

Archives of Control Sciences Volume 23(LIX), 2013 No. 2, pages 205–211

Minimum energy control of positive discrete-time linear systems with bounded inputs

TADEUSZ KACZOREK

The minimum energy control problem for the positive discrete-time linear systems with bounded inputs is formulated and solved. Sufficient conditions for the existence of solution to the problem are established. A procedure for solving of the problem is proposed and illustrated by a numerical example.

Key words: positive, discrete-time, minimum energy control, bounded inputs, procedure

1. Introduction

A dynamical system is called positive if its trajectory starting from any nonnegative initial state remains forever in the positive orthant for all nonnegative inputs. An overview of state of the art in positive theory is given in the monographs [1, 2]. Variety of models having positive behavior can be found in engineering, economics, social sciences, biology and medicine, etc.. Positive linear systems consisting of n subsystems with different fractional orders have been analyzed in [3].

The minimum energy control problem for standard linear systems has been formulated and solved by J. Klamka [11-14] and for 2D linear systems with variable coefficients in [10]. The controllability and minimum energy control problem of fractional discrete-time linear systems has been investigated by Klamka in [14]. The minimum energy control of positive continuous-time linear systems has been addressed in [6]. The minimum energy control of positive fractional linear systems has been considered in [5] and of descriptor positive systems in [4, 8]. The minimum energy control of positive continuous-time linear systems with bounded inputs has been addressed in [7].

In this paper the minimum energy control problem for positive discrete-time linear systems with bounded inputs will be formulated and solved. The paper is organized as follows. In section 2 the basic definitions and theorems of the positive discrete-time linear systems are recalled and the necessary and sufficient conditions for the reachability

Author is with Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Bialystok, Poland, e-mail: kaczorek@isep.pw.edu.pl

This work was supported under work S/WE/1/11. Received 25.04.2013.

T. KACZOREK

of the positive systems are given. The minimum energy control problem of the positive linear systems with bounded inputs is formulated and solved in section 3. Sufficient conditions for the existence of solution of the problem are established and a procedure for computation of the optimal inputs and the minimum value of the performance index are also presented. Concluding remarks are given in section 4.

The following notation will be used: \Re – the set of real numbers, $\Re^{n \times m}$ – the set of $n \times m$ real matrices, $\Re^{n \times m}_+$ - the set of $n \times m$ matrices with nonnegative entries, I_n – the $n \times n$ identity matrix.

2. Preliminaries and the problem formulation

Consider the discrete-time linear system

$$x_{i+1} = Ax_i + Bu_i \tag{1}$$

where $x_i \in \Re^n$ and $u_i \in \Re^m$ are the state and input vectors and $A \in \Re^{n \times n}$, $B \in \Re^{n \times m}$.

Definition 2 [1, 2] *The system* (1) *is called the internally positive if* $x_i \in \Re^n_+$, $i \in Z_+$ *for any initial conditions* $x_0 \in \Re^n_+$ *and all inputs* $u_i \in \Re^n_+$, $i \in Z_+$.

Theorem 3 [1, 2] *The system* (1) *is internally positive if and only if*

$$A \in \mathfrak{R}^{n \times n}, \quad B \in \mathfrak{R}^{n \times m} \tag{2}$$

Definition 3 The positive system (1) (or the positive pair (A,B)) is called reachable in q steps if for any given final state $x_f \in \Re^n_+$ there exists an input sequence $u_k \in \Re^m_+$, for k = 0, 1, ..., q-1 that steers the state of the system from zero initial state $x_0 = 0$ to the state x_f , i.e. $x_q = x_f$.

Theorem 4 [2] *The positive system* (1) *is reachable in q steps if and only if the reachability matrix*

$$R_q = \begin{bmatrix} B & AB & \dots & A^{q-1}B \end{bmatrix}$$
(3)

contains n linearly independent monomial columns.

