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Design and experimentation of a self-tuning PID
control applied to the 3DOF helicopter

AHSENE BOUBAKIR, SALIM LABIOD, FARES BOUDJEMA and FRANCK PLESTAN

The paper presents design and experimental validation of a stable self-tuning PID con-
troller for three degrees of freedom (3-DOF) helicopter. At first, it is proposed a self-tuned
proportional-integral-derivative (PID) controller for a class of uncertain second order multi-
input multi-output nonlinear dynamic systems to which the 3-DOF helicopter dynamic model
belongs. Within this scheme, the PID controller is employed to approximate unknown ideal
controller that can achieve control objectives. PID controller gains are the adjustable param-
eters and they are updated online with a stable adaptation mechanism designed to minimize
the error between the unknown ideal controller and the used by PID controller. The stability
analysis of the closed-loop system is performed using Lyapunov approach. It is proven that all
signals in the closed-loop system are uniformly ultimately bounded. The proposed approach
can be regarded as a simple and effective model-free control since the mathematical model of
the system is assumed unknown. Experimental results are presented to verify the effectiveness
of the proposed controller.

Key words: 3-DOF helicopter, PID control, adaptive control, model-free control, MIMO
nonlinear systems

1. Introduction

Control design for helicopter systems has been a topic of active research in recent
years due to their important potential applications. The 3-DOF helicopter prototype is
often the system used in helicopter research and education for the design and implemen-
tation of control concepts. In our study we consider the 3-DOF helicopter laboratory
produced by Quanser consulting Inc. [1]. Because this helicopter has nonlinear and un-
stable dynamics as well as significant cross-coupling between its control channels, the
control of this multi-input multi-output (MIMO) system is a challenging task. Many
researchers have investigated the control of 3-DOF helicopters. In [2], Liu et al. pro-
posed an optimal tracking control strategy based on fuzzy logic and LQR. In [3], Hao
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et al. suggested robust LQR attitude control method consisting of three parts: a nominal
feed-forward controller, a nominal LQR state feedback controller and a robust compen-
sator. Kiefer et al. [4] proposed a control scheme, to ensure the trajectory tracking of
a 3-DOF helicopter under input and state constraints. It consists of an inversion-based
feed-forward controller for trajectory tracking and a feedback controller for the trajec-
tory error dynamics. In [5], Kutay et al. introduced an adaptive output feedback control
method based on model inversion with feedback linearization and linearly parameterized
neural networks to cancel modeling error. Other control approaches can be found in the
literature such as fuzzy logic control [6], robust control [7], predictive control [8], H∞
control [9], neural networks control [10], and adaptive control [11].

The most classical in automatic control field is the PID control algorithm. Since
1940, emerge of process control, PID controllers are used in most of the feedback loops
of process industries despite continual advances in control theory. These controllers are
preferred because of their versatility, simple structure, high reliability and easy imple-
mentation on the analog or digital platforms. Nowadays, about 90% of industrial objects
are controlled by PID controllers [12]. The key idea of designing the PID controller is
the choice of three parameters, i.e. proportional gain Kp, integral gain KI , and derivative
gain Kd . To yield satisfactory control results, the values of Kp, KI and Kd must be tuned.
Several approaches have been reported in literature for tuning the parameters of PID
controllers [13-15]. Ziegler-Nichols and Cohen-Coon are the most commonly used con-
ventional methods for tuning PID controllers. By reason of the progress in the industrial
applications, there are many processes with time-variant or nonlinear characteristics and,
hence, the PID controller tuned with conventional tuning methods becomes inefficient
for these systems. In order to solve this problem, the adaptive PID controller design has
received wide attention. The common design idea of adaptive PID controller is to adjust
PID parameters according to varying system states to obtain better control effects.

The PID control of a 3-DOF helicopter has been studied in some papers [16-19]. In
[16], Andrievsky et al. proposed an adaptive PID control law to ensure the pitch angle
control. In [17], Fradkov et al. presented a PID control law for the 3-DOF helicopter
using state estimation. In [18], Rios et al. developed a PID controller with sliding-mode
observer used to compensate and identify the disturbance. Rios et al. proposed also in
[19] a control structure based on PID controller combined with quasi-continuous con-
troller. In the aforementioned papers, the PID controller is not used alone but combined
with another control technique. Moreover, the gains of the used PID controller are con-
stants which can be considered as a limitation of these approaches when it comes to strict
requirement of tracking error and disturbance rejection.

In this paper, we develop a stable self-tuning PID controller for a 3-DOF helicopter
system. Firstly, we introduce the proposed stable self-tuning PID control scheme for a
class of uncertain MIMO second order nonlinear systems to which the 3-DOF helicopter
dynamic model belongs. The basic idea of this control scheme is to use PID controllers
to approximate unknown ideal controllers that can achieve control objectives. For that,
the adaptive laws of the gains Kp, KI and Kd are designed, based on the gradient descent
method, to directly minimizing the error between the unknown ideal controllers and the
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used PID controllers. The overall closed-loop system stability is studied by using a Lya-
punov approach. The proposed self-tuning PID controller guarantees the boundedness
of all variables in the closed-loop system and the convergence of the output tracking
error to a small neighborhood of the origin. Since the knowledge of the model is not
required in this approach, the proposed self-tuning PID controller can be considered as
a simple and effective model-free controller. Finally, we examined experimentally the
effectiveness and feasibility of the proposed self-tuning PID controller applied to the
3-DOF helicopter.

