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Discrete homing problems

MARIO LEFEBVRE and MOUSSA KOUNTA

We consider the so-called homing problem for discrete-time Markov chains. The aim is to
optimally control the Markov chain until it hits a given boundary. Depending on a parameter
in the cost function, the optimizer either wants to maximize or minimize the time spent by the
controlled process in the continuation region. Particular problems are considered and solved
explicitly. Both the optimal control and the value function are obtained.

Key words: discrete-time Markov chains, optimal control, principle of optimality, absorp-
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1. Introduction

Let {X(t), t ­ 0} be a one-dimensional controlled diffusion process defined by the
stochastic differential equation

dX(t) = m[X(t)]dt +b[X(t)]u[X(t)]dt + {v[X(t)]}1/2 dB(t),

where u(·) is the control variable, m(·), b(·) ̸= 0 and v(·) > 0 are real functions, and
{B(t), t ­ 0} is a standard Brownian motion.

The problem of finding the control u∗ that minimizes the expected value of the cost
function

C(x) =

Td(x)∫
0

{
1
2

q[X(t)]u2[X(t)]+λ
}

dt, (1)

where q(·) is strictly positive, λ ̸= 0 is a constant, and Td(x) is the first-passage time
defined by

Td(x) = inf{t > 0 : X(t) = d or −d | X(0) = x},
where x ∈ (−d,d), is a particular case of what has been termed LQG homing by Whittle
(1982, p. 289).
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In the general formulation, {X(t), t ­ 0} is an n-dimensional process that obeys the
first-order stochastic differential equation

Ẋ(t) = A[X(t), t]+B[X(t), t]u[X(t)]+ ε(t),

where ε(t) is a vector white noise having zero mean and power matrix N[X(t), t]. More-
over, the cost function is

C(x, t) =
T∫

t

{
1
2

u′Q[X(τ),τ]u+g[X(τ),τ]
}

dτ+K(X(T ),T ),

where T is the first time (X(t), t), starting from X(0) = x, enters a prescribed stopping
set D, and K is a general termination cost function.

In Whittle (1990, p. 222) (see also Kuhn (1985)), the homing problem is given a
risk-sensitive formulation. That is, the optimizer wants to minimize the expected value
of

Cθ(x, t) :=−2
θ

log
(

E
[
e−θC(x,t)/2

])
.

The case when θ = 0 corresponds to the risk-neutral criterion C(x, t) defined above.
When the parameter λ in (1) is positive (respectively, negative), the optimizer wants

to minimize (respectively, maximize) the survival time of the controlled process in the
interval (−d,d), taking the quadratic control costs into account.

We can take λ as large as we want. However, in general, λ cannot take any negative
value. If the absolute value of λ (< 0) becomes too large, then the expected reward
becomes infinite.

Whittle has shown that it is sometimes possible to obtain the optimal control u∗

by considering the uncontrolled process {ξ(t), t ­ 0} that corresponds to {X(t), t ­ 0}.
Indeed, if the relation

αv[X(t)] =
b2[X(t)]
q[X(t)]

holds for some positive constant α, and if P[τd(x) < ∞] = 1, where τd is the same as
Td(x), but for the uncontrolled process {ξ(t), t ­ 0}, then the value function

G(x) := inf
u[X(t)], 0¬t¬Td(x)

E[C(x)]

can be expressed in terms of a mathematical expectation for {ξ(t), t ­ 0}. Moreover, the
optimal control is given by

u∗(x) =−b(x)
q(x)

G′(x).

Whittle’s result was used, and generalized, in a number of papers by the first author
(see, for instance, Lefebvre (2011)), and by Makasu (2009).
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As Whittle pointed out, it is not possible to extend his result to the case of discrete-
time and discrete-space controlled processes. However, we can nevertheless consider
homing problems for Markov chains. Here, we will set up and solve explicitly such
problems for various random walks.

Let {Xn,n = 0,1, . . .} be a controlled Markov chain, starting at X0 = x, defined by

Xn+1 = Xn +un + εn, (2)

where un can take a finite number of values, and εn is the noise term that can take either
of two values with probability 1/2.

Our aim will be to minimize the expected value of the cost function

J(x) =
T (x)−1

∑
n=0

(u2
n +λ), (3)

where T (x) is a first-passage time defined with respect to the controlled Markov chain.
Three particular problems will be solved explicitly in Sections 2-4. Finally, we will

make a few concluding remarks, including possible extensions, in Section 5.