For single input systems (m = 1) q = n the positive system (1) is reachable in *n* steps if and only if the reachability matrix R_n is a monomial matrix. In this case there exists only one input sequence $u_k \in \Re^m_+$, k = 0, 1, ..., n - 1 that steers the state of the system from $x_0 = 0$ to the state $x_f \in \Re^n_+$ given by

$$\begin{bmatrix} u_{n-1} \\ u_{n-2} \\ \vdots \\ u_0 \end{bmatrix} = R_n^{-1} x_f$$
(4)

MINIMUM ENERGY CONTROL OF POSITIVE DISCRETE-TIME LINEAR SYSTEMS WITH BOUNDED INPUTS

If m > 1 and the positive system (1) is reachable in q steps then there exist many input sequences $u_k \in \mathfrak{R}^m_+$, k = 0, 1, ..., q - 1 that steers the state of the system from $x_0 = 0$ to the state $x_f \in \mathfrak{R}^n_+$. Among these inputs sequences we are looking for the sequence $u_k \in \mathfrak{R}^m_+$, k = 0, 1, ..., q - 1 that minimizes the performance index

$$I(u) = \sum_{k=0}^{q-1} u_k^T Q u_k$$
(5)

where $Q \in \mathfrak{R}^{m \times m}_+$ is a symmetric positive defined matrix.

The minimum energy control problem for the positive discrete-time linear systems (1) with bounded inputs can be stated as follows: Given the matrices (2), the final state $x_f \in \Re^n_+$ and the matrix Q of the performance index (5), find an input sequence $u_k \in \Re^m_+$, k = 0, 1, ..., q - 1 satisfying the condition

$$u_k < U \quad (U \in \mathfrak{R}^m_+ \text{ is given}) \quad \text{for} \quad k = 0, 1, \dots, q-1$$
(6)

that steers the state vector of the system from $x_0 = 0$ to $x_f \in \mathfrak{R}^n_+$ and minimizes the performance index (5).

3. Problem solution

To solve the problem we define the matrix

$$W_q = R_q Q_q^{-1} R_q^T \in \mathfrak{R}^{n \times n}$$
⁽⁷⁾

where R_q is defined by (3) and

$$Q_q^{-1} = \operatorname{blockdiag}[Q^{-1}, \dots, Q^{-1}] \in \mathfrak{R}_+^{qm \times qm}.$$
(8)

Remark 2 If all columns of the matrix (3) are monomial and the matrix Q is diagonal then the matrix (7) is also diagonal.

Remark 3 It is easy to check that all columns of the matrix (3) are monomial if and only if the pair (A, B) is reachable and all columns of the matrix [A, B] are monomial.

If the positive system (1) is reachable in q steps and

$$W_q^{-1} x_f \in \mathfrak{R}^n_+ \tag{9}$$

then the input sequence

$$\hat{u}_{q} = \begin{bmatrix} u_{q-1} \\ u_{q-2} \\ \vdots \\ u_{0} \end{bmatrix} = Q_{q}^{-1} R_{q}^{T} W_{q}^{-1} x_{f} \in \Re_{+}^{qm}$$
(10)

T. KACZOREK

steers the positive system from $x_0 = 0$ to $x_f \in \Re^n_+$ since

$$x_q = R_q \hat{u}_q = R_q Q_q^{-1} R_q^T W_q^{-1} x_f = x_f.$$
(11)

Theorem 5 Let the positive system (1) be reachable in q steps and the conditions (8) and (9) be satisfied. Let $\bar{u}_k \in \Re^m_+$, k = 0, 1, ..., q-1 be an input sequence satisfying (6) that steers the state of the positive system (1) from $x_0 = 0$ to $x_f \in \Re^n_+$. Then the input sequence (10) satisfying (6) also steers the state of the system from $x_0 = 0$ to $x_f \in \Re^n_+$ and minimizes the performance index (5), i.e. $I(\hat{u}) \leq I(\bar{u})$. The minimal value of the performance index (5) is given by

$$I(\hat{u}) = x_f^T W_q^{-1} x_f.$$
⁽¹²⁾

Proof is similar to the proof in [2].