The paper is organized as follows. Section 2 presents the description of the 3-DOF
helicopter system. The proposed self-tuning PID controller scheme is developed in sec-
tion 3 with its adaptive law and the stability analysis of the overall system. In section 4,
the proposed control scheme is used to control in real time the 3-DOF helicopter. Section
5 concludes this article.

Figure 1. Quanser helicopter with three degrees of freedom.

2. 3-DOF helicopter description

The 3-DOF helicopter setup used in our work is manufactured by Quanser Consult-
ing Inc. [1]. It is a platform technology for researching helicopter flight control system
(Fig. 1). This setup is an excellent test-bed for advanced control methods and it consists
of a base on which a long arm is mounted. The arm carries the helicopter body composed
of two propellers on one end and a counterweight on the other end. Two DC motors are
mounted below the propellers to create the forces which drive propellers. The motors
axes are parallel and their thrust is vertical to the propellers. We have three degrees of
freedom (DOF): elevation (ψ), pitch (θ) and travel (ϕ). To measure these angles, three
encoders are installed on elevation axis, pitch axis and travel axis. The movement range
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of the elevation ψ and pitch θ angles is limited between around -1 and 1 [rad] due to the
hardware restriction.

In the literature, the dynamic modeling of the 3-DOF helicopter was studied in sev-
eral papers [6,9,10,20]. The equations of motion about axes ψ, θ and θ are given by:

Jψ ψ̈ =−Mhgcos(ψ)La +Mωgcos(ψ)Lω +K f (Vf +Vb)cos(θ)La − fψ (ψ̇)
Jθ θ̈ = K f (Vf −Vb)Lh − fθ

(
θ̇
)

Jϕ ϕ̈ = K f (Vf +Vb)sin(θ)La − fϕ
(
ϕ̇
) (1)

where Jψ, Jθ, Jϕ denote the moments of inertia, Mh – total mass of the helicopter, Mω
– the mass of the counterweight, La – the helicopter distance to pivot, Lω – the coun-
terweight distances to pivot, Lh – the motor distance to pitch, g – the gravity constant,
K f – the motor volt-to-thrust relationship constant, Vf and Vb the voltages applied to the
front and back motors respectively, fψ(ψ̇), fθ(θ̇) and fϕ(ϕ̇) – the friction terms. Table 1
provides physical parameters of the helicopter model, taken from the Quanser 3-DOF
Helicopter prototype installed in IRCCyN laboratory.

Table 1. 3-DOF helicopter parameter values

Parameter Value Units

Vf and Vb [-24, +24] [V]

K f 0.1188 [N/V]

g 9.81 [ms2]

Mh 1.426 [kg]

Mω 1.87 [kg]

La 0.66 [m]

Lω 0.47 [m]

Lh 0.178 [m]

Jψ 1.0348 [kgm2]

Jθ 0.0451 [kgm2]

Jϕ 1.0348 [kgm2]

By setting u1 = (Vf +Vb) and u2 = (Vf −Vb), system (1) takes the form

ψ̈ =
1
Jψ

(
−Mhgcos(ψ)La +Mωgcos(ψ)Lω − fψ (ψ̇)

)
+

1
Jψ

(K f La)cos(θ)u1

θ̈ =
1
Jθ

(
− fθ

(
θ̇
))

+
1
Jθ

(K f Lh)u2

ϕ̈ =
1
Jϕ

(
− fϕ

(
ϕ̇
))

+
1
Jϕ

(K f La)sin(θ)u1.

(2)
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In this study, our objective is to ensure the convergence of the elevation and travel
angles (ψ,ϕ) to the desired trajectories (ψd ,ϕd) while keeping the stability of the pitch
angle θ. In the next section, we will develop a stable self-tuning PID control scheme for
a class of second order MIMO nonlinear systems.

3. Proposed adaptive PID controller

3.1. Problem formulation

Consider the second order MIMO nonlinear dynamic systems Σ composed of q sub-
systems Σi, i = 1,2, . . . ,q represented in the following normal form

Σi


ẋi1 = xi2

ẋi2 = fi (x)+gi (x) ui

yi = xi1

(3)

where x = [x11,x12,x21,x22, . . . ,xq1,xq2]
T ∈ ℜn with n = 2q, is the overall state vector

which is assumed available for measurement, u = [u1, . . . ,uq]
T ∈ ℜq is the control input

vector, y = [y1, . . . ,yq]
T ∈ ℜq is the output vector, fi (x) and gi (x), i = 1,2, . . . ,q are

smooth unknown nonlinear functions.
Since the proposed self-tuning PID controller is a model-free control scheme, we

will develop our controller directly for the MIMO nonlinear systems class given by (3).
Let us denote:

y(2) =


y(2)1

...

y(2)q

 , f(x) =


f1 (x)

...
fq (x)

 , and G(x) =


g1 (x) 0 . . . 0

0 g2 (x) 0
...

