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Steady-state analysis for a class of hyperbolic systems
with boundary inputs

KRZYSZTOF BARTECKI

Results of a steady-state analysis performed for a class of distributed parameter systems de-
scribed by hyperbolic partial differential equations defined on a one-dimensional spatial domain
are presented. For the case of the system with two state variables and two boundary inputs, the
analytical expressions for the steady-state distribution of the state variables are derived, both in
the exponential and in the hyperbolic form. The influence of the location of the boundary inputs
on the steady-state response is demonstrated. The considerations are illustrated with a practi-
cal example of a shell and tube heat exchanger operating in parallel- and countercurrent-flow
modes.
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1. Introduction

Distributed parameter systems (DPSs), also known as systems with spatiotempo-
ral dynamics, comprise a large class of dynamical systems in which state variables de-
pend not only on time but also on the spatial variable(s). In fact, almost all industrial
processes belong into this category, while the existence of the so-called lumped pa-
rameter systems (LPS) results from the adoption of a simplified model of the reality,
in which spatial effects are neglected or averaged. Typical examples of DPSs include
heat transfer and fluid flow phenomena, as well as processes occurring in chemical re-
actors, semiconductor manufacturing, polymer processing, bioreactors and many oth-
ers [4, 5, 14, 20, 25, 32, 34]. Based on the phenomenological models of the processes,
established usually on the basis of the mass or energy conservation balance laws, one ob-
tains their mathematical description, mostly in the form of partial differential equations
(PDEs) [19, 28]. Depending on the nature of the phenomena modeled, the equations can
be of parabolic type (which are typical for the unsteady heat conduction and for the diffu-
sion problems), hyperbolic type (representing convection, advection and wave propaga-
tion phenomena) or elliptic type (describing steady-state physical phenomena, e.g. elec-
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trostatic, magnetostatic or gravitational fields). Mathematical models of DPSs obtained
on the basis of the PDEs are described in an infinite-dimensional state space, usually
in a Hilbert space, and their transfer functions have the form of irrational functions, as
opposed to the rational ones describing the dynamic properties of LPS [7, 10, 13, 26, 35].

The concept of the steady state of a dynamical system is essential in many areas,
particularly in thermodynamics, chemistry, economics, electrical and mechanical engi-
neering. From the control theory viewpoint, the knowledge of the behavior of a dynam-
ical system in the steady-state conditions is very important e.g. in the context of the
steady-state responses which describe the input-output relationships of the system after
the transient responses are terminated. The information about the steady-state properties
is also important in connection with the problem of the steady-state optimization of the
operating point of a dynamical system [31]. In the case of the DPS, due to the above
mentioned spatial dependence of the state variables, a mathematical steady-state model
provides not only information about the static input-output mappings but also describes
the spatial distribution of the state variables for the steady-state conditions. This fact is
very important from a practical and technological point of view since it allows not only
to determine e.g. the outlet temperature of the heated fluid in a heat exchanger or the
voltage at the endpoint of an electrical transmission line, but also enables an analysis of
their distribution along the geometrical axis of the system.

The paper presents the results of the steady-state analysis for a certain class of DPSs
in which the mass, heat and energy transport phenomena take place. This class of sys-
tems, among which one can mention e.g. heat exchangers, transport pipelines, irriga-
tion channels or electrical transmission lines, is usually described by PDEs of hyper-
bolic type and known under the common name of hyperbolic systems of conservation
laws [3, 4, 5, 6, 9, 8, 15, 20, 24]. The present paper can be considered as a complement
to our recent work [7], where a general transfer function representation for this class of
systems has been analyzed. Its structure is as follows: After the introduction, Section 2
reviews the mathematical model of the considered class of DPSs in the form of a set of
PDEs and formulates its hyperbolicity conditions. Next, the considerations are focused
on the often encountered in the industrial practice systems with two spatially distributed
state variables and boundary-type control, represented by a system of two PDEs with
Dirichlet boundary conditions. Two different typical configurations of boundary inputs
are introduced here. Section 3 starts with the definition of the steady-state solution of the
considered initial-boundary value problem. The analytical expressions for the steady-
state distribution of the state variables are derived for the two considered boundary input
configurations, both in the exponential and in the hyperbolic form. In Section 4 a shell
and tube heat exchanger operating in parallel- and countercurrent-flow modes is intro-
duced as a typical example of the considered hyperbolic DPS with boundary inputs. Se-
lected steady-state distributions of the fluid temperatures for the both flow arrangements
are presented and analyzed here based on the analytical expressions derived in Section 3.
The article concludes with a summary of new results and directions for further research.
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2. Weakly coupled hyperbolic systems

