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Discrete-time switching state-space controller
of DC drive

GRZEGORZ SIEKLUCKI, BARBARA BISZTYGA, RAJMUND SYKULSKI, ANTONI ZDROJEWSKI
and TADEUSZ ORZECHOWSKI

Control synthesis with state variables constraints for the DC drive is considered. Con-
straints are defined for the specific operating states of the DC motor during starting and braking
in the presence of selected specific conditions. The control signal is based on the reference val-
ues and current state of the motor. The inverse dynamics method is applied. Closed-loop control
law is realized by means of switching state-space controller.

Key words: DC drive, state variable constraints, switching gain matrix controller, state
variables controller

1. Introduction

Most of the real processes are subject to certain restrictions. They are natural con-
sequences of the limited resources of energy and how it is processed, the construction
of devices, actuators and also the environmental conditions. In real dynamic systems
state and control variables are constrained due to technical and energy reasons. In drive
systems with electrical motors such values as maximum current in electrical circuits,
derivatives of currents, shaft velocities and power supplied to the system are usually
limited.

In the control theory, such constraints can be defined in many ways: as lower/upper
limits (boundary layer) of the signals, boundary conditions of variables or trajectories
in the state space. Moreover, these constraints can also express our expectations that
the control system has to be satisfied. Hence, they are defined as the main content of
the control tasks, which goal is tracking of desired trajectory. Constraints are met in
the optimization problems, where decision variables subject to restrictions. They can be
also described as signal limits by the saturation elements (e.g. conventional PID con-
trollers). The problems with constraints take place in several areas of control theory
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such as optimization, adaptation, variable structure control and also in inverse dynamics
problems [1, 3, 7, 27, 28].

The control synthesis of the DC drive can be defined as the optimal-energy control,
LQ problem [5, 12], control selection for starting and stabilization [4, 13, 14, 26], slid-
ing mode control [7, 9, 27], motor torque control [21, 23] and also in cascade control
structure [11, 20].

Furthermore, the control synthesis of the DC drive is considered. It is assumed that
the DC drive system will realize the reference current curve. This current curve involve
all the constraints that arise from operating conditions of the DC drive. To solve this
problem inverse dynamics methodology will be used. The control system structure re-
sulting from carried out studies is presented in Figure 1.

vref SSV viref (k) us(k) x(k + 1) = Ax(k) +Bus(k)+ G�(k) v(k)i(k)�(k)
REGur(k)-usw(k) LTO�̂(k)

Figure 1. Control system structure

The paper is organized as follows. At first, the discrete-time control based on in-
verse dynamics is briefly outlined. Then, mathematical model of the DC drive and its
constraints of the state variables are presented. Next, switching-gain controller is dis-
cussed in detail. Both, the starting and braking problems, are solved in three stages. The
stabilization of the angular velocity at variable load torque is treated as the additional
independent fourth stage which is not further discussed. The rest part of the work is de-
voted to both experimental and simulation researches of the selected DC drive. Some
conclusions resulting from carried out practical and theoretical studies are mentioned at
the end of the paper.

2. Discrete-time control of dynamic system with state variables constraints

In this section basic problems of inverse dynamics are presented. For the purpose of
control synthesis discrete-time dynamic model of a plant in state-space domain is taken
into account. The mathematical model of a plant is considered

x(k+1) = Ax(k)+Bu(k), x(0) = x0 (1)
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where

x(k) =



x1(k)
x2(k)

...
xp(k)

...
xn(k)


∈ Rn, u(k) =



u1(k)
u2(k)

...
ul(k)

...
um(k)


∈ Rm, (2)

Solution of the equation (1) is given as

x(k) = Akx(0)+
k−1

∑
j=0

Ak− j−1Bu( j) (3)

The Z transformation of (1) is of the form (4)

zx̂(z)− zx(0) = Ax̂(z)+Bû(z) (4)

that is the basis for direct determination of the state-space controller.
The inverse dynamics problem consists in the control signals calculation for previ-

ous defined reference state variables. Hence, the control u(k) results directly from the
solution of the equation (3) or (4).