... 0
. . . 0

0 . . . 0 gq (x)

 .

The dynamic system (3) can be rewritten in the following compact form

yi
(2) = fi (x)+gi (x) ui. (4)

Then, system Σ can be written as

y(2) = f(x)+G(x)u. (5)

In this section, our goal is to design a control law u(t) that ensures the boundedness of all
variables in the closed-loop system and guarantees output tracking of a specified desired
trajectory yd (t) =

[
yd1 (t) , . . . ,ydq (t)

]T.
Throughout this paper we make the following assumptions.
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Assumption 1 The matrix G(x) is positive definite and bounded as 0 < ḡ0Iq < G(x)<
ḡ1Iq, where Iq is the q×q identity matrix, ḡ0 and ḡ1 are some positive constants.

Assumption 2 The desired trajectory ydi (t), i = 1, . . . ,q, and its time derivatives
y( j)

di (t) , j = 1,2, are smooth and bounded.

Remark 1 The Assumption 1 is a sufficient condition ensuring that the matrix G(x)
is always regular and, therefore, system (3) is feedback linearizable by a static state
feedback. Note that the result of this paper can be easily adapted to the case of systems
with −ḡ1Iq < G(x)<−ḡ0Iq < 0.

Let us define the tracking errors as

e1 (t) = yd1 (t)− y1 (t) ,
...
eq (t) = ydq (t)− yq (t)

(6)

and the filtered tracking errors as

s1 (t) =
( d

dt +λ1
)

e1 (t) , λ1 > 0,
...
sq (t) =

( d
dt +λq

)
eq (t) , λq > 0.

(7)

From (7), si (t) = 0 represents a linear differential equation whose solution implies that
the tracking error ei (t) converges to zero with a time constant 1/λi. In addition, the
derivative ėi (t) of the tracking ei (t) also converges to zero [21]. Thus, the control objec-
tive becomes the design of a controller to keep si (t) at zero, i = 1, . . . ,q, therefore, the
original stabilizing problem of the vector [ei (t) , ėi (t)]

T, i= 1, . . . ,q, is reduced to that of
keeping the scalar si (t) at zero. Moreover, bounds on si (t) can be directly translated into
bounds on the tracking error. Specifically, if we have |si (t)|¬ Φi where Φi is a positive
constant, we can conclude that [21]:

∣∣∣e( j)
i (t)

∣∣∣ ¬ 2 jλ j−1
i Φi, j = 0,1, i = 1, . . . ,q. These

bounds can be reduced by increasing the design parameters λi.
The time derivatives of the filtered errors (7) can be rewritten as

ṡ1 = Λ1 − f1 (x)−g1 (x) u1,
...
ṡq = Λq − fq (x)−gq (x) uq

(8)
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where Λ1, . . . ,Λq, are given as follows

Λ1 = y(2)d1 +λ1ė1,
...

Λq = y(2)dq +λqėq.

(9)

Denote
s = [s1 . . .sq]

T, ΛΛΛ = [Λ1 . . .Λq]
T.

Then, (8) can be written in the compact form

ṡ = ΛΛΛ− f(x)−G(x)u. (10)

If the nonlinear functions f(x) and G(x) are known, to achieve the control goal, one can
use the following nonlinear control law

u∗ = G−1 (x)
(
−f(x)+ΛΛΛ+Ks+K0 tanh

(
s
ε0

))
(11)

where, K = diag [k1, . . . ,kq], K0 = diag [k01, . . . ,k0q], with ki > 0 and k0i > 0, for i =
1, . . . ,q, ε0 is a small positive constant, and tanh(·) is the hyperbolic tangent function
defined for the vector s = [s1, . . . ,sq]

T as

tanh
(

s
ε0

)
=

[
tanh

(
s1

ε0

)
, . . . , tanh

(
sq

ε0

)]T

. (12)

Effectively, when we select the control input as u = u∗, equation (10) simplifies to

ṡ =−Ks−K0 tanh
(

s
ε0

)
(13)

or, equivalently

ṡi =−kisi − k0i tanh
(

si

ε0

)
, i = 1, . . . ,q. (14)

From which one can conclude that si (t) → 0 as t → ∞ and, therefore, ei (t) and ėi (t)
converge to zero [21].

According to the above analysis, the ideal control law (11) is easily obtained if the
nonlinear functions f(x) and G(x) are known. However, in this paper, these nonlinear
functions are considered unknown, so the ideal controller (11) cannot be implemented.
In this work, we propose to design an adaptive PID control to approximate this unknown
ideal controller.