2.1. General case

Some of the above-mentioned DPSs can be described by the following system of
linear homogeneous PDEs of the first order (see [7, 11, 12, 16, 19, 28]):

∂x(l, t)
∂t

+Λ
∂x(l, t)

∂l
= Kx(l, t) , (1)

where x(l, t) : Q → Rn is a vector function representing the spatio-temporal distribution
of the n state variables

x(l, t) =
[
x1(l, t) x2(l, t) . . . xn(l, t)

]T
, (2)

defined on a set Q = Ω×Θ, where Ω = [0,L]⊂R is the domain of the spatial variable l,
Θ = [0,+∞)⊂R is the domain of the time variable t, K ∈Rn×n is a matrix with constant
entries and Λ is a diagonal matrix of the following form:

Λ = diag(λ1, . . . ,λp,λp+1, . . . ,λn) , (3)

with λi ∈ R\0 and
λ1 > .. . > λp > 0 > λp+1 > .. . > λn, (4)

where p¬ n represents the number of positive elements λi.

Remark 4 Owing to the diagonal form of Λ, each equation of the system (1) contains
both temporal and spatial derivatives of the same state variable xi(l, t), for i = 1,2, ...,n.
Therefore, this system is commonly referred to as decoupled or weakly coupled, i.e.
coupled only through the terms that do not contain derivatives.

Definition 3 The system (1) is said to be hyperbolic iff all elements of Λ given by (3)
are real and different from zero as assumed above. Additionally, if all the elements are
distinct then system (1) is said to be strictly hyperbolic.

Remark 5 In the case of the hyperbolic PDEs describing physical phenomena men-
tioned in Section 1, the elements of Λ usually represent the mass and energy transport
rates.

2.2. Initial and boundary conditions

In order to obtain a unique solution of (1), one must specify the appropriate initial
and boundary conditions. The initial conditions represent the initial (i.e. determined for
t = 0) distribution of the values of all n state variables for the whole set Ω

x(l,0) = x0(l), (5)
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where x0(l) : Ω → Rn is a given vector function.
On the other hand, the boundary conditions represent the requirements to be met by

the solution x(l, t) at the boundary points of Ω. In general, these conditions may take the
form of a linear combination of the Dirichlet and Neumann boundary conditions, as the
so-called boundary conditions of the third kind [1, 17, 30]. For the considered class of
hyperbolic systems we assume the Dirichlet boundary conditions which can be written
in the following compact way [16, 33]x+(0, t)

x−(L, t)

=

P00 P01

P10 P11

x+(L, t)

x−(0, t)

+
R0

R1

u(t) , (6)

with

x+ =


x1
...

xp

 , x− =


xp+1

...
xn

 . (7)

The vector function u(t) : [0,+∞) → Rr in (6) expresses the inhomogeneity of the
boundary conditions which can be identified with r external inputs to the system, includ-
ing control signals as well as external disturbances. The constant matrices P00 ∈ Rp×p,
P01 ∈ Rp×(n−p), P10 ∈ R(n−p)×n, P11 ∈ R(n−p)×(n−p) express boundary feedbacks and
reflections, whereas R0 ∈ Rp×r and R1 ∈ R(n−p)×r represent the effect of the external
inputs u(t) on the boundary conditions x+(0, t) and x−(L, t), respectively.

2.3. Second-order systems

Among many different kinds of DPSs, an important class is constituted by the sys-
tems with two distributed state variables which can be described, after appropriate as-
sumptions, by the second-order hyperbolic PDE. The following typical examples can be
mentioned here [2, 5, 18, 21, 22, 23, 29]:

• the temperatures ϑ1(l, t) and ϑ2(l, t) of the heating and the heated fluid in the case
of a coaxial heat exchanger,

• the voltage u(l, t) and the current i(l, t) in the electrical transmission line,

• the pressure p(l, t) and the flow q(l, t) of the medium transported through the
pipeline.

Remark 6 Some of the above-mentioned systems, such as e.g. heat exchanger, are de-
scribed directly by the weakly coupled hyperbolic PDEs, while the equations of the
others, such as electrical transmission line or transport pipeline, are strongly coupled. In
order to express them in the form of Eqn. (1), the decoupling procedure has to be carried
out.
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In the case of the above mentioned systems, Eqn. (1) takes, after possible decoupling
(see [7, 19, 28]), the form of the following two PDEs:

∂x1(l, t)
∂t

+λ1
∂x1(l, t)

∂l
=k11x1(l, t)+k12x2(l, t) , (8)

∂x2(l, t)
∂t

+λ2
∂x2(l, t)

∂l
=k21x1(l, t)+k22x2(l, t) , (9)

where k11,k12,k21,k22 and λ1,λ2 are constant elements of the matrices K and Λ in (1),
respectively.