2. Maximizing the survival time

The first problem that we consider is the one for which the state space of the Markov
chain {Xn,n = 0,1, . . .} is the set {−k, . . . ,0, . . . ,k}, where k ∈ N. Moreover, the con-
trol un must belong to {−1,0,1}, and εn = +1 or −1 with probability 1/2. Finally, the
parameter λ in the cost function (3) is assumed to be negative, and

T (x) := min{n­ 0 : |Xn|­ k | X0 = x}. (4)

Hence, the optimizer wants to maximize the survival time of the controlled Markov chain
in C := {−k+1, . . . ,0, . . . ,k−1}.

Let F(x) be the value function defined by

F(x) = min
un, n=0,...,T (x)−1

E[J(x)]. (5)

By making use of the principle of optimality, we obtain the following lemma.

Lemma 1 The value function F(x) defined in Eq. (5) satisfies the dynamic programming
equation

F(x) = min
u0

{
u2

0 +λ+
1
2
[F(x+u0 −1)+F(x+u0 +1)]

}
, (6)

subject to the boundary condition

F(x) = 0 if |x|­ k. (7)
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Now, by symmetry, we can state that u∗0(−x) = −u∗0(x). Therefore, we can assume
that x ∈ {0, . . . ,k}. Furthermore, because we want the controlled process to remain in the
continuation region as long as possible, taking the quadratic control costs into account,
it is clear that u∗0(x) should be either equal to −1 or 0 if x is positive.

Next, notice that the value function F(x) is negative for any x ∈ C. Indeed, if we
choose un ≡ 0, then we have

E[J(x)] = E

[
T (x)−1

∑
n=0

λ

]
= λE[T (x)]< 0.

Actually, using the well-known results on the gambler’s ruin problem, we can write that
if un ≡ 0, then P[T (x)< ∞] = 1 and (see, for instance, Feller (1968, p. 348))

E[T (x)] = k2 − x2 for x =−k, . . . ,k.

Thus,
F(x)¬ λ(k2 − x2).

Not only is the value function negative, it is equal to −∞ (that is, the expected reward
becomes infinite) if the absolute value of λ is too large, as we will prove in the following
lemma.

Lemma 2 If the parameter λ in the cost function (3) is smaller than −1, then we have
F(x) =−∞.

Proof. When λ < −1, we receive a reward for surviving in the continuation region C,
even if we take un =±1. But, because εn =±1, by choosing u0 =−1 (respectively, +1)
when X0 = x ∈ C is positive (respectively, negative), we can remain in C as long as we
want. It follows that F(x) =−∞.

We will henceforth assume that λ ∈ [−1,0). Then the value function is necessarily
finite, because there is a positive cost when we control the Markov chain, and if we
choose un ≡ 0, then the process will hit either boundary in finite time.

Now, whatever the value of λ (< 0), we can state that u∗0(0) = 0. Indeed, the ideal
position to maximize the profit is when the random walk is at the origin, so that the
optimizer should try to remain near there. Since E[X1] = 0 if we take u0(0) = 0, this is
surely the best option to choose.

Therefore, we deduce from the dynamic programming equation (6) that

F(0) = λ+
1
2
[F(−1)+F(1)] .

Moreover, by symmetry, F(−x) = F(x) for any x ∈C. It follows that

F(1) = F(0)−λ.
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Next, we can write that

F(1) = min
u0

{
u2

0 +λ+
1
2
[F(u0)+F(u0 +2)]

}
.

Thus, we have either (with u0 = 0)

F(1) = λ+
1
2
[F(0)+F(2)] (8)

or (with u0 =−1)

F(1) = 1+λ+
1
2
[F(−1)+F(1)] .

However, this last equation leads to 0 = 1+λ, which contradicts the hypothesis that we
made above (namely, λ ∈ [−1,0)), unless λ = −1. It follows that, when λ ∈ (−1,0),
we must choose u∗0(1) = 0. Hence, substituting the value of F(1) in terms of F(0) into
Eq. (8), we obtain that

F(2) = F(0)−4λ.

Proposition 1 For the problem set up in this section, the optimal control is u∗0(x) ≡ 0
and the value function is given by

F(x) = λ(k2 − x2).