10.2478/acsc-2013-0019



318 A. BOUBAKIR, S. LABIOD, F. BOUDJEMA, F. PLESTAN

3.2. Adaptive PID Control design

In the previous subsection we have established that there exists an ideal control law
u∗ given by (11) that can achieve control objectives. However, this ideal controller cannot
be used since it depends on unknown functions. In this subsection, to overcome this
problem, we propose to use adaptive PID control for approximating this ideal controller.
The error between the adaptive PID controller and the ideal controller will be used to
update the free parameters of the PID controller.

3.2.1. Control law

To develop the control law, we assume that each component of the ideal input control
vector u∗ =

[
u∗1, . . . ,u

∗
q
]T can be approximated by a PID controller upidi , i = 1, . . . ,q,

whose general form is given as follows:

upidi = Kpiei (t)+KIi

t∫
0

ei (τ)dτ+Kdi

dei (t)
dt

(15)

where Kpi is the proportional gain, KIi is the integral gain, and Kdi is the derivative gain.

For convenience, let Θi = [Kpi ,KIi ,Kdi ]
T and Πi (ei) =

[
ei (t) ,

∫ t
0 ei (τ)dτ, dei(t)

dt

]T
. Hence,

we can rewrite (15) as
upidi (ei,Θ) = ΠT

i (ei)Θi. (16)

Moreover, we assume that there exists an optimal bounded time varying parameter vector
Θ∗

i with a bounded time derivative such that the ideal control u∗i fulfills

u∗i = ΠT
i
(ei)Θ∗

i + εi (x) (17)

where εi (x) is the approximation error, Θ∗
i is an unknown ideal parameter vector which

minimizes the function |εi (x)|.
Let us denote

ε(x)= [ε1 (x) , . . . ,εq (x)]T, Θ∗=
[
Θ∗T

1 , . . . ,Θ∗T
q
]T

and Π(e)= diag [Π1 (e1) , . . . ,Πq (eq)]

therefore, we can write
u∗ = ΠT (e)Θ∗+ ε(x) . (18)

Before proceeding we need to introduce an assumption about the approximation error
ε(x).

Assumption 3 The approximation error ε(x) in (18) is bounded as

εT (x)G(x)ε(x)¬ ε̄0sTG(x)s+ ε̄1 (19)

where ε̄0 and ε̄1 are two positive constants.
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Since the ideal parameter vector Θ∗ is unknown, so it should be estimated by a
suitable adaptation law. Let Θ be an estimate of the ideal vector Θ∗ and define the control
law as the adaptive PID approximation of the ideal controller (18), i.e., the control law
for system (3) is chosen as

u = upid = ΠT (e)Θ. (20)

After the specification of the controller structure, the next step should be the design of an
adaptive law for the free parameters Θ such that the control law u approximates, as best
as possible, the ideal controller u∗. To this end, a gradient descend adaptation algorithm
will be developed in the next subsection.

3.2.2. Adaptation law for PID control

Our goal in this subsection is to design an adaptive law for the parameter estimates
Θ such that the PID controller (20) approximates the unknown ideal controller (18), i.e.,
the adaptive law should be designed to make the error between u∗ and u as small as pos-
sible. Furthermore, the adaptive law should guarantee the boundedness of the parameters
estimates. To this end, let us define the error between u∗ and u as

eu = u∗−u. (21)

The error eu represents the actual deviation between the unknown function u∗ and the
control input upid . Using (18) and (20), (21) becomes

eu = u∗−ΠT (e)Θ = ΠT (e)Θ̃+ εi (x) (22)

where Θ̃ = Θ∗ − Θ is the parameter estimation error vector. Adding and subtracting
G(x)u∗ to the right-hand side of (10), we obtain the error equation governing the closed-
loop system

ṡ = ΛΛΛ− f(x)−G(x)u+G(x)u∗−G(x)u∗. (23)

With (11) and (22), (23) becomes

ṡ =−Ks−K0 tanh
(

s
ε0

)
+G(x)eu. (24)

Now, consider a quadratic cost function that measures the discrepancy between the ideal
controller u∗ and the actual PID controller upid , defined as

J (Θ) =
1
2

eT
uG(x)eu =

1
2
(
u∗−ΠT (e)Θ

)TG(x)
(
u∗−ΠT (e)Θ

)
. (25)

The gradient descent method is used here to minimize the cost function (25). Hence,
by applying the gradient descent method [21][22], we obtain as an adaptive law for the
parameters Θ, the following first order differential equation

Θ̇ =−η∇θJ (Θ) (26)
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where η is a positive constant parameter. From (25), the gradient of J(Θ) with respect to
Θ is

∂J (Θ)

∂Θ
=−Π(e)G(x)eu. (27)

Therefore, the gradient descent algorithm becomes

Θ̇ = ηΠ(e)G(x)eu. (28)

We recall here that the ideal controller u∗ is unknown, so the error signal eu defined
in (21) is not available. Equation (24) will be used to overcome this difficulty. Indeed,
from (24), we see that even if the error vector eu is not available, the vector G(x)eu is
available, and it is given by