Remark 4 If U in (6) decreases then the number q of steps needed to transfer the state of the system from $x_0 = 0$ to $x_f \in \Re^n_+$ increases.

Therefore, the following theorem has been proved.

Theorem 6 If the positive system (1) is reachable in q steps, all columns of the reachability matrix are monomial and the conditions (8) and (9) are met, then the minimum energy control problem has a solution for arbitrary U satisfying the condition (6).

The optimal input sequence (10) and the minimal value of the performance index (12) can be computed by the use of the following procedure.

Procedure 1

- Step 1. Knowing the matrices A, B, Q and using (3) and (7) compute the matrices R_q and W for a chosen q such that the matrix R_q contains at least n linearly independent monomial columns.
- Step 2. Using (10) find the input sequence $u_k \in \Re^m_+$, k = 0, 1, ..., q-1 satisfying the condition (6). If the condition (6) is not satisfied increase q by one and repeat the computation for q + 1. If the matrix W is diagonal after some number of steps we obtain the desired input sequence satisfying the condition (6).
- Step 3. Using (12) compute the minimal value of the performance index $I(\hat{u})$.

Example 1

Consider the positive discrete-time linear system (1) with matrices

$$A = \begin{bmatrix} 0 & 3\\ 2 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0\\ 1 \end{bmatrix}$$
(13)

and the performance index (5) with Q = [2]. Find the input sequence $u_k \in \Re^m_+$, k = $0, 1, \dots$ satisfying the condition (6) with

$$u_k < \frac{1}{3}, \quad k = 0, 1, \dots$$
 (14)

г

that steers the state of the system from zero state to final state $x_f = \begin{bmatrix} 1 & 1 \end{bmatrix}^T \in \Re^2_+$ (*T* denotes the transpose) and minimizes the performance index. Note that in this case all columns of the reachability matrix

$$R_q = \begin{bmatrix} B & AB & \dots & A^{q-1}B \end{bmatrix} = \begin{bmatrix} 0 & 3 & 0 & 18 \\ 1 & 0 & 6 & 0 \end{bmatrix}$$
(15)

are monomial. Using the procedure 1 we obtain the following:

Step 1. Using (7) and (15) we obtain

$$W_{q} = R_{q}Q_{q}^{-1}R_{q}^{T} = \begin{bmatrix} 0 & 3 & 0 & 18 \\ 1 & 0 & 6 & 0 \end{bmatrix} \operatorname{diag} \begin{bmatrix} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \dots \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 3 & 0 \\ 0 & 6 \\ 18 & 0 \\ \vdots \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 9 + 18^{2} + \dots & 0 \\ 0 & 1 + 6^{2} + \dots \end{bmatrix} \in \Re_{+}^{2 \times 2}.$$
(16)

Step 2. Using (10) and (16) we obtain

$$\hat{u}_{2} = \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix} = Q_{2}^{-1} R_{2}^{T} W_{2}^{-1} x_{f} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} \frac{2}{9} & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{2}{3} \end{bmatrix}.$$
 (17a)

This input sequence does not satisfy the condition (14) and we compute

$$\hat{u}_{3} = \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \end{bmatrix} = Q_{3}^{-1} R_{3}^{T} W_{3}^{-1} x_{f} =$$

$$= \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 3 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} \frac{2}{9} & 0 \\ 0 & \frac{2}{37} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{37} \\ \frac{1}{3} \\ \frac{6}{37} \end{bmatrix}.$$
(17b)

