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Delay-dependent dissipative control
for stochastic singular systems with state delay

CHUNYAN DING and QIN LI

The problem of delay-dependent dissipative analysis and control for stochastic singular
systems with state delay is investigated in this paper. Delay-dependent dissipative condition for
the stochastic singular systems with state delay is obtained by employing singular stochastic
Lyapunov and LMI-based methods. Based on this condition, a delay-dependent dissipative con-
troller is presented. A numerical example is provided to demonstrate the effectiveness of the
proposed approach.
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1. Introduction

In the past decades, there have been considerable research efforts on the study of
state delay systems since delays are often the main causes of instability and poor per-
formance of dynamic systems and encountered in various engineering and physical sys-
tems. For more details regarding this class of systems, we refer the reader to [1,2] and
the references therein. The existing results can be classified into two categories, delay-
independent ones and delay-dependent ones. In particular, when the time-delay factor is
known, it is emphasized that delay-dependent conditions yield less conservative perfor-
mance results.

For the class of stochastic systems, a lot of works has been done[3,4,5,6]. Suffi-
cient conditions on the stochastic stability and stochastic stabilizability were developed
in [3]. The robust delay-dependent exponential stability of uncertain stochastic systems
with time-varying delay was studied in [4]. On the other hand, for the class of singu-
lar systems, sufficient conditions on robust stability and the design of a state feedback
controller have been derived by applying LMI technique in [7]. Stability problem for
singular stochastic systems with Markovian switching has been considered in [8]. The
problem for robust control of continues stochastic time-delay systems is discussed in [9].
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To the best of our knowledge, there are few literature discussed the problem of dissipa-
tive control for stochastic singular systems with state delay.

In this work, we contribute to the development of dissipative analysis and synthesis
of stochastic singular systems with state delay. First, a delay-dependent criterion will be
presented to provide a sufficient condition for asymptotically stability in the mean-square
sense and strict dissipativity. The desired state-feedback control law can be obtained by
solving the feasibility problem of LMIs, which is very simple to do by using an interior-
point algorithm[10].

Throughout this paper, the following notations will be used. The notation E{·} for
the expectation operator. “ ∗ ” is used as an ellipsis for terms that are induced by sym-
metry. ∥·∥ will refer to the Euclidean vector norm. Let L2[0,∞) be the space of square
integrable functions over [0,∞).While, (Ω,F,P) is a probability space, where Ω is the
sample space, F is the σ-algebra of subsets of the sample space and P is the probability
measure on F .

2. Problem Formulation

We consider a class of stochastic singular systems described by

(Σ) : Edx(t) = [Ax(t)+Adx(t − τ)+Bu(t)+Avv(t)]dt + Jx(t)dω(t)
y(t) =Cx(t)
z(t) = Lx(t)+Du(t)+D1v(t)
x(t) = ϕ(t),∀t ∈ [−τ,0]

(1)

where x(t) ∈ Rn is the state; u(t) ∈ Rm is the control input; y(t) ∈ Rm is the measured
output; z(t) ∈ Rq is the controlled output, v(t) ∈ Rp is the disturbance input which be-
longs to L2[0,∞); ω(t) is a zero mean real scalar Wiener process on (Ω,F,P) relative to
an increasing family Ft t>0 of σ-algebras Ft ⊂ F . We assume

E {dω(t)}= 0. E
{

dω(t)2}= dt. (2)

τ > 0 represents constant time delay, ϕ(t) is a real-valued initial function on [−τ,0].
We denote by L2[Ω,Rk) the space of square integrable Rk-valued vector function on the
probability space(Ω,F ,P ). We also denote by LE2([0,∞);Rq) the space of nonantici-
patory square-integrable stochastic processes f (·) = ( f (t))t∈[0,∞) in Rk with respect to
(Ft)t∈[0,∞) satisfying

∥ f∥2
E2

= E


∞∫

0

| f (t)|dt

=

∞∫
0

E {| f (t)|dt}< ∞.