G(x)eu = ṡ+Ks+K0 tanh
(

s
ε0

)
. (29)

Therefore, (28) becomes

Θ̇ = ηΠ(e)
{

ṡ+Ks+K0 tanh
(

s
ε0

)}
. (30)

As shown in [23], the adaptive law (30) cannot guarantee the boundedness of the param-
eters Θ̃ in the presence of approximation errors that are unavoidable in such adaptive
schemes. So, to improve the robustness of the adaptive law (30) in the presence of ap-
proximation errors, we modify it by introducing a σ-modification term as follows [23]

Θ̇ = ηΠ(e)
{

ṡ+Ks+K0 tanh
(

s
ε0

)}
−ησΘ (31)

where σ is a small positive constant. We notice that the adaptive law is modified so that
the time derivative of the Lyapunov function used to analyze this adaptive law becomes
negative in the space of the parameter estimates when these parameters exceed certain
bound [23].

3.2.3. Stability of the closed-loop system

In order to analyze the tracking error convergence and the stability of the closed-loop
system, let us consider the following Lyapunov-like function

V =
1
2

sTs+
1

2η
Θ̃TΘ̃. (32)

The time derivative of (32) can be given as

V̇ = sTṡ− 1
η

Θ̃TΘ̇+
1
η

Θ̃TΘ̇∗. (33)
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Using (24), (29) and (31), (33) becomes

V̇ =sT
(
−Ks−K0 tanh

(
s
ε0

)
+G(x)eu

)
−Θ̃T (Π(e)G(x)eu −σΘ)+

1
η

Θ̃TΘ̇∗. (34)

With (22), we can write

V̇ = −sTKs− sTK0 tanh
(

s
ε0

)
+ sTG(x)eu

(35)
−

(
eT

u − εT (x)
)

G(x)eu +σΘ̃TΘ+
1
η

Θ̃TΘ̇∗

or,

V̇ = −sTKs− sTK0 tanh
(

s
ε0

)
+ sTG(x)eu − eT

uG(x)eu + εT (x)G(x)eu

(36)
+ σΘ̃TΘ+

1
η

Θ̃TΘ̇∗.

Using the inequalities

σ Θ̃TΘ =−σ
2

∥∥∥Θ̃
∥∥∥2

− σ
2
∥Θ∥2 +

σ
2

∥∥∥Θ̃+Θ
∥∥∥2
¬−σ

2

∥∥∥Θ̃
∥∥∥2

+
σ
2
∥Θ∗∥2 (37)

εT (x)G(x)eu = −
(

1
2

eu − ε(x)
)T

G(x)
(

1
2

eu − ε(x)
)
+

1
4

eT
uG(x)eu

(38)
+ εT (x)G(x)ε(x)¬ 1

4
eT

uG(x)eu + εT (x)G(x)ε(x)

1
η

Θ̃TΘ̇∗ ¬ σ
4

∥∥∥Θ̃
∥∥∥2

+
1

ση2

∥∥Θ̇∗∥∥2 (39)

sTG(x)eu = −
(

1
2

eu − s
)T

G(x)
(

1
2

eu − s
)
+

1
4

eT
uG(x)eu + sTG(x)s

(40)
¬ 1

4
eT

uG(x)eu + sTG(x)s

equation (36) can be bounded as

V̇ ¬ −1
2

eT
uG(x)eu − sTK0 tanh

(
s
ε0

)
− sT (K−G(x))s− σ

4

∥∥∥Θ̃
∥∥∥2

(41)
+

σ
2
∥Θ∗∥2 +

1
ση2

∥∥Θ̇∗∥∥2
+ εT (x)G(x)ε(x) .
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Using the inequality(19), we have

V̇ ¬ −1
2

eT
uG(x)eu − sTK0 tanh

(
s
ε0

)
− sT (K−G(x))s− σ

4

∥∥∥Θ̃
∥∥∥2

(42)
+

σ
2
∥Θ∗∥2 +

1
ση2

∥∥Θ̇∗∥∥2
+ ε0sTG(x)s+ ε̄1

or,

V̇ ¬ −1
2

eT
uG(x)eu − sTK0 tanh

(
s
ε0

)
− sT (K− (1+ ε̄0)G(x))s− σ

4

∥∥∥Θ̃
∥∥∥2

(43)
+

σ
2
∥Θ∗∥2 +

1
ση2

∥∥Θ̇∗∥∥2
+ ε̄1.