Inverse dynamics is realizable when invertibility of the input-output system dynam-
ics is possible and system is minimum phase i.e. its input-output transfer function has all
zeros inside unit circle in the complex plane.

The notion of connection of state variables with control is helpful.

Definition 1 For state-space equation (1) – (2) the state variable with index p is con-
nected with the input of the system (1) with index l if the control ul(k) affects xp(k).

Theorem below is useful in solving the inverse problem and it is an extension of the
continuous-time method presented in [18].

Theorem 13 Control along state variable constraints for multivariable systems. If the
dynamic system (1) is controllable and m Z transformations of the state vector x̂(z) are
known (functions satisfying state variables constraints) and each of these functions is
connected with another control signal, then the Z transformation of the control vector
û(z) can be calculated on the basis of the equation

Bû(z) = (zI −A)x̂(z)− zx(0) (5)

where x(0) is an initial condition.
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This theorem states the conditions for the solvability of inverse problem.
The control u(k) carrying out the system along constraints of the state variables

is performed as follows: at first, Z transformations of constraints are calculated, next
û(z) from (5) is achieved and eventually control u(k) in the time domain is obtained by
inverse Z transform of û(z).

Comments on Theorem 13

(i) The assumption concerning the number of constraints functions and their connec-
tion with control vector result from the condition of the solution (5).

(ii) The equation (5) is the system of n-polynomial equations where m components
of vector û(z) and n−m unknown functions of the state vector x̂(z) which fully
describes the system trajectory have to be determined.

(iii) The u(k) is the control signal in open-loop system but it is possible to determine
u(k) as the feedback signal from state vector x(k).

3. Mathematical model of the DC drive and its state variable constraints

Mathematical model of the separately excited DC motor according to [10, 11, 15,
16, 20, 22] alongside the power actuator model can be described by the following state
space equationω̇(t)

İ(t)

=

 0 ψe/J
−ψe/L −1/T

ω(t)
I(t)

+

−1/J 0
0 Kp/L

Mm(t)
Us(t)

 (6)

where: Us – voltage control of the power actuator, I – armature current, Mm – load torque,
ω – angular velocity, ω0 – nominal no-load speed, ψe – flux linkage, Tm – starting elec-
tromechanical time constant, T – electromagnetic time constant, J – moment of inertia,
B – electromechanical time constant, R – generalize resistance, L – total armature induc-
tance, Kp – gain of power actuator.

The mathematical model (6) is valid in the following assumptions: the power actua-
tor is an inertialess system with constant gain Kp (this assumption is satisfied for modern
power converters e.g. [8, 19]), drive works in range of continues current, commutation
process does not influence on external measurable parameters of drive. Those assump-
tions do not limit the use of (6) because they are always satisfied for drive systems with
properly taken motor and power actuator.

A DC drive system properly working in a dynamical states has the current (motor
torque) constraints:

|I(t)|¬ Id = λIN – current value constraint,∣∣∣∣dI(t)
dt

∣∣∣∣¬ pIN – current derivative constraint

 (7)

10.2478/acsc-2013-0020



DISCRETE-TIME SWITCHING STATE-SPACE CONTROLLER OF DC DRIVE 337

where λ, p are positive definite constants and the subscript N means nominal (rated)
value.

In the following researches the dynamical model (6) in per units values (p.u.) is taken
into account:

us(τ) =
KpUs(t)

UN
, i(τ) =

I(t)
IN

, a =
Tm

T
,

B = J
R
ψ2

e
, v(τ) =

ω(t)
ω0

, Tm = J
ω0

MN
= Bh,

µ(τ) =
Mm(t)

MN
, τ =

t
Tm

, h =
UN

INR
.