Moreover, if λ = −1/(2x− 1) (with x > 0), then we can choose u∗0(x) = 0 or −1 indif-
ferently.

Proof. We will prove, by induction, that

F(x) = F(0)− x2λ for x ∈ {−k, . . . ,k}.

Indeed, we deduce from the dynamic programming equation (6) that, if x ∈ C, then we
have

F(x) = λ+
1
2
[F(x−1)+F(x+1)] (with u0 = 0) (9)

or
F(x) = 1+λ+

1
2
[F(x−2)+F(x)] (with u0 =−1). (10)

This last equation can be rewritten as

F(0)− x2λ− [F(0)− (x−2)2λ] = 2(1+λ),

which is only possible if x is such that

λ =− 1
2x−1

.
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For any λ ∈ [−1,0) different from this value, we must take u∗0 = 0, and we then deduce
from Eq. (9) that

F(x+1) = 2[F(x)−λ]−F(x−1)
= 2[F(0)− x2λ−λ]− [F(0)− (x−1)2λ]
= F(0)− (x+1)2λ.

Since λ is a constant, we can conclude that u∗0(x) = 0 for any x, except that if there
exists a value of x for which λ =−1/(2x−1), then u∗0(x) is also equal to −1.

Finally, as we mentioned above, in the uncontrolled case we know that

E[J(x)] = λ(k2 − x2) for x =−k, . . . ,k.

This is actually the maximal expected reward when the process starts from X0 = x. That
is,

F(x) = λ(k2 − x2) for x =−k, . . . ,k,

which completes the proof.

Remark. Notice that, with F(x) = λ(k2 − x2), Eq. (9) is satisfied for any λ ∈ [−1,0).
Moreover, both Eq. (9) and Eq. (10) are satisfied at the same time if and only if λ =
−1/(2x−1).

3. Minimizing the time spent in the continuation region

In this section, the state space of the Markov chain {Xn,n = 0,1, . . .} is the set
{0, . . . ,k}, the optimizer must choose un = 0 or un = 1, the random variable εn is equal
to 0 or 1 with probability 1/2, the parameter λ in the cost function (3) is strictly positive,
and the first-passage time T (x) is defined by

T (x) := min{n­ 0 : Xn ­ k | X0 = x}. (11)

Thus, the objective of the optimizer is to minimize the time spent in the continuation
region by the controlled Markov chain, taking the quadratic control costs into account.

The value function F(x) defined in Eq. (5) now satisfies the dynamic programming
equation

F(x) = min
u0

{
u2

0 +λ+
1
2
[F(x+u0)+F(x+u0 +1)]

}
, (12)

subject to the boundary condition F(x) = 0 if x­ k. Since u0 = 0 or u0 = 1, this equation
can be rewritten as follows:

F(x) = min
{

λ+
1
2
[F(x)+F(x+1)] ,1+λ+

1
2
[F(x+1)+F(x+2)]

}
. (13)
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To solve our problem, we will first consider the case when x = k − 1. Then, Eq. (13)
becomes

F(k−1) = min
{

λ+
1
2
[F(k−1)+F(k)] ,1+λ+

1
2
[F(k)+F(k+1)]

}
= min

{
λ+

1
2

F(k−1),1+λ
}
.

Therefore, if the optimizer chooses u0 = 0, then F(k−1) = 2λ, whereas F(k−1) = 1+λ
if u0 = 1 is chosen. It follows that

u∗0(k−1) =

{
0 if λ¬ 1,
1 if λ > 1.

(14)

Next, when x = k−2, we have

F(k−2) = min
{

λ+
1
2
[F(k−2)+F(k−1)] ,1+λ+

1
2

F(k−1)
}
.

If 0 < λ¬ 1, then F(k−1) = 2λ, whereas F(k−1) = 1+λ if λ > 1. Therefore, we must
consider two cases: firstly, if 0 < λ¬ 1, we can write that

F(k−2) = min
{

2λ+
1
2

F(k−2),1+2λ
}
.

Hence, if the optimizer chooses u0 = 0 (respectively, u0 = 1), the value function F(k−2)
is equal to 4λ (respectively, 1+2λ). So, we conclude that u∗0(k−2) = 0 if 0 < λ¬ 1/2,
and u∗0(k−2) = 1 if 1/2 < λ¬ 1.