Since the parameters Θ∗ and its time derivative Θ̇∗, the functions ε(x) and G(x) are
assumed bounded in this paper, so we can define a positive constant bound Q as

Q = sup
t

(
σ
2
∥Θ∗ (t)∥2 +

1
ση2

∥∥Θ̇∗ (t)
∥∥2

+ ε̄1

)
. (44)

Then, (43) can be simplified to

V̇ ¬−1
2

eT
uG(x)eu − sTK0 tanh

(
s
ε0

)
− sT (K− (1+ ε̄0)G(x))s− σ

4

∥∥∥Θ̃
∥∥∥2

+Q. (45)

Assuming that the design parameter ki is chosen such that ki > (1+ ε̄0) ḡ1, i = 1, . . . ,q,
and γ = min(2min1¬i¬p (ki − (1+ ε̄0) ḡ1) ,0.5ση), the inequality (45) can be written as
follows

V̇ ¬−1
2

eT
uG(x)eu − sTK0 tanh

(
s
ε0

)
− γ

2
sTs− γ

2η

∥∥∥Θ̃
∥∥∥2

+Q (46)

or,
V̇ ¬−γV +QAC. (47)

Now we can prove the following theorem that shows the boundedness of all variables in
the closed-loop system.

Theorem 1 Consider the system (3). Suppose that Assumptions 1 and 2 are satisfied
and the design parameter ki is chosen such that ki > (1+ ε̄0) ḡ1, i = 1, . . . ,q. Then the
control law defined by (20) with the adaptation law given by (31) guarantees that the
closed-loop system is UUB stable and the output tracking error converges to a small
neighborhood of the origin.

Proof From (47), we can have

V (t)¬V (0)e−γt +
Q
γ
. (48)
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Then from (47), it can be shown that for V ­ Q/γ we have V̇ ¬ 0. Accord-
ing to a standard Lyapunov theorem, the signals s(t), Θ̃(t) and u(t) in the
closed-loop system are bounded. Moreover, from (32) and (48) we can write

∥s(t)∥¬
√

∥s(0)∥2 + 1
η

∥∥∥Θ̃(0)
∥∥∥2

e−0.5γt +
√

2Q
γ , and in order to achieve the tracking er-

ror convergence to a small neighborhood around zero, the parameters ki, σ and η should
be chosen appropriately. Then, it is possible to make

√
2Q
γ as small as desired. Denote

Φ =
√

2Q
γ , it is easy to see that ∥s(t)∥¬Φ as t →∞. This implies that the tracking errors

converge asymptotically to residual sets as:
∣∣∣e( j)

i (t)
∣∣∣ ¬ 2 jλ j−1

i Φ, j = 0,1, i = 1, . . . ,q.
This completes the proof.

Remark 2 It is worth to point out that in the PID controller (20) there is no robustifying
control term. In this paper, the term K0 tanh

(
s
/

ε0
)

in the parameter adaptive law plays,
in some way, the role of a robustifying control term. Therefore, the robustness of the
controller can be improved by selecting large positive values for the design parameter
K0.

Remark 3 Because the aim of the σ-modification adaptive law (31) is to avoid parameter
drift, it does not need to be active when the estimated parameters are within some
acceptable bound. Therefore, a more reasonable modification would be to select σ as
[23]: σ = 0, if ∥Θ∥ ¬ MΘ, σ = σ0, otherwise; where MΘ and σ0 are design positive
constants, and MΘ ­ sup

t­0
(∥Θ∗ (t)∥) .

Remark 4 It is worth noticing that because of the integral structure of the adaptive
law (31), this parameter updating law is implementable despite the presence of the time
derivative ṡ(t). To show that, rewrite first the adaptation law (31) as

Θ̇i = ηΠi (ei)
{

ṡi + kisi + k0 i tanh
(
si
/

ε0
)}

−ησΘi , i = 1, . . . ,q. (49)

From (7) , the time derivative ṡi (t) can be written as

ṡi = e(2)i +λiėi. (50)

Then, (49) can be expressed as

Θ̇i = ηΠi (ei)e(2)i +φi (51)

where φi = ηΠi (ei)
{

λiėi + kisi + k0 i tanh
(
si
/

ε0
)}

−ησΘi. From (51), one can obtain
Θi (t) as

Θi (t) = Θi (0)+
t∫

0

φi dτ+η
t∫

0

(
Πi (ei)e(2)i

)
dτ. (52)
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The first term
t∫

0
φi dτ is easily computable since φi depends only upon measurable sig-

nals. However, the second term η
t∫

0

(
Πi (ei)e(2)i

)
dτ raises the question of the availability

of the signal e(2)i (t). Since Πi (ei) = [ei (t) ,zi (t) , ėi (t)]
T with zi (t) =

∫ t
0 ei (τ)dτ, using

integration by parts, the three entries of the vector
t∫

0

(
Πi (ei)e(2)i

)
dτ can be computed

without using e(2)i (t). The first entry
t∫

0

(
eie

(2)
i

)
dτ is computed as

t∫
0

(
eie

(2)
i

)
dτ = eiėi|t0 −

t∫
0

(ėi)
2dτ. (53)

The second entry
t∫

0

(
zie

(2)
i

)
dτ is given by

t∫
0

(
zie

(2)
i

)
dτ = ziėi|t0 −

t∫
0

(eiėi)dτ. (54)

Finally, the third entry
t∫

0

(
ėie

(2)
i

)
dτ is obtained as

t∫
0

(
ėie

(2)
i

)
dτ =

1
2

t∫
0

(
dė2

i

dt

)
dτ =

1
2

ė2
i (t)−

1
2

ė2
i (0) . (55)

Consequently, the parameters of the PID controllers can be computed without the need
of using e(2)i (t).