To facilitate the following discussion,we will introduce some definitions and lem-
mas, which are essential for the development of our main results.
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Definition 1 System (Σ) with u(t) = 0 and v(t) = 0 is said to be mean-square stable if
for any ε > 0 there is a δ(ε)> 0 such that

E |x(t)|2 < ε, t > 0

when

sup
−µ¬s¬0

E |ϕ(s)|2 < δ(ε).

If, in addition

lim
t→∞

E |x(t)|2 = 0

for any initial conditions, system (Σ) with u(t)= 0 and v(t)= 0 is said to be mean-square
asymptotically stable.

Definition 2 Given the supply rate r(v(t),z(t)), system (Σ) of the form (1) is said to be
stochastic dissipative if there exists a C0 nonnegative storage function V (x(t), t), which
satisfies V (x(0)) = 0, such that for all v(t), z(t) and t1 ­ t0

E

t1∫
t0

LV (x(t), t)dt ¬ E

t1∫
t0

r(v(t),z(t))dt.

The above inequality is called the stochastic dissipation inequality. If the stochastic dis-
sipation inequality holds strictly, then system (Σ) is called to be stochastic strictly dissi-
pative. In the note, we will consider quadratic supply rate

r(v,z) = zT Qz+2zT Sv+ vT Rv

where Q,S and R are real matrices of appropriate dimensions with Q and R symmetric.
Without the loss of generality, we set Q = QT < 0.

Remark 3 It can be shown from definition 2 that the above strict dissipativity include
H∞ performance and strict passivity as special cases.

1. When Q = −I,S = 0 and R = r2I, strict dissipativity reduces to H∞ performance
requirement.

2. When Q = 0,S = I and R = 0, strict dissipativity corresponds to strict passivity or
strictly positive realness.

3. When Q = −θI,S = (1− θ)I,R = θr2I,θ ∈ (0,1), strict dissipativity represents
mixed H∞ and positive real performance.
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Lemma 5 [9] Consider the stochastic singular system described by

Edx(t) = f (x(t), t)dt +g(x(t), t)dω(t)

the function f : Rn × R+ → Rn satisfy locally Lipschitz condition. Let V (x(t), t) =
xT (t)ET Px(t), where ET P = PT E ­ 0, then the function V (x(t), t) satisfies the following
Itô formula:

dV (x(t), t) = [ f T (x(t), t)Px(t)+ xT (t)PT f (x(t), t)]dt
+gT (x(t), t)(E+)T ET PE+g(x(t), t)dt
+2xT (t)PT g(x(t), t)dω(t)

where E+stands for pseudo-inverse matrix.

Assumption 9 rankE = rank[E,J].

Assumption 10 The pair (E,A) is regular and impulse free, i.e.

1) det(sE −A) ̸= 0,
2) deg(det− (sE −A)) = rankE.

Lemma 6 [9] Suppose Assumption 1 and Assumption 2 are satisfied, then the trivial
solution to system (Σ) exists and is continues and unique.

Lemma 7 [11] Given appropriate dimensional matrices C̃ and D̃ and a symmetric matrix
Z, then

Z +C̃∆D̃+ D̃T ∆TC̃T < 0

for all ∆ satisfying ∆T ∆¬ I if and only if there exists a scalar ε > 0 such that

Z + εC̃C̃T + ε−1D̃T D̃ < 0.

Lemma 8 [12] For any symmetric positive definite matrix R ∈ Rn×n, a scalar τ > 0 and
vector function x(t) : [0,τ]→ Rn×n, then

−τ
t∫

t−τ

xT (s)Rx(s)ds 6−
t∫

t−τ

xT (s)dsR
t∫

t−τ

x(s)ds.
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3. Main Results

In this section, a delay-dependent condition for system (Σ) to be mean-square
asymptotically stable and strictly stochastic dissipative is presented.