(8)

Inserting (8) into model (6) the following state equation of DC drive is obtained

ẋ(τ) = Ãx(τ)+ B̃u(τ) (9a)

where

u(τ) =
 µ(τ)

us(τ)

 , x(τ) =
v(τ)

i(τ)

 , (9b)

Ã =

 0 1
−ah −a

 , B̃ =

−1 0
0 ah

 (9c)

The constraints (7) take a new form:

|i(τ)|¬ λ (10)∣∣∣∣di(τ)
dτ

∣∣∣∣¬ jd = pTm (11)

The synthesis of the controller can be performed using discrete time mathemati-
cal model of the electrical drive. The ZOH discretization method is preferred because
discrete-time controllers with AD converters are most frequently used.

The model (9) after discretization process with ZOH is described by the difference
equation [20]

x(k+1) = Ax(k)+Bus(k)+Gµ(k) (12)

where

A =

a11 a12

a21 a22

 ,B =

b1

b2

 ,G =

g1

g2

 ,

a21 =−aha12

(13)

This model will be used in the control synthesis.
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4. Synthesis of switching state-space controller

Fully performed control synthesis requires consideration of several characteristic
work conditions of DC drive i.e. starting, braking, stabilization.

In general, the control u(k) is in the following form

ui(k) =−Kix(k)+ vi re f (k) (14a)

where K is the feedback matrix gain

Ki =
ki 1 ki 2

 (14b)

Starting of DC drive

For continuous mathematical model (in p.u.) of DC motor (9) and constraints (10),
(11) optimum start-up curve is shown in Fig. 2 [18].

τ

2 3 4

t1

i

v

t2 t3

λ

1

vk1

v30

vref

Figure 2. Armature current and angular velocity during the starting µ = 0

Starting of the motor consists of 3 segments of current function:

1. linear function – constraint (11) takes place

i1(τ) = jdτ τ ∈ [0, t1] (15)

2. constant function with constraint (10)

i2(τ) = λ τ ∈ (t1, t2] (16)
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3. linear function – constraint (11) takes place again

i3(τ) =− jdτ+λ τ ∈ (t2, t3] (17)

Z transform is calculated for each segment of the starting curve (Ts is a sampling time):

i1(k) = jdTsk
Z (·)−−−→ jdTsz

(z−1)2 = î1(z), (18)

i2(k) = λ
Z (·)−−−→ λz

z−1 = î2(z), (19)

i3(k) =− jdTsk+λ
Z (·)−−−→ λz2−( jdTs+λ)z

(z−1)2 = î3(z). (20)

The mathematical model (12) is considered for vector G equals 0 but b2 ̸= 0.
The control u(k) is evaluated independently for each segment. Each stage begins in

the new time, taking k = 0. The control problem is calculated for the new initial state
x0. The result of the calculations is a sequence of three matrices {K1,K2,K3} of the
controller.

Stage 1: Initial conditions are
i10 < λ, v < v30 (21)

These values are marked in the figure 2.
Inserting (18) and (21) to equation (12) the Z transform of control signal is obtained

in the following form

û1
s (z) =−a21

b2
v̂1(z)−

a22

b2
· jdTsz
(z−1)2 +

jdTsz2

b2(z−1)2 (22)

and after inverse Z transform control signal in sampling domain is

u1
s (k) =−a21

b2
v1(k)−

(
a22 −1

b2

)
jdTsk+

jdTs

b2
(23)

Thus,
u1

s (k) =−K1x(k)+ v1re f (k) (24a)

where
k11 =

a21

b2
, k12 =

a22 −1
b2

, v1re f (k) =
jdTs

b2
(24b)

Stage 2: In this case initial conditions equal

i20 = λ, v < v30 (25)

As in the first stage the control law is in the following form

u2
s (k) =−K2x(k)+ v2re f (k) (26a)
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where

k21 =
a21

b2
, k22 = 0, v2re f (k) = λ

(
1−a22

b2

)
(26b)

Stage 3: Initial conditions are
i30 ¬ λ, v­ v30 (27)

and initial angular velocity:

v30 = vre f −△v3(k)

= vre f +
(µ−λ)(acl12λb2 −acl12µb2 − jdTsacl12b2 +2 jdTsb1)

2 jdTsb2

(28)

where acl12 =
aha2

12 +aa12a22 −aa12 +a2
22 −2a22 +1

aha12
. The condition of switch-on the

third stage (u3
s (k)) is v = v30. The value (28) depends on the load torque µ.