T. KACZOREK

The input sequence (17b) also does not satisfy the condition (14) and we continue the computation

$$\hat{u}_{4} = \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{bmatrix} = Q_{4}^{-1} R_{4}^{T} W_{4}^{-1} x_{f} =$$

$$= \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 3 & 0 \\ 0 & 6 \\ 18 & 0 \end{bmatrix} \begin{bmatrix} \frac{2}{9+18^{2}} & 0 \\ 0 & \frac{2}{37} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{37} \\ \frac{3}{9+18^{2}} \\ \frac{6}{37} \\ \frac{18}{9+18^{2}} \end{bmatrix}.$$
(17c)

The input sequence (17c) satisfies the condition (14) and by Theorem 5 is the optimal one that steers the state of the system in 4-steps from zero state to final state $x_f = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ and minimizes the performance index (5) for $Q = \begin{bmatrix} 2 \end{bmatrix}$.

Step 3. The minimal value of the performance index (12) is equal to

$$I(\hat{u}_4) = x_f^T W_4^{-1} x_f = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{9+18^2} & 0\\ 0 & \frac{2}{37} \end{bmatrix} \begin{bmatrix} 1\\ 1 \end{bmatrix} = \frac{2}{9+18^2} + \frac{2}{37}.$$
 (18)

4. Concluding remarks

The minimum energy control problem for the positive discrete-time linear systems with bounded inputs has been formulated and solved. Sufficient conditions for the existence of solution to the minimum energy control problem have been established (Theorem 5). It has been shown that if the positive system is reachable in q steps, all columns of the reachability matrix are monomial and conditions (8), (9) are established then the minimum energy control problem has a solution for arbitrary U in (6) (Theorem 6). The procedure for computation of the optimal input sequence has been proposed and illustrated by a numerical example.

These considerations can be extended to fractional positive linear systems with bounded inputs [9].

References

[1] L. FARINA and S. RINALDI: Positive Linear Systems; Theory and Applications. J. Wiley, New York, 2000.

- [2] T. KACZOREK: Positive 1D and 2D systems. Springer Verlag, London 2001.
- [3] T. KACZOREK: Positive linear systems consisting of n subsystems with different fractional orders. *IEEE Trans. Circuits and Systems*, **58**(6), (2011), 1203-1210.
- [4] T. KACZOREK: Minimum energy control of descriptor positive discrete-time linear systems. Submitted to *Compel*, 2013.
- [5] T. KACZOREK: Minimum energy control of fractional positive continuous-time linear systems. *Proc. of Conf. MMAR*, Miedzyzdroje, Poland, (2013).
- [6] T. KACZOREK: Minimum energy control of positive continuous-time linear systems. Submitted to *Int. J. Appl. Math. Comput. Sci.*, 2013.
- [7] T. KACZOREK: Minimum energy control of positive continuous-time linear systems with bounded inputs. Submitted to *Int. J. Appl. Math. Comput. Sci.*, 2013.
- [8] T. KACZOREK: Minimum energy control of positive fractional descriptor continuous-time linear systems. Submitted to *IET*, 2013.
- [9] T. KACZOREK: Selected Problems of Fractional Systems Theory. Springer-Verlag, Berlin 2012.
- [10] T. KACZOREK and J. KLAMKA: Minimum energy control of 2D linear systems with variable coefficients. *Int. J. of Control*, **44**(3), (1986), 645-650.
- [11] J. KLAMKA: Controllability of Dynamical Systems, Kluwer Academic Press. Dordrecht 1991.
- [12] J. KLAMKA: Minimum energy control of 2D systems in Hilbert spaces. *System Sciences*, **9**(1-2), (1983), 33-42.
- [13] J. KLAMKA: Relative controllability and minimum energy control of linear systems with distributed delays in control. *IEEE Trans. Automatic Control*, 21(4), (1976), 594-595.
- [14] J. KLAMKA: Controllability and minimum energy control problem of fractional discrete-time systems. Chapter in "New Trends in Nanotechnology and Fractional Calculus", Eds. Baleanu D., Guvenc Z.B., Tenreiro Machado J.A., Springer-Verlag, New York, 2010, 503-509.