4. Self-tuning PID control for the 3-DOF helicopter

The stable self-tuning PID controller developed in the previous section will be used
to control the 3-DOF helicopter. Our objective is to ensure the convergence of the eleva-
tion and travel angles (ψ,ϕ) to the desired trajectories (ψd ,ϕd). Since the control of the
travel rotation require the pitch rotation control, another controller is used to ensure also
the convergence of the angle (θ) to the desired angle (θd). In each case, a self-tuning
PID controller will be used.

From (2), it can be seen that the travel rotation (ϕ) depends on the control input u1.
Indeed, u1 is the designed total input vector oriented to obtain the desired elevation and
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travel angles. Let us define u3 = u1 sin(θ) as the component of the vector u1 responsi-
ble for the travel rotation. Then, the desired pitch angle θd ensuring the suitable travel
rotation can be computed by

θd = arcsin
(

u3

u1 +∆ε

)
(56)

where ∆ε is a small positive constant. The dynamic model (2) can be rewritten as follows

ψ̈ =
1
Jψ

(
−Mhgcos(ψ)La +Mωgcos(ψ)Lω − fψ (ψ̇)

)
+

1
Jψ

(K f cos(θ)La)u1

θ̈ =
1
Jθ

(
− fθ

(
θ̇
))

+
1
Jθ

(K f Lh)u2 (57)

ϕ̈ =
1
Jϕ

(
− fϕ

(
ϕ̇
))

+
1
Jϕ

(K f La)u3

In order to simplify the application of the self-tuning PID controller developed in the pre-
vious section to the 3-DOF helicopter system, let us define y= [ψ,θ,ϕ] as the output vec-
tor, u = [u1,u2,u3]

T as the vector of the control inputs and the state space vector by x =[
ψ, ψ̇,θ, θ̇,ϕ, ϕ̇

]T, f(x) = [ f1 (x) , f2 (x) , f3 (x)]T and G(x) = diag[g1 (x) ,g2 (x) ,g3 (x)]T

where the elements fi (x) and gi (x), i = 1 : 3, are given as the following:

f1 (x) =
(
1
/

Jψ
)(

−Mhgcos(ψ)La +Mωgcos(ψ)Lω − fψ (ψ̇)
)
,

f2 (x) =
(
1
/

Jθ
)(

− fθ
(
θ̇
))

,

f3 (x) =
(
1
/

Jϕ
)(

− fϕ
(
ϕ̇
))

,

g1 (x) =
(
1
/

Jψ
)
(K f cos(θ)La) ,

g2 (x) =
(
1
/

Jθ
)
(K f Lh) ,

g3 (x) =
(
1
/

Jϕ
)
(K f La) ,

Then, the 3-DOF helicopter system given by (2) can be expressed as

ÿ = F(x)+G(x)u (58)

which is in the general input-output form given by (5) with q = 3 in this case. Moreover,
as long as −1 [rad]< θ <+1 [rad], we have g1 (x)> 0 and consequently the matrix G(x)
is positive definite.

The convergence of the angular positions (ψ,θ,ϕ) to the desired trajectory
(ψd,θd ,ϕd) can be achieved with the control inputs (u1,u2,u3). In this subsection, we
describe the application of the control scheme presented in section 3 to control the ele-
vation, the pitch and the travel angles. In the first step, let us define the tracking errors(
eψ,eθ,eϕ

)
and the filtering errors

(
sψ (t) ,sθ (t) ,sϕ (t)

)
as follows

sψ (t) = ėψ (t)+λψeψ (t) , eψ = ψ−ψd

sθ (t) = ėθ (t)+λθeθ (t) , eθ = θ−θd

sϕ (t) = ėϕ (t)+λϕeϕ (t) , eϕ = ϕ−ϕd .

(59)
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The inputs (u1,u2,u3) are chosen as the outputs of three PID controllers given by
u1 = Kpψeψ (t)+KIψ

∫ t
0 eψ (τ)dτ+Kdψdeψ (t)

/
dt

u2 = Kpθeθ (t)+KIθ

∫ t
0 eθ (τ)dτ+Kdθdeθ (t)

/
dt

u3 = Kpϕeϕ (t)+KIϕ

∫ t
0 eϕ (τ)dτ+Kdϕdeϕ (t)

/
dt

(60)

that are updated online with the following parameter adaptation laws
Θψ =

[
Kpψ ,KIψ ,Kdψ

]
, Θ̇ψ= ηΠ

(
eψ
){

ṡψ+kψ sψ+k0ψ tanh
(
sψ/ε0

)}
−ησΘψ

Θθ = [Kpθ ,KIθ ,Kdθ ] , Θ̇θ = ηΠ(eθ){ṡθ + kθ sθ + k0θ tanh(sθ/ε0)}−ησΘθ

Θϕ =
[
Kpϕ ,KIϕ ,Kdϕ

]
, Θ̇ϕ = ηΠ

(
eϕ
){

ṡϕ + kϕ sϕ + k0ϕ tanh
(
sϕ/ε0

)}
−ησΘϕ.