As previously, the last control law is expressed in the following form

u3
s (k) =−K3x(k)+ v3re f (k) (29a)

where
k31 =

a21

b2
, k32 =

a22 −1
b2

, v3re f (k) =− jdTs

b2
(29b)

Moreover, the formula (13) can be written as a21
b2

= −1 and thus gain matrices are in
simple form

K1 = K3 =

−1
a22 −1
−a21

 , (30a)

K2 =
−1 0

 (30b)

The control laws (24a), (26a) and (29a) are shown in the block structure of DC drive
control system (Fig. 3)

The next stage of the control synthesis is the stabilization of the angular velocity
which is not considered in this paper.

Braking of DC drive

Braking of the DC motor is carried out by using the same control gain matrices Ki
as for the start-up, but all setvalues vire f are multiplied by −1.

The third stage condition v = v30 for braking process has similar form to (28)

v30 = vre f −△v3 = vre f +
1
2 acl12(λ+µ)− 1

2

(
2(λ+µ)b1

b2
+ (λ+µ)2acl12

jdTs

)
(31)

Synthesis results allow to construct the control system structure (Fig. 1).
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5. Control system structure

The function of the controller REG is simultaneous switching of the gain matrix con-
troller Ki and selecting of setvalue vire f depending on actual state vector in the suitable
stage: starting, braking or stabilization of the drive. The control ur(k) and the decision
usw(k) are the REG output signals. The REG makes decision on signal usw(k) indepen-
dently in every stage.
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Figure 3. Structure of DC drive control system

The structure of the proposed control system is presented in Fig. 3. The block se-
lection SSV of the setpoint and REG unit are emphasized. The sequence of the gain
matrix feedback controller Ki = {K1,K2,K3} is provided by control synthesis. Then
the setpoints vire f =

{
v1re f ,v2re f ,v3re f ,v4re f ,v5re f ,v6re f

}
are calculated respectively. The

switching conditions usw(k), for every gain matrix Ki with assigned setpoints are the final
goal of the control synthesis. This task is performed by SGMSV block.

During the executing of the control task only one connector in REG unit and SSV
unit is turned on.

The controller is the state-variable feedback controller. Load Torque Observer (LTO)
should be applied (what is shown in Fig. 1).
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6. Practical results

Practical tests have been carried out and the results obtained make the correction of
quality control possible (i.e. precision of current curve tracking).

The control system from Fig. 3, with sampling time Ts = 0.0005s, is realized in
Simulink with Real-Time Workshop Toolbox. The parameters of the drive system and
the power converter used in researches are included in the Appendix.

Results are shown in Fig. 4, 5 and 6 for different values ωre f , R, λ. The drive system
starts from the point of equilibrium equals zero and without the load torque.
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Figure 4. Drive starting (ωre f = 120[rad/s], λ = 1.0, R = 1.2[Ω] in calculations)

In general, in stage 2 with flat current curve, the control signal gives wrong results
(current exceeds the constraints (7)), because of the lack of feedback signal from the
armature current (k22 = 0). Thus, the control signal (26a) should be supplemented by the
corrector f (λ− i) and then

u2
s (k) =−K2x(k)+ v2re f (k)+ f (λ− i) (32)

Function f can be chosen as sgn(K1
2 (λ− i)) or sat(K1

2 (λ− i)). The first case may gener-
ated chattering [27] (it will not be used). In the second case, for K1

2 = 3 and saturation
equals ±1, improved results are presented in the figure 6. Moreover, the reference angu-
lar velocity is achieve without the overshoot.