Secondly, in the case when λ > 1, we have

F(k−2) = min
{

λ+
1
2
[F(k−2)+(1+λ)] ,1+λ+

1
2
(1+λ)

}
.

Thus, we must compare F(k− 2) = 1+ 3λ (with u0 = 0) to F(k− 2) = 3
2(1+λ) (with

u0 = 1). Since λ > 1, we find that u∗0(k−2) = 1. Hence, we can write that

u∗0(k−2) =

{
0 if λ¬ 1/2,
1 if λ > 1/2.

(15)

It turns out that this optimal value of the control variable is actually valid for any
x ∈ {0, . . . ,k−2}, as we will prove by induction.

Proposition 2 For the problem set up in this section, the optimal control is given by
Eq. (14) if x = k−1, and by

u∗0(x) =

{
0 if 0 < λ¬ 1/2,
1 if λ > 1/2

for x ∈ {0, . . . ,k−2}.
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Proof. In general, to determine whether u∗0(x) = 0 or 1, we must compare

F(x) = λ+
1
2
[F(x)+F(x+1)] (if u0 = 0) (16)

to
F(x) = 1+λ+

1
2
[F(x+1)+F(x+2)] (if u0 = 1). (17)

First, we will show that u∗0(x)≡ 0 if 0< λ¬ 1/2. We already found (see Eq. (14)) that
u∗0(k−1) = 0 if 0 < λ¬ 1/2. If we assume that u∗0(y) = 0 for y = x,x+1, . . . ,k−2, then
we deduce from Eq. (16) that the value function F(x) satisfies the first-order difference
equation

F(x) = 2λ+F(x+1).

We easily find that
F(x) = c0 −2λx.

Making use of the boundary condition F(k) = 0, we obtain that the constant c0 must be
equal to 2λk, so that

F(x) = 2λ(k− x). (18)

Next, with X0 = x−1, Eq. (16) and Eq. (17) would respectively become

F(x−1) = λ+
1
2
[F(x−1)+2λ(k− x)] =⇒ F(x−1) = 2λ(k− x+1)

and
F(x−1) = 1+λ+

1
2
[2λ(k− x)+2λ(k− x−1)] = 1+2λ(k− x).

We find at once that

2λ(k− x+1)¬ 1+2λ(k− x) ⇐⇒ λ¬ 1/2,

so that we can conclude that u∗0(x−1) = 0, which proves, by induction, that u∗0(x)≡ 0 if
0 < λ¬ 1/2.

Now, if we assume that u∗0(x) ≡ 1, then the function F(x) satisfies Eq. (17) for all
values of x. The general solution of this second-order linear difference equation can be
written as follows:

F(x) = c0 + c1(−2)x − 2
3
(1+λ)(x+1). (19)

The boundary condition F(k) = 0 yields that

F(x) = c1

[
(−2)x − (−2)k

]
− 2

3
(1+λ)(x− k).

To determine the value of the constant c1, we may use the fact that F(k+1) is also equal
to zero, which implies that

F(x) =−2
9
(1+λ)

[
(−2)x−k −1+3(x− k)

]
. (20)
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Remark. When we choose u0(x) ≡ 1, the controlled process can cross the boundary at
x = k. Therefore, we must set F(k+1) equal to 0. However, with u0(x)≡ 0, there is no
overshoot. Actually, there is no overshoot as long as u0(k−1) = 0.

If λ > 1, we know (see Eq. (14)) that u∗0(k−1) = 1. If we make the hypothesis that
u∗0(y) = 1 for y = x,x+1, . . . ,k−2, then the expression in Eq. (20) for the value function
F(x) is valid for y = x,x+ 1, . . . ,k − 1. Substituting this expression into Eq. (16) and
Eq. (17), with x replaced by x−1, we find (after simplifying) that the value of F(x−1)
when u0(x−1) = 0 is larger than or equal to the value of F(x−1) when u0(x−1) = 1 if
and only if

λ−1­−1
3
(1+λ)

[
1− (−2)x−k

]
.

