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Robust control system design in frequency domain

VOJTECH VESELÝ and JAKUB OSUSKÝ

In this paper two robust control methods for hybrid system are presented. Both methods
are usefull for SISO and MIMO systems. Controller design procedure is developed in frequency
domain. Equivalent subsystem method is used for controller design in this paper. Stability con-
dition of proposed methods bases on small gain theory and uses additive and inverse additive
model type. Two tank water system is presented in the paper and serves as a numerical example
to compare effectiveness of described methods.
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1. Introduction

The topic of hybrid control has attracted considerable attention from the industrial
and research community in recent decade. Wherever continues and discrete dynamics
interacts, hybrid system arises and theory of hybrid system is used. This theory studies
behavior of dynamical systems which involves continuous-time models represented by
differential or difference equations describing physical, mechanical or chemical plants
and discrete models such as finite state machines or Petri nets which show the software
and logical behavior.

There are several approaches to model hybrid systems [6]. In [1] model of a large
class of hybrid systems is considered as a discrete event system. Continuous dynamics
is modeled by differential or difference equation. Such models are used to formulate a
general stability analysis and controller synthesis framework for hybrid systems. Results
for modeling and stability analysis of hybrid systems have been presented in [7], [3]
and [6]. In the present paper, we follow the class of hybrid system known as switched
systems [5]. The survey of the actual state of hybrid systems can be found in excellent
works [7] and [6].

In the present paper, stability and controller design problems are solved using Lya-
punov stability theory [2], [8]. Robust controller design using small gain theory and its
unification for SISO and MIMO systems is proposed. Two robust controller design meth-
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ods are presented and compared. In the first method, robust controller which guarantees
robust properties of hybrid system is designed. Using second method, robust controller
is designed for each mode of hybrid system. In the first case nominal model is calculated
as average one according to all modes and in second case for each mode nominal model
and uncertainty model is calculated. According to greater number of nominal models,
second method can be more conservative.

2. Problem formulation

Consider MIMO hybrid uncertain system described by a set of transfer function ma-
trices Gq(s) ∈ ℜm×m and controller Rq(s) ∈ ℜm×m in the standard configuration (shown
in Fig. 1), where y(s) ∈ ℜl , u(s) ∈ ℜm and w(s) ∈ ℜl are output, control and setpoint

Figure 1. Standard feedback control configuration.

variables of system, respectively. Parameter q= 1,2, ...,N represents number of switched
modes of uncertain system and q indicates the arbitrary switching algorithm for switched
system.

Assume that throughout the practical identification undertaken for each mode q one
obtains K transfer function matrices. To deal with uncertainties in mode q with the nom-
inal transfer function matrix, uncertainty model is used. Instead of a single model, the
class of models is considered. For each mode q, the Gq j(s) ∈ Πq, j = 1,2, ...,K repre-
sents member of a set of possible plants. All K transfer function matrices creates a set
Πq ∈ Π, thus any transfer function matrix belongs to the set Π:

Gq j(s) ∈ Π, q = 1,2, ...,N, j = 1,2, ...,K. (1)

A simple uncertainty model is obtained using unstructured model approach. In the se-
quel, two most common single uncertainty models are considered: additive and inverse
additive model type [9]. Corresponding classes of uncertain models are given as follows.

1) Additive uncertainty model for mode q = 1,2, ...,N

Gqu(s) = Gq(s)+∆a(s)Wa(s) (2)

where
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la(ω) = max
Gi j∈Πi

σM[Gi j(s)−Gi(s)] i = 1,2, ...,N, j = 1,2, ...,K (3)

and |Wa(s)|­ la(s).

2) Inverse additive uncertainty model for mode q = 1,2, ...,N

Gqu(s) = (Gq(s)∆ia(s)Wia(s)+ I)−1Gq(s) (4)

where

lia(ω) = max
Gi j∈Πi

σM[Gi j(s)−1 −Gi(s)−1] i = 1,2, ...,N, j = 1,2, ...,K (5)

and
|Wia(s)|­ lia(s),σM(∆a(s))¬ 1,σM(∆ia(s))¬ 1 ∀s ∈ D (6)

where D is Nyquist contour [9].