The results are consistent with the reference current curve in the figure 2. Thus, this
method with corrector (32) can be implemented in the real-time in practice.
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Figure 5. Drive starting (ωre f = 60[rad/s], λ = 2.0, R = 2.3[Ω] in calculations)
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Figure 6. Drive starting (ωre f = 80[rad/s], λ = 2.0, R = 2.3[Ω] in calculations)

7. Simulations of the load torque influence on motor starting

Simulation researches have been performed in Matlab-Simulink software environ-
ment for the following parameters: integration method with fixed stepsize equals 0.00002
[s], sampling time of the control system Ts = 0.0005[s], time constant of the load torque
observer Ta = 0.002[s] (which is presented in appendix eqn. (33)). The particular states
of the DC motor, during starting, have been verified for step load torques in different
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points of time. Simulation results are presented in the form of state variables ω, I and
the switching signal of the state controller usw plots.
The figure 7 concerns three types of the motor starting:

• line 1 - start from ω(0) = 0[rad/s], I(0) = 0[A], Mm(0) = 0[Nm],

• line 2 - start from ω(0) = 0[rad/s], I(0) = 0[A], Mm(0) = 80[Nm],

• line 3 - start from ω(0) = 60[rad/s], I(0) = 18[A], Mm(0) = 40[Nm].

Presented curves confirm the effectiveness of the applied method in terms of the state
variables constraints.
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Figure 7. DC drive starting for different reference values: line 1 and 2 – ωre f = 180[rad/s], line 3 – ωre f =
120[rad/s].

Figures 8 and 9 refer to the start-up with no-load at time t = 0[s], but the step of load
torque takes place in several points of time:

• line 4 - impact load in stage 1, i.e. Mm(t) = 80 ·111(t −0.01),

• line 5 - impact load in stage 2, i.e. Mm(t) = 80 ·111(t −0.2),

• line 6 - impact load in stage 3, i.e. Mm(t) = 80 ·111(t −0.61),

The same curves (4, 5, 6) are placed on the enlargement scale in figure 9.
The points at which the motor current decreases and the points of maximum over-

shooting of the angular velocity are shown. In the current curve in the stage 3 one oscil-
lation is visible. This effect results from inertial response of the load torque observer.
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Figure 8. DC drive starting with load torque
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Figure 9. Switching from the 2nd to the 3rd stage.

In the last figure (fig. 10) line number 6 is repeated and two additional lines (7 and
8) for two different time constants Ta of the load torque observer are presented. There is
the upper limit of the Ta for which the observer works fast enough and the current curve
does not exceed the current selected constraints.

10.2478/acsc-2013-0020



346 G. SIEKLUCKI, B. BISZTYGA, R. SYKULSKI, A. ZDROJEWSKI, T. ORZECHOWSKI

0.55 0.6 0.65 0.7 0.75 0.8
0

50

100

I

0.55 0.6 0.65 0.7 0.75 0.8
170

175

180

185

ω

 

 

0.55 0.6 0.65 0.7 0.75 0.8
1

2

3

4

U
s
w

t

 

 

6
7
8

Figure 10. Influence Ta of load torque observer on current curve: line 6 - Ta = 2[ms], line 7 - Ta = 10[ms],
line 8 - Ta = 19.8[ms].

Carried out simulation researches prove that proposed start-up system is insensitive
to varying duty. The proposed start-up system works well.

8. Conclusion

The presented method can be implemented, as supervisory control, in electrical drive
systems where the mathematical model of the motor torque is linear. Thus, this method
can be also used in the following systems [22]:

• PMSM drives (in rotor flux frame coordinates),

• squirrel cage induction motors in rotor field oriented control systems.

The greatest advantage of this method is independence from the type of model plant,
no matter if a motor is the inertia or oscillatory element:

• big value of J – the drive system is at least a 2nd order inertia element,

• small value of J – the drive system is probably an oscillatory element, at least 2nd
order.

Concluding, the control problem under the linear-switchable constraints for linear
dynamical system has been resolved. The inverse dynamics method has been confirmed
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experimentally. Practical researches have been performed for the nonlinear and uncer-
tain system [24] such as the DC motor with thyristor power converter. The simulation
researches for the similar control system have been carried out, too, in which the load
torque influence on the reference current curve realization has been investigated. In gen-
eral, theoretical results have been verified.