(61)

As it has been demonstrated previously, the PID controllers given by (60) and updated
with the adaptive law (61) guarantee the convergence of the angles (ψ,ϕ,θ) to the desired
angles (ψd ,ϕd ,θd). The control voltages Vf and Vb, applied to the front and back motors
are computed from the command signals u1 and u2 as follows :{

Vf = 0.5(u1 +u2)

Vb = 0.5(u1 −u2) .
(62)

4.1. Experiment results

In this section, we will verify experimentally the effectiveness of the proposed stable
self-tuning PID controller applied to 3-DOF helicopter system. The control structure is
illustrated in Fig. 2 and the parameters of the used helicopter are given in Table 1.

The control law was developed and implemented using Matlab Simulink and Real
Time Workshop with a fixed step size of ∆t = 0.001sec. The control objective con-
sists of moving the helicopter from the initial position (ψ = 0,ϕ = 0) to the position
(ψ = 20◦,ϕ =−20◦). In order to make the desired outputs as smooth curves, the refer-
ence trajectories chosen for ψd (t), θd (t) and ϕd (t) are filtered respectively with a sec-
ond order filter, a first order filter and a six order filter defined by the transfer functions
Hψ = 1

/
(p+1)2, Hθ = 1

/
(p+1) and Hϕ = 1

/
(p+1)6 where p is the Laplace variable.

The controller parameters used in experiment study are: λψ = λϕ = 150 and λθ = 100,
kψ = kθ = 3 and kϕ = 0.3, k0ψ = k0θ = k0ϕ = 0.1AC, η= 25, η= 25, σ= 0.001, ε0 = 0.01.
The initial values of the parameter estimates are chosen as: Θψ (0) = Θθ (0) = [0,0,0]T

and Θϕ (0) = [0,0,50]T.
The experiment results appear in Figs. 3-10. Fig. 3 illustrates the time evolution

of the desired and actual elevation angle, Fig. 4 shows the desired and actual travel
angle and Fig. 5 shows the desired and actual pitch angle. It can be seen from these
figures that the actual trajectories {ψ(t) ,θ(t) ,ϕ(t)} converge to the desired trajectories
{ψd (t) ,θd (t) ,ϕd (t)}. The control voltages for front and back motors are shown in Figs.
6 and 7. Fig. 8 illustrates the time evolution of the gains Kp1 , KI1 and Kd1 for the elevation
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angle controller, the gains Kp2 , KI2 and Kd2 for the travel angle controller are given in
Fig. 9 and the gains Kp3 , KI3 and Kd3 for the pitch angle controller are given in Fig. 10.
From the Figs. 8, 9 and 10, it can be seen that all the parameter estimates are bounded.
These experimental results demonstrate the performances of the proposed self-tuning
PID controller and its effectiveness for control tracking of helicopter systems.

Figure 2. Synoptic scheme of the proposed controller.

Figure 3. Trajectories ψ(t)-solid and ψd(t)-broken. Figure 4. Trajectories ϕ(t)-line and ϕd(t)-broken.
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Figure 5. Trajectories θ(t)-solid and θd(t)-broken. Figure 6. Control voltage V f .

Figure 7. Control voltage Vb. Figure 8. Evolution of the gains Kp1 , KI1 , Kd1 .

Figure 9. Evolution of the gains Kp2 , KI2 , Kd2 . Figure 10. Evolution of the gains Kp3 , KI3 , Kd3 .
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5. Conclusion

In this paper, a stable self-tuning PID controller was proposed and applied in real
time for a 3-DOF helicopter which is a nonlinear system, coupled and under-actuated.
Since the proposed self-tuning PID control scheme is a model-free control it has been
developed for a second order MIMO nonlinear systems class in the general case and then
applied to the 3-DOF helicopter system that belongs to this class. The scheme consists of
an adaptive PID controller with its adaptive law. The PID algorithm is used to construct
adaptively an unknown ideal controller and its adjustable parameters are updated, by us-
ing the gradient descent method, in order to minimize the error between the unknown
controller and the used PID controller. The proposed control scheme does not require the
knowledge of the mathematical model of the plant, guarantees the boundedness of all the
signals in the closed-loop system, and ensures the convergence of the tracking errors to
a neighborhood of the origin. The ability of the proposed controller has been experimen-
tally examined and tested in the control of a helicopter system. Our objective is to drive
the helicopter to a desired elevation and travel angles while keeping the stability of the
pitch. Experiment results show the good performances of the proposed controller. Future
works will focus to improve our approach by introducing a state observer to provide an
estimate of the state vector.
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