Therefore, it is assumed here that the only external influence on the state variables x1
and x2 is given by the boundary conditions (6). Two cases often occurring in practice are
considered here: in the first one, both boundary conditions are given for the same edge
(l = 0) of Ω and in the second – the input function u(t) acts on the two different edges,
l = 0 and l = L, respectively. Further analysis is based on the additional assumption that
no boundary feedback nor reflection are present in the system, i.e. P00, P01, P10, P11 in (6)
are all zero matrices. The next assumption is that the system is given directly by the two
weakly coupled PDEs (8) and (9). Such a situation occurs e.g. in the case of shell and
tube heat exchangers [4, 8, 15, 23, 27, 34]. Therefore, two definitions originally proposed
in [7] are recalled below in order to discriminate between two above mentioned classes
of boundary inputs.

Definition 4 The external inputs of the system (8) and (9) will be referred to as con-
gruent boundary inputs for the following parameter values of (6): n = l = p = 2 and
R0 = I2, which leads to the following expressions on the boundary values of the state
variables:

x1 (0, t) = u1(t), (10)
x2 (0, t) = u2(t). (11)

Definition 5 The external inputs to the system (8) and (9) will be referred to as incon-
gruent boundary inputs for the following parameter values of (6): n = l = 2, p = 1,
R0 = [1 0] and R1 = [0 1], which leads to the following expressions on the boundary
values of the state variables:

x1 (0, t) = u1(t), (12)
x2 (L, t) = u2(t). (13)

Remark 7 Taking into account (4) it can be noticed that the congruent boundary inputs
should be imposed for λ1 > 0 and λ2 > 0, while the incongruent ones – for λ1 > 0 and
λ2 < 0.

The above assumptions about the form of the boundary conditions representing the
external influences on the system have its practical reasons. For example, in the case of
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the above mentioned shell and tube heat exchanger operating in the so-called parallel-
flow mode, the temperatures of the heated and the heating medium are given for the
same geometric point of the exchanger. On the other hand, the temperatures of the fluids
flowing into the exchanger operating in the countercurrent-flow mode are specified for
its two opposite sides.

3. Steady-state equations

In this section the definition of the steady-state solution is formulated for the consid-
ered class of DPSs. Next, the expressions describing the steady-state distribution of the
state variables x1 and x2 are derived for the system (8) and (9), both for the congruent
and incongruent boundary conditions adopted in Definitions 4 and 5, respectively. Fur-
thermore, the simplified form of the solutions is obtained for the case of the matrix K
having some zero elements.

Definition 6 A steady state solution x̄(l) : Ω→Rn of the initial-boundary value problem
described by (1)-(7) is a solution that does not depend on time, i.e. the one which can be
obtained by assuming all time derivatives in (1) equal to zero

∂xi (l, t)
∂t

= 0 for i = 1,2, . . . ,n. (14)

3.1. Congruent boundary inputs

Result 1 The steady-state distribution of the state variables x1 and x2 of the system
(8) and (9) can be described for the case of the constant congruent boundary inputs
x1(0, t) = u10 and x2(0, t) = u20 by the following equations:

x̄1 (l) =
(

λ2ϕ1 − k22

2λ2β
eϕ1l − λ2ϕ2 − k22

2λ2β
eϕ2l
)

u10 +
k12

2λ1β

(
eϕ1l − eϕ2l

)
u20, (15)

x̄2 (l) =
k21

2λ2β

(
eϕ1l − eϕ2l

)
u10 +

(
λ1ϕ1 − k11

2λ1β
eϕ1l − λ1ϕ2 − k11

2λ1β
eϕ2l
)

u20, (16)

where

α =
1
2

(
k11

λ1
+

k22

λ2

)
, β =

1
2

√(
k11

λ1
− k22

λ2

)2

+4
k12

λ1

k21

λ2
, (17)

ϕ1 = α+β, ϕ2 = α−β. (18)
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Proof After setting the time derivatives in (8) and (9) to zero, one obtains the following
system of two ODEs:

λ1
dx1 (l, t)

dl
= k11x1 (l, t)+ k12x2 (l, t) , (19)

λ2
dx2 (l, t)

dl
= k21x1 (l, t)+ k22x2 (l, t) , (20)

with the boundary conditions x1(0) = u10, x2(0) = u20. The solution of (19) and (20) is
the given by (15)-(18).