Since
1­ (−2)x−k for x = k,k−1,k−2, . . . ,0,

we can state that u∗0(x−1) = 1. Hence, by induction, u∗0(x)≡ 1 if λ > 1.
Finally, when 1/2 < λ ¬ 1, we found (see Eq. (14)) that u∗0(k − 1) = 0, but (see

Eq. (15)) u∗0(k− 2) = 1. We find that u∗0(k− 3) = u∗0(k− 4) = 1 as well. If we assume
that u∗0(y) = 1 for y = x,x+1, . . . ,k−3, then Eq. (20) is valid for y = x,x+1, . . . ,k−2.
Proceeding as above, we can show that u∗0(x−1) = 1. Thus, by mathematical induction,
u∗0(x)≡ 1 for x = 0, . . . ,k−2 if 1/2 < λ¬ 1, which completes the proof.

Remark. We deduce from Eq. (16) and Eq. (17) that u∗0(x) = 1 if and only if

F(x)­ 2+F(x+2).

Therefore, to prove that u∗0(x) ≡ 1 if λ > 1, we can also use the fact that the cheapest
cost to move from x to x+ 2 is either 2λ (if u0 = u1 = 0 and ε0 = ε1 = 1) or 1+λ (if
u0 = ε0 = 1). Hence, F(x) will indeed be greater than or equal to 2+F(x+2) if λ > 1.

Corollary 1 For the problem considered in this section, the value function is given by
Eq. (18) if 0 < λ¬ 1/2, by Eq. (20) if λ > 1, and by

F(x) =
1
3

[
2λ− 2

3
(1+λ)

]
(−2)x+1−k +

4
3

λ− 2
3
(1+λ)

(
x+

2
3
− k
)

(21)

if 1/2 < λ¬ 1.

Proof. The expressions for F(x) when 0 < λ ¬ 1/2 and when λ > 1 have been derived
in the proof of Proposition 2. To prove Eq. (21), we can solve Eq. (17), but subject to the
boundary conditions F(k) = 0 and F(k− 1) = 2λ (obtained above). Making use of the
general solution of Eq. (17) given in Eq. (19), we obtain the formula in Eq. (21).
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4. A problem with non-constant u∗0

In Section 2, the optimal control u∗0(x) was identical to zero for all admissible values
of the parameter λ. In Section 3, we had u∗0(x)≡ 0 if 0 < λ¬ 1/2, and u∗0(x)≡ 1 if λ > 1.
The only case for which u∗0(x) was not a constant is when 1/2 < λ¬ 1. Then, u∗0(x)≡ 1
for x = 0, . . . ,k− 2, but u∗0(k− 1) = 0. In this section, the optimal control will depend
more strongly on x and λ.

Assume that the state space of the controlled Markov chain {Xn,n = 0,1, . . .} is,
as in Section 2, the set {−k, . . . ,k}, the control variable un belongs to {−2,−1,1,2},
the noise term εn is equal to ±1 with probability 1/2, the parameter λ in Eq. (3) is
strictly positive, and the first-passage time T (x) is defined as in Eq. (4). Therefore, as in
Section 3, the optimizer wants to minimize the time spent by the controlled Markov chain
in C = {−k+1, . . . ,k−1}, with the quadratic control costs being taken into account.

The dynamic programming equation satisfied by the value function F(x) defined in
Eq. (5) is

F(x) = min
u0

{
u2

0 +λ+
1
2
[F(x+u0 −1)+F(x+u0 +1)]

}
. (22)

It is subject to the boundary condition F(x) = 0 if |x|­ k.
Because λ is positive, we can state, by symmetry, that u∗0(−x) =−u∗0(x). Therefore,

we can limit ourselves to the case when x ∈ {0,1, . . . ,k}. Moreover, the fact that λ is
positive also implies that u∗0(x) > 0 when x > 0. When x = 0, the optimizer can choose
u∗0(x) positive or negative indifferently. That is, the sign of u∗0(x) is irrelevant.

Since E[T (x)] is finite in the uncontrolled case (see Section 2), it is intuitively clear
that the optimizer should choose un(x)≡ 1 if λ is close enough to zero and x > 0. Simi-
larly, if λ is very large, compared to u2

n, then the optimizer should choose un(x)≡ 2 (if x
is positive) to leave the continuation region as soon as possible.