Stability analysis of the presented system is complicated because of the mathemati-
cal model uncertainty, quantization process and sampling time (uncertain sampled-data
control system). This problem requires further detailed analysis.

9. Appendix

9.1. Drive parameters

PN = 18[kW], UN = 440[V], IN = 47[A],
ψeN = 2,197[ Vs

rad ], ωN = 188[ rad
s ], ω0 = 200,3[ rad

s ],

J = 0,69[kgm2], R = 1,8[Ω], L = 99[mH],

Kp = 75[V
V ], p = 50[A

s ], λN = 2[ Imax
IN

]

9.2. Load Torque Observer

There are different kinds of the state variable observers like: linear, nonlinear, sliding
mode, full or reduced order [1, 2, 6, 14, 17, 25].

The continuous-time Load Torque Observer can be designed as [25]

M̂m(s) =
ψe

(Tas+1)2 I(s)− Js
(Tas+1)2 ω(s) = G1(s)I(s)−G2(s)ω(s). (33)

where Ta is the time constant.
After discretization with zero order hold element the observer is obtained in the

following form

M̂m(z) =
z−1

z
·
(

Z

[
L −1

{
G1(s)

s

}]
I(z)−Z

[
L −1

{
G2(s)

s

}]
ω(z)

)
(34)

where Z is Z-transform and L −1 is inverse Laplace transform. The observer (34) has
been verified in practice.
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[15] M.P. KAŹMIERKOWSKI and H. TUNIA: Automatic Control of Converter-Fed
Drives. Amsterdam, ELSEVIER, 1994.

[16] W. LEONHARD: Control of Electrical Drives. Berlin, Springer-Verlag, 1997.

[17] T. ORŁOWSKA-KOWALSKA: Sensorless Induction Motor Drives. Wroclaw Uni-
versity of Technology Press, 2003, (in Polish).

[18] T. ORZECHOWSKI and G. SIEKLUCKI: Control of Dynamic System with State
Variables Constraints, Applied to DC Drive. SAMS, 38 (2000), 601-620.

[19] A. PENCZEK, R. STALA, Ł. STAWIARSKI and M. SZAREK: Hardware-in-the-loop
FPGA-based simulations of switch-mode converters for research and educational
purposes. Przeglad Elektrotechniczny, 87(11), (2011), 194-200.

[20] G. SIEKLUCKI: Automation of the drive. Krakow, Wydawnictwa AGH, 2009, (in
Polish).

[21] G. SIEKLUCKI: Pole placement method for DC motor torque controller. Archives
of Control Sciences, 19(3), (2009), 307-324.

[22] G. SIEKLUCKI: Analysis of the transfer-function models of electric drives with
voltage controlled source. Przeglad Elektrotechniczny, 88(7a), (2012), 250-255.

[23] G. SIEKLUCKI: Loopshaping of motor torque controller. Archives of Control
Sciences, 23(2) (2013), 213-228.

[24] G. SIEKLUCKI and B. BISZTYGA: Uncertainty mathematical models of power
converters. Automatyka, ISSN 1429-3447, 13(1), (2012), 73-87.

[25] G. SIEKLUCKI and T. ORZECHOWSKI: Discrete-time load torque observers in
electric drives. Automatyka, ISSN 1429-3447, 14(1), (2010), 113-132, (in Polish).

[26] G. SIEKLUCKI, M. TONDOS and A. PRACOWNIK: Variable structure control
method of a two-mass drive system. Elektrotechnika i Elektronika, 26(1-2), (2007),
69-78, (in Polish).

[27] V. UTKIN, J. GULDNER and J. SHI: Sliding Mode Control in Electromechanical
Systems. London, Taylor & Francis, 1999.

[28] J.R. VACCARO: Digital Control. A State-Space Approach. Mc Graw-Hill, Inc.,
1995.

10.2478/acsc-2013-0020