Consider MIMO switched uncertain system with N modes described by (1) for stable
transfer function matrices, or by (2) for unstable ones. The problem is to design robust
decentralized controller for switched system (1) or (2) and also control design unification
for SISO and MIMO for two cases:

a) design of robust decentralized controller R(s) ∈ ℜmxm which guarantee the ro-
bust stability and performance for switched system in all modes, that is for
i = 1,2, ...,N.

b) For each mode design robust decentralized controllers Rq(s), q = 1,2, ...,N such
that guarantee the robust stability and performance for switched system in all
modes q = 1,2, ...,N and over the entire operating range specified by uncertain
models 1) or 2).

In derivation stability condition of systems with uncertainty, small gain theorem and
generalized Nyquist stability theorem play important role. From Fig. 1 with uncertain
model 1) or 2), after simple manipulation one can obtain M −∆ structure as shown in
Fig. 2.

Figure 2. M−∆ structure.
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Theorem 1 (small gain theorem) Suppose M(s) is stable and let γ > 0. Then the inter-
connected system shown in Fig. 2 is well-posed and internally stable for all ∆(s)∈ℜm×m

if and only if
||∆(s)||∞ ¬ ||γ and ||M(s)||∞ < γ (7)

||∆(s)||∞ < ||γ and ||M(s)||∞ ¬ γ. (8)

3. Theoretical results

3.1. Robust decentralized controller design for switched systems, case A

The problem is to design robust decentralized controller R(s) = diag{ℜ j(s)},
j = 1,2, ...,m which guarantees the closed loop stability for all modes and over the
entire operating range specified by 1) or 2). For this special case we are given N ×K
plant transfer matrices with nominal model Gu(s) ∈ ℜm×m and additive 1) or inverse
additive 2) uncertainty model. The following generalized Nyquist theorem determines
the closed-loop stability for nominal plant model.

Theorem 2 The feedback system in Fig. 1 with nominal model G(s) and controller R(s)
is stable if and only if ∀s ∈ D

det[I +G(s)R(s)] ̸= 0 (9)

N[0;det[I +G(s)R(s)]] = n f (10)

where n f is the number of unstable poles of L(s) = G(s)R(s) and N[0; det[I + L(s)]]
denotes the number of anticlockwise encirclement of origin (0,0) by the Nyquist plot of
det[I +L(s)].

For the case A the robust switched controller design procedure is based on the
Equivalent Subsystem Method [4]. In the sequel introduce the following definition and
theorem.

Definition 1 For the nominal plant model G(s) equivalent subsystem is given as

Gde(s) = Gd(s)−P(s) = diag{Gie(s)}m×m (11)

where
G(s) = Gd(s)+Gm(s),Gd(s) = diag{G(s)}m×m (12)

and P(s) = piI is a characteristic function of the matrix −Gm(s) that is

det[piI +Gm(s)] = 0, i = 1,2, ...,m. (13)
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Using definition 1 and theorem 2 the following closed-loop stability conditions are
obtained for nominal model.

Theorem 3 Closed-loop system with nominal model and decentralized controller R(s)
is stable if and only if:

det[piI +Gm(s)] = 0, i = 1,2, ...,m, (14)

characteristic polynomials of equivalent subsystem

I +Ri(s)Gie(s) = 0 (15)

is stable for all i = 1,2, ...,m, and

N[0; det[P(s)+Gm(s)] = n f . (16)

Equation (14) is the characteristic equation of the matrix −Gm(s) with respect to pi.
Due to Cayley-Hamilton theorem, pi in characteristic polynomial (14) can be replaced
by piI = −Gm(s) and stability condition in theorem 2 reduces to the stability of the
following diagonal matrix

det[R−1(s)+Gd(s)−P(s)]. (17)

Theorem 3 is the base to design the decentralized controller for the nominal model G(s).
Now let us consider the uncertain model with additive type uncertainty (2) for all system

Gu(s) = G(s)+∆a(s)Wa(s) (18)

where
la(ω) = maxσM(G(s)−Gi j(s)). (19)

By generalized Nyquist theorem the robust closed-loop stability is given as follows:

det[R(s)−1 +Gd(s)+Gm(s)+∆a(s)Wa(s)]detR(s) =
det[I +(Gd(s)−P(s))R(s)+∆a(s)Wa(s)R(s)] = (20)
det[I +Gde(s)R(s)]det[I +(I +Gde(s)R(s))−1∆a(s)Wa(s)R(s)].

Suppose that condition (15) in theorem 2 holds, then robust closed loop system stability
for additive type uncertainty is given as follows.

