems.

5.1. Derivation of the state estimate x̂n|n,i for n = lk

According to (48) we have

x̂n|n,i = E(xn |⃗yi
n−1, m⃗n) = E(xn |⃗yi

n−1, m⃗n−k,mn) =

= E(xn |⃗yi
n−1, m⃗n−k)+E(xn|m̃n,i)− x̄n = (49)

= x̂n|n−1,i +Pxnm̃n,iP
−1
m̃n,im̃n,i

m̃n,i

where

x̂n|n−1,i = An−1x̂n−1|n−1,i + w̄n−1

m̃n,i = mn− m̂n|n−1,i (50)

m̂n|n−1,i = E(mn |⃗yi
n−1, m⃗n−k) = DnCnx̂n|n−1,i.

It can be shown that

x̂n|n,i = x̂n|n−1,i +Kn,i(mn− m̂n|n−1,i) (51)

where

Kn,i = Pn|n−1,iC
T
n DT

n [Dn(CnPn|n−1,iC
T
n +Rn)DT

n ]
−1

Pn|n−1,i = An−1Pn−1|n−1,iA
T
n−1 +Wn−1 (52)

Pn|n,i = (1−Kn,iDnCn)Pn|n−1,i.

The estimate x̂n−1|n−1,i (x̂lk−1|lk−1,i) is determined in the next section.
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5.2. Derivation of the state estimate x̂n|n,i for lk < n < (l +1)k

Using (47) we have

x̂n|n,i = E(xn |⃗yi
n, m⃗lk) = E(xn |⃗yi

n−1, m⃗lk,yi
n) =

= E(xn |⃗yi
n−1, m⃗lk)+E(xn|ỹn,i)− x̄n = (53)

= x̂n|n−1,i +Pxnỹn,iP
−1
ỹn,iỹn,i

ỹn,i

where

x̂n|n−1,i = An−1x̂n−1|n−1,i + w̄n−1

ỹn,i = yi
n− ŷn|n−1,i (54)

ŷn|n−1,i = E(yi
n |⃗yi

n−1, m⃗lk) =Ci
nx̂i

n|n−1,i.

It can be shown that

x̂n|n,i = An−1x̂n−1|n−1,i + w̄n−1 +Kn,i(yi
n− ŷi

n|n−1) (55)

where

Kn,i = Pn|n−1,iC
iT
n (Ci

nPn|n−1,iC
iT
n +Ri

n)
−1

Pn|n−1,i = An−1Pn−1|n−1,iA
T
n−1 +Wn−1 (56)

Pn|n,i = (1−Kn,iCi
n)Pn|n−1,i.

An initial condition x̂0|0,i results from (53)

x̂0|0,i = x̂0|−1,i +K0,i(yi
0−Ci

0x̂0|−1,i) = x̄0 +K0,i(yi
0−Ci

0x̄0). (57)

The covariance matrix P0|−1,i can be determined as

Pi
0|−1 = E(x̃i

0|−1x̃iT
0|−1) = E[(x0− x̄0)(x0− x̄0)

T ] = X0. (58)

5.3. Information Kalman filter for n = lk

Let us consider (51) with (52). It can be written in the form

x̂n|n,i = (1−Kn,iDnCn)x̂n|n−1,i +Kn,imn. (59)

Now we transform (1−Kn,iDnCn) and Kn,i to an appropriate form. We have

1−Kn,iDnCn =

Pn|n,i(52)︷ ︸︸ ︷
(1−Kn,iDnCn)Pn|n−1,i(Pn|n−1,i)

−1 = Pn|n,i(Pn|n−1,i)
−1. (60)

Denote by

On,i = Dn(CnPn|n,iC
T
n +Rn)DT

n . (61)
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Multiplying the both sides of (43) by On,i gives

Kn,i(

On,i(61)︷ ︸︸ ︷
Dn(CnPn|n−1,iC

T
n +Rn)DT

n ) = Pn|n−1,iC
T
n DT

n . (62)

Thus

Kn,iDnRnDT
n = (1−Kn,iDnCn)Pn|n−1,iC

T
n DT

n (63)

and

Kn,i =

Pn|n,i(Pn|n−1,i)
−1(60)︷ ︸︸ ︷

(1−Kn,iDnCn) Pn|n−1,iC
T
n DT

n (DnRnDT
n )
−1 = Pn|n,iC

T
n DT

n (DnRnDT
n )
−1. (64)

Inserting (60) and (64) to (59) gives

x̂n|n,i = Pn|n,i(Pn|n−1,i)
−1x̂n|n−1,i +Pn|n,iC

T
n DT

n (DnRnDT
n )
−1mn. (65)

Multiplying the both sides of (65) by (Pn|n,i)
−1 gives

(Pn|n,i)
−1x̂n|n,i = (Pn|n−1,i)

−1x̂n|n−1,i +CT
n DT

n (DnRnDT
n )
−1mn. (66)

Denoting by

x̂∗n|n,i = (Pn|n,i)
−1x̂n|n,i, (67)

and using the definition of Cn, Dn, Rn and mn we can write (66) in the form

x̂∗n|n,i = (Pn|n−1,i)
−1x̂n|n−1,i +

M

∑
j=1

i j
n (68)

where

i j
n =C jT

n D jT
n (D j

nR j
nD jT

n )−1m j
n. (69)

At time n = lk an information vector i j
lk is computed by jth ( j = 1,2, ...,M) local node

and sent to other local nodes. The ith (i = 1,2, ...,M) local node computes the estimate
x̂∗lk|lk,i according to (68), covariance matrix Plk|lk,i according to (52) and the state estimate
x̂lk|lk,i = Plk|lk,ix̂∗lk|lk,i.

The information of x̂lk|lk,i and Plk|lk,i, i= 1,2, ...,M is sent to the central node, where
a global estimate is calculated using e.g. covariance intersection method [7]. According
to [7] the global estimate x̂lk|lk is calculated as

x̂lk|lk =
M

∑
i=1

αlk,iPlkP−1
lk|lk,ix̂lk|lk,i (70)

where

αlk,i =
(trPlk|lk,i)

−1

∑M
i=1(trPlk|lk,i)−1

, P−1
lk =

M

∑
i=1

αlk,i(Plk|lk,i)
−1. (71)
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6. Conclusions

In the paper are presented two partially decentralized Kalman filters realized in the
hierarchical structures. The first one may be used for large scale distributed multisensor
systems described by global and local states models. This approach can be applied for
a multisensor system in which local state models are equivalent to the global model. In
order to reduce communication and calculation requirements periodically fused formula
is proposed. Local nodes produce optimal estimates of the global state in MMSE sense
using its own detailed information and periodically aggregated information from other
local nodes. Local state estimates and appropriate covariance matrices are sent to the
central node to be fused. Fusion may be performed in local nodes without central node,
but it requires full communication between nodes.
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