The optimal control being equal to +1 or +2 when x is non-negative, the dynamic
programming equation (22) can be written as follows:

F(x) = min
{

1+λ+
1
2
[F(x)+F(x+2)] ,4+λ+

1
2
[F(x+1)+F(x+3)]

}
. (23)

We will try to determine the value of u∗0(x), starting from x = k−1. We have then

F(k−1) = 1+λ+
1
2
[F(k−1)+F(k+1)] (if u0 = 1),

and
F(k−1) = 4+λ+

1
2
[F(k)+F(k+2)] (if u0 = 2).

Hence, if u0 = 1, we obtain that

F(k−1) = 2(1+λ),
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whereas
F(k−1) = 4+λ

when u0 = 2. It follows that

u∗0(k−1) =

{
1 if λ¬ 2,
2 if λ > 2.

Remark. When X0 = k− 1, the optimizer is certain to leave the continuation region by
choosing u0 = 2, but not with u0 = 1.

Next, when x = k−2, we must compare the value of F(k−2) obtained from

F(k−2) = 1+λ+
1
2
[F(k−2)+F(k)] (if u0 = 1) (24)

to that deduced from

F(k−2) = 4+λ+
1
2
[F(k−1)+F(k+1)] (if u0 = 2). (25)

Equation (24) yields that

F(k−2) = 2(1+λ) (if u0 = 1).

In the case of Eq. (25), we can write that

F(k−2) =

{
4+λ+(1+λ) if 0 < λ¬ 2,

3
2(4+λ) if λ > 2

(if u0 = 2).

Therefore, this time we conclude that

u∗0(k−2) =

{
1 if λ¬ 8,
2 if λ > 8.

Remark. Notice that F(k−2) = F(k−1) if 0 < λ¬ 2.

When x = k−3, we have either

F(k−3) = 1+λ+
1
2
[F(k−3)+F(k−1)] (if u0 = 1)

or
F(k−3) = 4+λ+

1
2
[F(k−2)+F(k)] (if u0 = 2).

We must then consider three cases: 0 < λ ¬ 2, 2 < λ ¬ 8 and λ > 8. With u0 = 1, we
find that

F(k−3) =

{
4(1+λ) if 0 < λ¬ 2,

2(1+λ)+(4+λ) = 6+3λ if λ > 2.
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When u0 = 2, we obtain that

F(k−3) =

 4+λ+ 1
2 [2(1+λ)] = 5+2λ if 0 < λ¬ 8,

4+λ+ 1
2

[3
2(4+λ)

]
= 7+ 7

4 λ if λ > 8.

Comparing the various expressions above, we find that

u∗0(k−3) =

{
1 if λ¬ 1/2,
2 if λ > 1/2.

To obtain the value of u∗0(x) when x = k − 4, we must now consider four cases:
0 < λ¬ 1/2, 1/2 < λ¬ 2, 2 < λ¬ 8 and λ > 8. Proceeding as above, we can show that

u∗0(k−4) =

{
1 if λ¬ 3,
2 if λ > 3.

For k small, we can compute the optimal control u∗0(x) for all values of x ∈ {−k+
1, . . . ,k−1}. However, from what precedes, we must conclude that it is difficult to obtain
a general formula for u∗0(x).

In the case of the value function, we can at least give a difference equation that it
satisfies.

Proposition 3 The value function F(x) in the problem set up in this section satisfies the
non-linear third order difference equation

0 = 2F2(x)+F(x) [−F(x+1)+2F(x+2)−F(x+3)−12+6λ]
+2(4+λ)F(x+2)+2(1+λ) [F(x+1)+F(x+3)]
+F(x+1)F(x+2)+F(x+2)F(x+3) (26)

for x = 0,1, . . . ,k−1. The boundary conditions are F(x) = 0 if x = k,k+1,k+2.

Proof. Since u0 is equal to either 1 or 2, we can make use of the formula

min{x,y}= 1
2
{x+ y−|x− y|}

in the dynamic programming equation (22). We have

F(x) =
1
2

{[
1+λ+

1
2
[F(x)+F(x+2)]

]
+

[
4+λ+

1
2
[F(x+1)+F(x+3)]

]
−
∣∣∣∣−3+

1
2
[F(x)+F(x+2)−F(x+1)−F(x+3)]

∣∣∣∣} ,
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which implies that

3
2

F(x)− (5+2λ)− 1
2
[F(x+1)+F(x+2)+F(x+3)]

=−
∣∣∣∣−3+

1
2
[F(x)+F(x+2)−F(x+1)−F(x+3)]

∣∣∣∣ .
Squaring each side of the previous equation and simplifying, we obtain Eq. (26).