Theorem 4 Closed-loop uncertain system with additive uncertainty type is stable if and
only if:

a) The nominal model with equivalent subsystems and decentralized controller R(s)
is stable, that is
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b) det[I +Gde(s)R(s)] ̸= 0

c) and
N[0,det[I +G(s)R(s)] = n f . (21)

d) The following robust stability conditions hold for ∀s ∈ D

||(I +Gde(s)R(s))−1R(s)Wa(s)||< 1 (22)

or

||Toe(s)||<
∣∣∣∣∣∣∣∣Gde(s)

Wa(s)

∣∣∣∣∣∣∣∣ (23)

where
Toe(s) = Gde(s)R(s)(I +Gde(s)R(s))−1. (24)

Because (23) is diagonal matrix, the condition (23) needs to be fulfilled for all equivalent
subsystems with the controller R(s). Note, that for for SISO systems Gde(s) = Gd(s).

Closed-loop system with inverse additive uncertainty type is presented in Fig. 3
where

Figure 3. Closed-loop system with inverse additive uncertainty type.

lia(ω) = max
Gi j∈Π

σM(G(s)−1 −Gi j(s)−1). (25)

After a simple manipulation one obtains from Fig. 3

∆y(s) = (I +G(s)R(s))−1G(s)Wia(s)∆u(s) = Mia(s). (26)

Figure 3 can be easily transformed to M − ∆ structure with M(s) = Mie(s). Due to
Theorem 1 the following corollary is hold.

Corollary 1 The uncertain closed-loop system (Fig. 3) is stable if and only if

||(I +G(s)R(s))−1G(s)Wia(s)||< 1 (27)

or after some manipulation

||Se(s)||<

∣∣∣∣∣
∣∣∣∣∣Gde(s)

−1

Wia(s)

∣∣∣∣∣
∣∣∣∣∣ (28)
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where
Se(s) = (I +Gde(s)R(s))−1. (29)

Due to diagonal form of (15), the above conditions need to be fulfilled for all equivalent
subsystems. The design procedure of the robust switched controller for the case A can
be then summarized as follows.

1. For stable or unstable nominal model plant G(s) calculate the characteristic func-
tions pi(s), i = 1,2, ...,m.

2. For the chosen pi(s) the equivalent subsystem transfer function is determined.
Chosen pi(s) may guarantee the stability and maximal phase margin value for all
equivalent subsystems.

3. For the nominal stable and unstable plant, functions la(ω) and respective lia(ω)
are obtained.

4. From the functions la(ω) (lia(ω)) the maximal value of complementary sensitivity
function (sensitivity function) is determined

MT = max
ω

(Toe(ω)), MS = max
ω

(Soe(ω)) (30)

in such a way that
1¬MT < la(ω), (MS < lia(ω)). (31)

5. From known MT (MS) the minimal value of phase margin PM is calculated [9]

PM > 2arcsin
(

1
2MT

)
, PM > 2arcsin

(
1

2MS

)
. (32)

6. Design the robust decentralized controller for all equivalent subsystems with per-
formance determined by phase margin PM .

7. For all closed-loop equivalent subsystems check the robust stability condition (23).
If the robust stability condition is not satisfied, phase margin PM is increased and
robust controller calculation is performed again.

Note that for SISO systems points 1. and 2. of the algorithm are omitted.

3.2. Robust decentralized controller design for switched systems, case B

In the case B, for each mode of the switched system with arbitrary switch algorithm,
robust decentralized controller Rq(s), q = 1,2, ...,N is designed. Controller guarantees
the robust stability and performance for all modes and over the entire operating range
specified by uncertain models (2) or (4).

For the mode q, let the nominal model Gp(s) and uncertainty model are calculated
from transfer matrices Gq j(s), q = 1,2, ...,N, j = 1,2, ...,K. The switching process can
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change the mode q of the plant to any other mode q + 1 from the set {1, ...,N}. To
guarantee the robust stability the equations (2) and (4) need to be modified as follows

Gq+1
qu (s) = Gq(s)+W q

a (s)∆q(s) (33)

where
lq
a(ω) = max

Gi j(s)∈Π
σM(Gq(s)−Gi j(s)), q = 1,2, ...,N (34)

|W q
a (s)|­ lq

a(ω) (35)

and for inverse case

Gq+1
qu (s) = (Gq(s)∆

q
ia(s)W

q
ia(s)+ I)−1Gq(s) (36)

where
lq
ia(ω) = max

Gi j(s)∈Π
σM(Gi j(s)−1 −Gq(s)−1), q = 1,2, ...,N (37)

Robust controller design procedure for switched system and each mode q = 1,2, ...,N
goes the same way as for case A but instead of la(ω) and lia(ω) one needs to use (34)
and (37).