Theorem 11 System (Σ) satisfies Assumptions 1,2. If there exist symmetric positive def-
inite matrices W,N and nonsingular matrix P, such that the following LMIs hold:

ET P = PT E ­ 0 (3)

Θ =



Ψ1 PT Ad 0 Ψ2 LT MT τAT N
∗ −W 0 0 0 τAT

d N
∗ ∗ −N 0 0 0
∗ ∗ ∗ Ψ3 0 τAT

v N
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −N


(4)

where

Ψ1 = AT P+PT A+W + JT (E+)T ET PE+J
Ψ2 = PT Av −LT QD1 −LT S
Ψ3 =−DT

1 QD1 −DT
1 S−ST D1 −R

−Q = MT M.

Then it is mean-square asymptotically stable and strictly dissipative.

Proof The Assumption 1 and Assumption 2 guarantee that the trivial solution to system
(Σ) exists and is continues and unique in term of Lemma 2. Next we’ll establish the
mean-square asymptotical stability of system (Σ) with u(t) = 0 and v(t) = 0. In this
case, system (Σ) becomes

Edx(t) = [Ax(t)+Adx(t − τ)]dt + Jx(t)dω(t).

Set

f1(t) = Ax(t)+Adx(t − τ)
g1(t) = Ax(t)+Adx(t − τ)+AvV (t).

Consider the following positive definite function as a Lyapunov functional candidate.

V (t) =V1(t)+V2(t)+V3(t)

10.2478/acsc-2013-0017
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where

V1(t) = xT (t)ET Px(t)

V2(t) =

t∫
t−τ

xT (ξ)Wx(ξ)dξ

V3(t) = τ
0∫

−τ

t∫
t+η

f T
1 (ξ)N f1(ξ)dξdη

ET P = PT E ­ 0,W > 0,N > 0.

Using the extended Itô formula according to Lemma 1, we obtain the stochastic differ-
ential as

dV (x(t), t) = LV dt +2xT (t)PT Jx(t)dω

where

LV (t) = f T
1 (t)Px(t)+ xT (t)PT f1(t)

+ xT (t)JT (E+)T ET PE+Jx(t)+ xT (t)Wx(t)
+ xT (t − τ)Wx(t − τ)+ τ2 f T

1 (t)N f1(t)

− τ
t∫

t−τ

f T
1 (ξ)N f1(ξ)dξ.

Then by the Lemma 4, we can get

LV (t) ¬ f T
1 (t)Px(t)+ xT (t)PT f1(t)

+ xT (t)JT (E+)T ET PE+Jx(t)+ xT (t)Wx(t)
+ xT (t − τ)Wx(t − τ)+ τ2 f T

1 (t)N f1(t)

− τ
t∫

t−τ

f T
1 (ξ)dξN

t∫
t−τ

f1(ξ)dξ

¬ ξT
1 (t)Θ1ξ1(t)

where

ξT
1 (t) =

xT (t) xT (t − τ)
t∫

t−τ

f T
1 (ξ)dξ


and

Θ1 =

 Ψ1 + τ2AT NA PT Ad + τ2AT NAd 0
∗ −W + τ2AT

d NAd 0
∗ ∗ −N

 .
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By the Schur complement, Θ < 0 is equivalent to

Θ2 =


Ψ1 PT Ad 0 τAT N
∗ −W 0 τAT

d N
∗ ∗ −N 0
∗ ∗ ∗ −N

< 0.

It is easy to obtain from (4) that Θ2 is negative-definite. From Definition 1 and [13],
system (Σ) is mean-square asymptotically stable.

Next, strictly stochastic dissipativity of system(Σ) with u(t) = 0 will be discussed.
The following positive definition function has been chosen as a Lyapunov function

V (t) =V1(t)+V2(t)+ τ
0∫

−τ

t∫
t+η

gT
1 (ξ)Ng1(ξ)dξdη.