Lemma 9 For any x,y,z ∈R such that z ̸= 0 and z ̸= y, the following relationship holds:

ex − y
z

e−x =
z− y

z

(
coshx+

z+ y
z− y

sinhx
)
. (21)

Proof By using the well known identities

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
, (22)

the right-hand side of (21) can be transformed in the following way:

z− y
z

(
coshx+

z+ y
z− y

sinhx
)
=

z− y
2z

(
ex + e−x +

z+ y
z− y

(
ex − e−x))=

=
z− y
2z

(
2z

z− y
ex − 2y

z− y
e−x
)
= ex − y

z
e−x.

(23)

Result 2 The steady-state distribution given by (15) and (16) can be expressed in the
following equivalent form using the hyperbolic functions:

x̄1 (l) = eαl
(

coshβl +
λ2α− k22

λ2β
sinhβl

)
u10 +

k12

λ1β
eαl sinhβl ·u20, (24)

x̄2 (l) =
k21

λ2β
eαl sinhβl ·u10+eαl

(
coshβl +

λ1α− k11

λ1β
sinhβl

)
u20. (25)
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Proof The expression at u10 on the right-hand side of (15) can be transformed using (18)
and Lemma 9 in the following way:

λ2ϕ1 − k22

2λ2β
eϕ1l − λ2ϕ2 − k22

2λ2β
eϕ2l =

=
ϕ1

2β
eαleβl − k22

2λ2β
eαleβl − ϕ2

2β
eαle−βl +

k22

2λ2β
eαle−βl =

=
ϕ1

2β
eαl
(

eβl − ϕ2

ϕ1
e−βl

)
− k22

2λ2β
eαl
(

eβl − e−βl
)
=

=eαl
(

coshβl +
α
β

sinhβl
)
− k22

λ2β
eαl sinhβl =

=eαl
(

coshβl +
λ2α− k22

λ2β
sinhβl

)
.

(26)

Similarly, the expression at u20 in (15) can be transformed as follows:
k12

2λ1β

(
eϕ1l − eϕ2l

)
=

k12

2λ2β
eαl
(

eβl − e−βl
)
=

k12

λ2β
eαl sinhβl. (27)

Due to the obvious symmetry, the hyperbolic version (25) of (16) can be obtained in
the similar manner.

Remark 8 Assuming l = 0 in (15) and (16) one obtains eϕ1l = eϕ2l = 1 and finally
x̄1(0) = u10, x̄2(0) = u20. Analogous results can be obtained based on the hyperbolic
form (24) and (25) of the steady-state equations. In this case one obtains for l = 0:
eα(s)l = 1, sinhβ(s)l = 0 and coshβ(s)l = 1 which leads to the same result.

3.2. Incongruent boundary inputs

Result 3 The steady-state distribution of the state variables x1 and x2 of the system
(8) and (9) can be described for the case of the constant incongruent boundary inputs
x1(0, t) = u10 and x2(L, t) = u2L by the following equations:

x̄1 (l) =
eϕ2Leϕ1l (λ2ϕ1 − k22)− eϕ1Leϕ2l (λ2ϕ2 − k22)

eϕ2L (λ2ϕ1 − k22)− eϕ1L (λ2ϕ2 − k22)
u10+

+
k12
(
eϕ2l − eϕ1l

)
eϕ2L (λ1ϕ2 − k11)− eϕ1L (λ1ϕ1 − k11)

u2L,

(28)

x̄2 (l) =
k21
(
eϕ2Leϕ1l − eϕ1Leϕ2l

)
eϕ2L (λ2ϕ1 − k22)− eϕ1L (λ2ϕ1 − k22)

u10+

+
eϕ2l (λ1ϕ2 − k11)− eϕ1l (λ1ϕ1 − k11)

eϕ2L (λ1ϕ2 − k11)− eϕ1L (λ1ϕ1 − k11)
u2L,

(29)
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where the parameters α, β, ϕ1 and ϕ2 are given by (17) and (18).

Proof By solving equation (19) and (20) with the boundary conditions x1(0) = u10 and
x2(L) = u2L.