Figure 4. Two tanks process.

4. Example

Consider two tanks process with two inputs (pumps voltage) and two outputs (water
level) depicted in Fig. 4. Process contains also valves which are used for decreasing
water level in tanks. The voltage which controls the valves can be changed in the range
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(0-10V). Different operating points were obtained by setting the voltage to 7.5V, 8.5V
and 9.5V. A bottom pipe connects the tanks which allows water to flow from tank with
higher level to tank with lower level and creates interaction between the tanks. Mode 1
represents the state with higher level in the tank 1. Similarly, mode 2 represents the state
with higher level in the tank 2. The aim of the controller design is the robust control
without overshoot. Transfer function matrices for both modes are given below. Note
that upper index of the transfer function matrix denotes the mode number for which
the identification was made. Lower index denotes the operating point which follows
from the voltage applied to the valves: 7.5V (index 1), 8.5V (index 2) and 9.5V (index 3).

Model 1

G1
1(s) =


0.049s+0.98

109.2s2 +11.83s+1
−0.3

25s+1
0.3

25s+1
0.059s+1.19

27.78s2 +10.91s+1



G1
2(s) =


0.049s+0.97

46.5s2 +8.76s+1
−0.4

25s+1
0.4

25s+1
0.048s+0.96

61.06s2 +11.41s+1

 (38)

G1
3(s) =


0.047s+0.94

38.46s2 +8.21s+1
−0.5

25s+1
0.5

25s+1
0.044s+0.88

31.2s2 +5.15s+1


Model 2

G2
1(s) =


0.0466s+0.931

109.2s2 +11.83s+1
0.3

25s+1
−0.3

25s+1
0.0560s+1.131

27.78s2 +10.91s+1



G2
2(s) =


0.0466s+0.922

46.5s2 +8.76s+1
0.4

25s+1
−0.4

25s+1
0.0456s+0.912

61.06s2 +11.41s+1

 (39)

G2
3(s) =


0.0446s+0.893

38.46s2 +8.21s+1
0.5

25s+1
−0.5

25s+1
0.0418s+0.836

31.2s2 +5.15s+1


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Controller design for switched system, case B

Controller design which uses equivalent subsystem method will be presented in de-
tails by controller design for mode 1. Nominal model was calculated from operating
points of the mode 1 as the transfer function matrix with average parameters:

G1(s) =


0.0483s+0.963

64.72s2 +9.6s+1
−0.4

25s+1
0.4

25s+1
0.05s+0.995

40.01s2 +9.16s+1

 . (40)

Matrix −Gm(s) contains off-diagonal elements of the matrix (40) and zero elements
on diagonal. From the matrix −Gm(s), frequency domain characteristic functions were
obtained and plotted as in Fig. 5. Bode characteristics of equivalent models calculated

Figure 5. Characteristic functions, mode 1.

according to (11) and using both characteristic functions are depicted in Fig. 6 and 7.
Phase margins of equivalent subsystems calculated using characteristic functions are

compared in Tab. 1. According to the phase margins given in Tab. 1, equivalent subsys-

Table 3. Mode 1. Comparison of equivalent subsystem phase margin.

Characteristic function 1 Characteristic function 2

Phase margin, subsystem 1 127.64 153.16

Phase margin, subsystem 2 138.05 151.06

tems calculated using characteristic function 2 are used to controller design. For each
subsystem SISO controller design method which ensures desired phase margin is used.
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Figure 6. Equivalent models calculated using characteristic function 1.

Figure 7. Equivalent models calculated using characteristic function 2.