For any v(t) ̸= 0, the stochastic differential will be obtained as

dV (x(t), t) = LV dt +2xT (t)PT Jx(t)dω

where

LV (t) ¬ gT
1 (t)Px(t)+ xT (t)PT g1(t)

+ xT (t)JT (E+)T ET PE+Jx(t)+ xT (t)Wx(t)
− xT (t − τ)Wx(t − τ)+ τ2gT

1 (t)Ng1(t)

− τ
t∫

t−τ

gT
1 (ξ)Ng1(ξ)dξ

Using Lemma 4,

LV (t) ¬ gT
1 (t)Px(t)+ xT (t)PT g1(t)

+ xT (t)JT (E+)T ET PE+Jx(t)+ xT (t)Wx(t)
− xT (t − τ)Wx(t − τ)+ τ2gT

1 (t)Ng1(t)

−
t∫

t−τ

gT
1 (ξ)dξN

t∫
t−τ

g1(ξ)dξ.

For any t > 0, introduce the cost function

F(t) = E


t∫

0

[zT Qz+2zT Sv+ vT Rv]dt


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= E


t∫

0

ξT
2 (t)Π2ξ2(t)dt


where

ξT
2 (t) =

xT (t) xT (t − τ)
t∫

t−τ

gT
1 (ξ)dξ vT (t)



Π2 =


LT QL 0 0 LT QD1 +LT S
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ DT

1 QD1 +DT
1 S+ST D1 +R

 .
From Definition 2, we know that system (Σ) is strictly dissipative if it holds

E


t∫

0

LV (x(t), t)dt

−F(t)< 0

E


t∫

0

LV (x(t), t)dt

−F(t)

= E


t∫

0

LV (x(t), t)dt

−E

t∫
0

[
zT Qz+2zT Sv+ vT Rv

]
dt

= E


t∫

0

LV (x(t), t)− [zT Qz+2zT Sv+ vT Rv]dt



¬ E

{ t∫
0

gT
1 (t)Px(t)+ xT (t)PT g1(t)+ xT (t)JT (E+)T ET PE+Jx(t)

+xT (t)Wx(t)− xT (t − τ)Wx(t − τ)+ τ2gT
1 (t)Ng1(t)

−
t∫

t−τ

gT
1 (ξ)dξN

t∫
t−τ

g1(ξ)dξ− [zT Qz+2zT Sv+ vT Rv]dt
}
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= E


T∫

0

ξT
2 (t)Θ3ξ2(t)−F(t)dt


= E


T∫

0

ξT
2 (t)Θ4ξ2(t)dt


where

Θ3 =


Ψ4 Ψ5 0 PT Av + τ2AT NAv

∗ Ψ6 0 τ2AT
d NAd

∗ ∗ −N 0
∗ ∗ ∗ τ2AT

v NAv



Θ4 =


Ψ4 −LT QL Ψ5 0 Ψ7

∗ Ψ6 0 τ2AT
d NAd

∗ ∗ −N 0
∗ ∗ ∗ Ψ8

 (5)

Ψ4 = Ψ1 + τ2AT NA
Ψ5 = PT Ad + τ2AT NAd

Ψ6 = −W + τ2AT
d NAd

Ψ7 = PT Av + τ2AT NAv −LT QD1 −LT S
Ψ8 = τ2AT

v NAv −DT
1 QD−DT

1 S−ST D1 −R.

By the Schur complement, (4) is equivalent to (5). By using definition 2, it is
obvious that system (Σ) is strictly dissipative. This completes the proof.

We are now in a position to present the result of stochastic dissipative stabiliza-
tion. The objective is to develop an LMI-based solution to the problem of designing a
state-feedback controller u(t) = Kx(t) which will render system (Σ) strictly stochastic
dissipative. The closed-loop system is now described by

(Σc) : Edx(t) = [(A+BK)x(t)+Adx(t − τ)+Avv(t)]dt + Jx(t)dω(t)
z(t) = (L+DK)x(t)+D1v(t).