Result 4 The steady-state distribution given by (28) and (29) can be expressed in the
following equivalent form using the hyperbolic functions:

x̄1 (l) =
eαl
(
λ2βcoshβ(l −L)+(λ2α− k22)sinhβ(l −L)

)
λ2βcoshβL− (λ2α− k22)sinhβL

x10+

+
k12eα(l−L) sinhβl

λ1βcoshβL+(λ1α− k11)sinhβL
x2L,

(30)

x̄2 (l) =
k21eαl sinhβ(l −L)

λ2βcoshβL− (λ2α− k22)sinhβL
x10+

+
eα(l−L) (λ1βcoshβl +(λ1α− k11)sinhβl)

λ1βcoshβL+(λ1α− k11)sinhβL
x2L.

(31)

Proof As in the case of the proof of Result 2, i.e. using (18) and Lemma 9.

Remark 9 In the case of the incongruent boundary conditions one obtains: x̄1(0) = u10
and x̄2(L) = u2L.

3.3. The case of zero-valued elements in matrix K

Assuming in (8) and (9) k12 = k21 = 0 one obtains two fully decoupled ODEs. In this
case the expressions for β, ϕ1 and ϕ2 in (17) and (18) simplify to

β =
1
2

(
k11

λ1
− k22

λ2

)
, (32)

ϕ1 =
k11

λ1
, ϕ2 =

k22

λ2
. (33)

Taking into account (32) and (33) one obtains from (15) and (16) the greatly simpli-
fied steady-state expressions for the congruent boundary inputs

x̄1(l) = e
k11
λ1

lu10, x̄2(l) = e
k22
λ2

lu20, (34)

and
x̄1(l) = e

k11
λ1

lu10, x̄2(l) = e
k22
λ2

(l−L)u2L, (35)

for the incongruent ones.
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The above representation means that the steady-state value of the given state vari-
able xi depends for all l ∈ Ω solely on the boundary input value ui without any cross
interaction from the second boundary input.

Assuming also k11 = k22 = 0, one obtains from (8) and (9) two pure time-delay
systems with the extremely simplified form of the steady-state solutions

x̄1(l) = u10, x̄2(l) = u20, (36)

for the congruent boundary inputs, and

x̄1(l) = u10, x̄2(l) = u2L, (37)

for the incongruent ones.

4. Example: Parallel- and countercurrent-flow heat exchanger

For a practical illustration of the issues discussed above, this chapter performs the
steady-state analysis of a shell and tube heat exchanger, which can be considered as a
typical DPS whose mathematical description, after some assumptions, takes the form
(8) and (9). The analysis is performed for both the exchanger operating in the parallel-
flow mode, for which the boundary conditions have the form specified in the Definition
4, and for the countercurrent-flow configuration with boundary conditions as given by
Definition 5.

Under some simplifying assumptions, the dynamic properties of a shell and tube
heat exchanger can be described, based on the thermal energy balance equations, by the
following PDE system [4, 8, 15, 21, 23, 27, 34]:

∂ϑ1(l,t)
∂t

+v1
∂ϑ1(l,t)

∂l
=α1

(
ϑ2(l,t)−ϑ1(l,t)

)
, (38)

∂ϑ2(l,t)
∂t

+v2
∂ϑ2(l,t)

∂l
=α2

(
ϑ1(l,t)−ϑ2(l,t)

)
, (39)

where the 1- and 2- sub-indexed figures represent the tube-side and shell-side fluid vari-
ables/coefficients, respectively; specifically ϑ1(l, t) and ϑ2(l, t) – the temperatures, v1
and v2 – the velocities, α1 and α2 – the heat transfer coefficients.

Assuming v1 = 1 m/s,v2 = 0.2 m/s, α1 =α2 = 0.05 1/s in (38) and (39), one obtains
the following matrices of the system (1):

Λ =

[
v1 0
0 v2

]
=

[
1 0
0 0.2

]
, (40)

K =

[
−α1 α1

α2 −α2

]
=

[
−0.05 0.05
0.05 −0.05

]
(41)
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and the vector of the state variables (2) given by

x(l, t) =
[
ϑ1(l, t) ϑ2(l, t)

]T
. (42)

The fluid inlet temperatures ϑ1i, ϑ2i can be taken as the input signals, which in
the considered case of the parallel-flow corresponds the following congruent boundary
conditions (see Definition 4):

ϑ1 (0, t) = ϑ1i (t) , (43)
ϑ2 (0, t) = ϑ2i (t) . (44)

Figure 1 shows the steady-state distributions of the temperatures of the tube- and
shell-side fluids, calculated based on the equations (15)-(16) for the constant values of
the inlet temperatures: ϑ1i = 100 ◦C, ϑ2i = 50 ◦C. Additionally, the temperature profiles
for v2 = 0.1 m/s are marked by dashed line.