When x = k−1, Eq. (26) reduces to

F2(k−1)−3(2+λ)F(k−1)+2(λ2 +5λ+4) = 0.

It follows that
F(k−1) = 4+λ or F(k−1) = 2(1+λ),

so that the value function is given by F(k−1) = 2(1+λ) if 0 < λ¬ 2 and by F(k−1) =
4+λ if λ > 2, as we had obtained above.

5. Concluding remarks

We have extended the homing problem proposed by Whittle to the case of controlled
discrete-time and discrete-space Markov chains. In Sections 2 and 3, we were able to
obtain general expressions, valid for any integer k, for both the optimal control u∗0(x)
and the value function F(x). Although the problems considered in these sections might
seem simple, even in the continuous case homing problems that were solved explicitly
so far are only in one or two dimensions, or possess some suitable symmetry property
that enables one to reduce them to much simpler problems.

It is quite straightforward to see why we cannot expect to be able to derive explicit
general formulas in most cases. For instance, in Section 4, we could not find a general
formula for either u∗0(x) or F(x). As we have shown in Proposition 4.1, to obtain the
value function F(x) in that section, we would have to solve a non-linear third order
difference equation. Now, suppose that we complexity this problem by assuming that εn
is equal to ±1 or ±2 with probability 1/4. Then, F(x) is such that

F(x) =
1
2

{[
1+λ+

1
4
[F(x−1)+F(x)+F(x+2)+F(x+3)]

]
+

[
4+λ+

1
4
[F(x)+F(x+1)+F(x+3)+F(x+4)]

]
−
∣∣∣∣−3+

1
4
[F(x−1)+F(x+2)−F(x+1)−F(x+4)]

∣∣∣∣} .

Proceeding as above, we obtain a non-linear fifth order difference equation. In general,
if εn ∈ {±1,±2, . . . ,±m} with probability 1/(2m), where m ∈ {3,4, . . .}, then the differ-
ence equation that the value function satisfies is non-linear and of order 2m+1. Solving
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such an equation is possible when the number of possible states is small, but almost
surely not for a general integer k. Therefore, one must limit oneself to seemingly simple
cases. In fact, what is important is the usefulness of the results, not the difficulty of the
calculations involved. The problems that we were able to solve explicitly in Sections 2
and 3 could serve as models in various applications.

We could obviously generalize both Eq. (2) and Eq. (3). For instance, we could define
the controlled stochastic process {Xn,n = 0,1 . . .} by

Xn+1 = aXn +bun + εn,

where a and b are non-zero constants, and take

J(x) =
T (x)−1

∑
n=0

(q0u2
n +λ),

where q0 > 0.
For all the problems considered in this paper, the optimizer had to choose between

two possible values of u0. The optimal control problem would of course be even more
complicated if there were three or more candidates for the optimal control. For example,
in Section 4, if we assume that un ∈ {−2,−1,0,1,2}, then u∗0(x) could be equal to 0, 1
or 2 when x is positive. In particular, u∗0(x) should be equal to 0 (and not to 1, as above)
when λ is very close to zero.

Finally, we could assume that εn has a Gaussian distribution with mean 0 and vari-
ance σ2, rather than being a discrete random variable. Then, the control variable un
should also be a continuous variable.

References

[1] W. FELLER: An Introduction to Probability Theory and its Applications. Vol. I.
Wiley, New York, 1968.

[2] J. KUHN: The risk-sensitive homing problem. J. Appl. Prob., 22 (1985), 796-803.

[3] M. LEFEBVRE: Maximizing the mean exit time of a Brownian motion from an
interval. Int. J. Stoch. Anal., vol. 2011, Article ID 296259, 5 pages, 2011. doi:
10.1155/2011/296259

[4] C. MAKASU: Risk-sensitive control for a class of homing problems. Automatica J.
IFAC, 45 (2009), 2454-2455.

[5] P. WHITTLE: Optimization over Time. Vol. I. Wiley, Chichester, 1982.

[6] P. WHITTLE: Risk-sensitive Optimal Control. Wiley, Chichester, 1990.


	Tekst1: 10.2478/v10170-011-0039-6