The aim of SISO controller design is to ensure overshoot-free response, thus the nominal
model phase margin is set on PM = 700. Respective Bode diagrams for subsystems with
the controllers in open loop are presented in Fig. 8. There is indicated about 0 dB point
on the magnitude diagrams. The frequency which corresponds to this point is also indi-
cated in the phase diagrams, showing about −1100. This proves phase margin PM = 700.
Parameters of decentralized controller which ensures phase margin PM = 700 for both
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Figure 8. Bode characteristics for subsystem with controller, both subsystems have desired phase margin.

equivalent subsystems are as follows

R1(s) =

 s+0.047
s

0

0
0.87s+0.078

s

 . (41)

To verify robust stability condition, additive uncertainty l1
a(ω) is calculated according

(34). Robust stability condition for both subsystems is depicted in Fig. 9. It is clear from
Fig. 9 that robust stability condition is fulfilled. Nominal model simulation (Fig. 10)

Figure 9. Bode characteristics for subsystem with controller, both subsystems have desired phase margin.
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Figure 10. Nominal model simulation.

shows that decentralized controller for mode 1 ensures step response without overshoot.
Based on the nominal model simulation, further controller deign will be considered in
the context of overshoot-free response.

Mode 2

Nominal model for mode 2 was calculated from the transfer function matrices (39)
as average one:

G2(s) =


0.0466s+0.915

64.72s2 +9.6s+1
−0.4

25s+1
0.4

25s+1
0.0478s+0.96

40.01s2 +9.16s+1

 . (42)

Controller for the mode 2 is designed in the same way as the controller for the mode 1.
Phase margins of equivalent subsystems calculated using both characteristic functions
are presented in Tab. 2 Characteristic function 2 is used for equivalent subsystems cal-

Table 4. Mode 2. Comparison of equivalent subsystem phase margin calculated using both characteristic
functions.

Characteristic function 1 Characteristic function 2

Phase margin, subsystem 1 138.72 155.71

Phase margin, subsystem 2 146.88 153.75

culation due to higher phase margin. Controllers for subsystems are again designed to
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ensure phase margin PM = 700. Parameters of designed decentralized controller are as
follows:

R2(s) =

 1.29s+0.02
s

0

0
1.175s+0.071

s

 . (43)

to verify robust stability condition, additive uncertainty l2
a(ω) was calculated according

to (34). Robust stability condition for both subsystems is depicted in Fig. 11 and proves
robust stability.

Figure 11. Robust stability condition for subsystem 1 and subsystem 2, mode 2.

Controller design for switched system, case A

In this case, nominal model is calculated from all operating points of both modes
(38) and (39). Interactions in mode 1 have opposite sign to the interactions in mode 2,
thus by nominal model calculation, interactions cancels and phase margin of equivalent
subsystems is equal in both characteristic functions (Tab. 3).

Nominal model for all operating points obtained from both modes is as follows

G(s) =

 0.047s+0.939
64.72s2 +9.6s+1

0

0
0.0491s+0.985

40.01s2 +9.16s+1

 . (44)

To design robust control desired phase margin was chosen PM = 700. Parameters of
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Table 5. Equivalent subsystem phase margin comparison.

Characteristic function 1 Characteristic function 2

Phase margin, subsystem 1 138.1 138.1

Phase margin, subsystem 2 179.48 179.48

designed decentralized controller are given below

R(s) =

 0.75s+0.07
s

0

0
0.99s+0.095

s

 . (45)

By robust stability condition verification, additive uncertainty la(ω) was calculated ac-
cording to (19). Robust stability condition for both subsystems is depicted in Fig. 12.
Robust stability condition is fulfilled. Both approaches to controller design were com-

Figure 12. Robust stability condition for subsystem 1 and subsystem 2.

pared by simulation with several step changes of reference value. Results are presented
in Fig. 13 (zoomed in Fig. 14). Plots of the corresponding control signals are presented
in Fig. 15. Simulation in different operating points (fig. 13 and 14) shows that the sys-
tem with robust hybrid control (case B) responses without overshoot and has the same
settling time as system with robust control (case A). On the other hand, significant over-
shoot characterizes responses of tank 1 being controlled by the robust controller (case
A).
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Figure 13. Comparison of robust hybrid and pure robust control.

Figure 14. Comparison of robust hybrid and pure robust control, detail of Fig. 13.

5. Conclusion

In this paper two robust control approaches and unification of robust control design
for SISO and MIMO systems were presented. Comparison of robust control (case A) and
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Figure 15. Controllers outputs comparison.

robust hybrid control (case B) shows better performance of the latter on (Fig. 13, 14).
Comparison of robust stability conditions for both cases shows that uncertainties for
robust hybrid control (case B) are higher so this approach is more conservative. Robust
hybrid control (case B) brings better performance if uncertainties are small enough to
fulfill robust stability condition (23) or (28) by the controller design.
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78 V. VESELÝ, J. OSUSKÝ
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