Figure 1. The steady state temperature distributions ϑ̄1(l) and ϑ̄2(l) for the parallel-flow heat exchanger
(ϑ1i = 100 ◦C, ϑ2i = 50 ◦C, v1 = 1 m/s, v2 = 0.2 m/s and v2 = 0.1 m/s).

In the countercurrent mode of operation, the fluids involved in the heat exchange en-
ter the exchanger from its opposite ends. The PDEs describing the dynamics of the heat
exchanger have the same form (38)-(39) as for the parallel-flow mode, and the difference
in the mathematical description consists in the opposite signs of fluid velocities (v1 > 0,
v2 < 0) as well as in the different boundary conditions

ϑ1 (0, t) = ϑ1i (t) , (45)
ϑ2 (L, t) = ϑ2i (t) . (46)
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This situation represents the case of the incongruent boundary inputs given by Defi-
nition 5. Figure 2 shows the steady-state temperature profiles for the countercurrent-flow
heat exchanger calculated based on (28)-(29) assuming ϑ1i = 100 ◦C, ϑ2i = 50 ◦C and
v1 = 1 m/s,v2 = −0.2 m/s. Additionally, the temperature profiles for v2 = −0.1 m/s
are shown here by dashed line.

Figure 2. The steady state temperature distributions ϑ̄1(l) and ϑ̄2(l) for the countercurrent-flow heat ex-
changer (ϑ1i = 100 ◦C, ϑ2i = 50 ◦C, v1 = 1 m/s, v2 =−0.2 m/s and v2 =−0.1 m/s).

From the obtained results it is possible to determine e.g. the outlet temperatures of
the both fluids involved in the heat exchange. For example, for the parallel-flow config-
uration the outlet temperature ϑ̄2(L) of the heated fluid is about 82.5 ◦C and the outlet
temperature ϑ̄1(L) of the heating fluid is 93.5 ◦C (Fig. 1). Reducing the flow rate v2 of
the heated fluid from 0.2 m/s to 0.1 m/s increases its outlet temperature ϑ̄2(L) to about
92.5 ◦C and also causes a slight increase in the outlet temperature of the heating fluid. As
is apparent from Fig. 2, the change in the flow configuration causes further increase in
the temperature of the heated fluid as compared to the parallel-flow mode. For example,
when changing the flow rate v2 from −0.2 m/s to −0.1 m/s its outlet temperature ϑ̄2(0)
reaches 95 ◦C and is lower only by 5 ◦C than the inlet temperature ϑ̄1(0) of the heat-
ing fluid. As mentioned in Section 1, the derived analytical expressions not only make
it possible to determine the outlet temperatures of the fluids but also allow an analysis
of the temperature profiles along the heat exchanger, which may be of great importance
from a technological point of view.

To sum up, the counter-flow mode of operation has several advantages as compared
to parallel-flow one. The outlet temperature of the heated fluid can approach the inlet
temperature of the heating fluid. The more uniform temperature difference between the
two fluids prevents thermal stresses in the exchanger material. The other advantage is
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that the more uniform difference between temperatures ϑ̄1(l) and ϑ̄2(l) has an effect of
more uniform heat transfer rate. The maximum amount of heat or mass transfer that can
be obtained is higher with the countercurrent than parallel exchange because the first
one maintains a slowly declining difference in temperature. In the parallel-flow mode
the initial gradient is higher but falls off quickly, leading to wasted potential of thermal
energy. The above simulation results has been fully confirmed by the industrial practice
[20, 34].

5. Conclusion

The paper has addressed the problem of the general steady-state representation for a
class of distributed parameter systems of hyperbolic type. The analytical expressions for
the steady-state distribution of the state variables have been derived, both in the expo-
nential and in the hyperbolic form. The influence of the location of the boundary inputs
on the steady-state solutions has been demonstrated. The considerations have been illus-
trated with a practical example of a shell and tube heat exchanger operating in parallel-
and countercurrent-flow modes, which correspond to the two types of the boundary in-
puts discussed in the paper.

The generalization of the results presented here has been recently proposed in our
paper [7], which is related to the transfer function representation of the considered class
of hyperbolic systems. The approach presented there allows to determine also their
frequency- as well as time-domain responses, which is of great importance from the
viewpoint of the control theory.
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