Theorem 12 Consider system (Σ) subject to Assumptions 1,2. If there exist a scalar ε >
0, symmetric positive definite matrices W,N, nonsingular matrix P and K̃ > 0 satisfying
the following LMIs:

ET P = PT E ­ 0 (6)
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Ψ1 + K̃ PT Ad 0 Ψ2 LT MT τAT N PT B
∗ −W 0 0 0 τAT

d N 0
∗ ∗ −N 0 0 0 0
∗ ∗ ∗ Ψ3 0 τAT

v N Ψ9

∗ ∗ ∗ ∗ −I 0 MD
∗ ∗ ∗ ∗ ∗ −N τNT B
∗ ∗ ∗ ∗ ∗ ∗ −εI


< 0 (7)

where

Ψ9 =−DT
1 QD−ST D.

Then there exists state feedback controller for system (Σ) such that the resulting closed-
loop system is mean-square asymptotically stable and strictly dissipative. And the con-
troller gain is the symmetrical partition of the matrix K̃�ε .

Proof Applying the state feedback controller u(t) = Kx(t), system (Σ) can be written
as (Σc). By Theorem 1, system (Σc) is mean-square asymptotically stable and strictly
dissipative if there exists matrices P, W > 0 and N > 0 satisfying (3) and

Ψ10 PT Ad 0 Ψ11 (L+DK)T MT τ(A+BK)T N
∗ −W 0 0 0 τAT

d N
∗ ∗ −N 0 0 0
∗ ∗ ∗ Ψ3 0 τAT

v N
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −N


< 0 (8)

where

Ψ10 = AT P+PT A+KT BT P+PT BK +W + JT (E+)T ET PE+J
Ψ11 = PT Av − (L+DK)T QD1 − (L+DK)T S.

The inequality (8) can be written as

Θ+ΞT Γ+ΓT Ξ < 0 (9)

where

Ξ =
[

K 0 0 0 0 0
]

Γ =
[

BT P 0 0 −DT QD1 −DT S DT MT τBT N
]
.
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Now, applying Lemma 3, we have

Θ+ εΞT Ξ+ ε−1ΓT Γ < 0. (10)

Then, using Schur complement, it results that inequality (10) is equivalent to inequality
(7). The proof is completed.

4. Numerical example

Consider a second-order system of the type (Σ), where the nominal model matrices
are

E =

[
1 0
0 0

]
, A =

[
−20 −5

8 −15

]
,Av =

[
0.8 2
1 −2

]
,

Ad =

[
0.4 1
0 0.5

]
, B =

[
2 −4.2
0 1

]
,J =

[
10 1
2 −1

]
,

L =

[
3 −2
6 9

]
,D =

[
15 0
3 3

]
,D1 =

[
1 10
0 0.5

]
.

The parameters of supply rate are given:

Q =

[
−1 0
0 −4

]
,S =

[
1 9
2 1.5

]
,R =

[
4 1
1 3

]
.

Using the LMI-solver, a feasible solution of Theorem 2 shows that the system is
delay-dependent mean-square asymptotically stable and strictly stochastic dissipative
for τ < 0.206. When τ = 0.1, the solutions of LMIs (6),(7) are as following:

P =

[
85.1213 0
−16.7537 45.8078

]
, W =

[
989.1832 −160.1246
−160.1246 289.2770

]
,

N =

[
302.3339 −16.6159
−16.6159 158.5975

]
, K̃ =

[
584.6290 −100.2020
−100.2020 147.9065

]
.

And the controller gain is

K =

[
0.4110 −0.0704

0 0.1943

]
.
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5. Conclusions

In this paper, the problem of delay-dependent dissipative analysis and control for
stochastic singular systems with state delay has been studied. By the extended Itô
stochastic differential formula method, a delay-dependent strictly stochastic dissipative
condition has been obtained, and a delay-dependent controller has been presented. The
results were presented in terms of LMIs, which can be solved easily by using the ef-
fective interior-point algorithm. A numerical example demonstrated that the theoretical
results are correct and effective.
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