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Fractional descriptor standard and positive discrete-time

nonlinear systems
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Abstract. A method of analysis of the fractional descriptor nonlinear discrete-time systems with regular pencils of linear part is proposed.

The method is based on the Weierstrass-Kronecker decomposition of the pencils. Necessary and sufficient conditions for the positivity of the

nonlinear systems are established. A procedure for computing the solution to the equations describing the nonlinear systems are proposed

and demonstrated on a numerical example.
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1. Introduction

Descriptor (singular) linear systems have been considered in

many papers and books [1–17]. The eigenvalues and invari-

ants assignment by state and output feedbacks have been in-

vestigated in [4, 15, 18] and the minimum energy control of

descriptor linear systems in [19, 21]. The computation of Kro-

necker’s canonical form of singular pencil has been analyzed

in [16]. The positive linear systems with different fraction-

al orders have been addressed in [20]. Selected problems in

theory of fractional linear systems have been given in the

monograph [13].

A dynamical system is called positive if its trajectory start-

ing from any nonnegative initial state remains forever in the

positive orthant for all nonnegative inputs. An overview of

state of the art in positive theory is given in [22]. Variety of

models having positive behavior can be found in engineering,

economics, social sciences, biology and medicine, etc.

Descriptor standard positive linear systems by the use of

Drazin inverse has been addressed in [1–4, 13, 14, 23]. The

shuffle algorithm has been applied to checking the positivity

of descriptor linear systems in [24]. The stability of positive

descriptor systems has been investigated in [17]. Reduction

and decomposition of descriptor fractional discrete-time linear

systems have been considered in [11]. A new class of descrip-

tor fractional linear discrete-time systems has been introduced

in [12]. The standard and positive descriptor discrete-time

nonlinear systems have been addressed in [10].

In this paper a method of analysis of the fractional de-

scriptor standard and positive nonlinear discrete-time systems

with regular pencils will be proposed. The method is based on

the Weierstrass-Kronecker decomposition of the pencil of the

linear part of the equation describing the nonlinear system.

The paper is organized as follows. In Sec. 2 the

Weierstrass-Kronecker decomposition is applied to analysis

of the descriptor nonlinear systems. Necessary and sufficient

conditions for the positivity of the nonlinear systems are estab-

lished in Sec. 3. In Sec. 4 the proposed procedure of finding

the solution to the equations describing the nonlinear system

is illustrated by a numerical example. Concluding remarks are

given in Sec. 5.

The following notation is used: ℜ – the set of real num-

bers, ℜn×m – the set of n×m real matrices, Z+ – the set of

nonnegative integers, ℜn×m
+ – the set of n×m matrices with

nonnegative entries and ℜn
+ = ℜn×1

+ , In – the n× n identity

matrix.

2. Fractional descriptor standard discrete-time

nonlinear systems

Consider the fractional descriptor discrete-time nonlinear sys-

tem
E∆αxi+1 = Axi + f(xi, ui),

i ∈ Z+ = {0, 1, ...}, 0 < α < 1,
(1a)

yi = g(xi, ui), (1b)

where xi ∈ ℜn, ui ∈ ℜm, yi ∈ ℜp, i ∈ Z+ are the state,

input and output vectors, f(xi, ui) ∈ ℜn, g(xi, ui) ∈ ℜp are

continuous and bounded vector functions of xi and ui satisfy-

ing the conditions f(0, 0) = 0, g(0, 0) = 0 and E, A ∈ ℜn×n

and

∆αxi =
i
∑

j=0

(−1)j

(

α

j

)

xi−j (1c)

(

α

j

)

=

{

1
α(α−1)...(α−j+1)

j!

for

for

j = 0

j = 1, 2, ...
. (1d)

is the fractional α ∈ ℜ order difference of xi.

It is assumed that det E = 0 and the

det[Ez − A] 6= 0

for some z ∈ C (the field of complex numbers).
(2)
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Substituting (1c) into (1a) we obtain

Exi+1 = Aαxi +

i+1
∑

j=2

cjExi−j+1 + f(xi, ui), (3a)

where

Aα = A + Eα, cj = (−1)j+1

(

α

j

)

. (3b)

It is well-known [14] that if (2) holds then there exist nonsin-

gular matrices P, Q ∈ ℜn×n such that

P [Ez − Aα]Q =

[

In1
z − A1α 0

0 Nz − In2

]

,

A1α ∈ ℜn1×n1 , N ∈ ℜn2×n2 ,

(4)

where n1 = deg{det[Ez − Aα]}, n2 = n − n1 and N is the

nilpotent matrix with the index µ, i.e. Nµ−1 6= 0, Nµ = 0.

The matrices P and Q can be computed using procedures

given in [14, 16].

Premultiplying (3a) by the matrix P and introducing the

new state vector

xi =

[

x1,i

x2,i

]

= Q−1xi, x1,i ∈ ℜn1 , x2,i ∈ ℜn2 , (5)

from (3a) and (5) we obtain

PEQQ−1xi+1 = PAαQQ−1xi

+

i+1
∑

j=2

cjPEQQ−1xi−j+1 + Pf(Qxi, ui)
(6)

and

x1,i+1 = A1αx1,i +

i+1
∑

j=2

cjx1,i−j+1 + f1(xi, ui), (7a)

Nx2,i+1 = x2,i +

i+1
∑

j=2

cjNx2,i−j+1 − f2(xi, ui), (7b)

where
[

f1(xi, ui)

−f2(xi, ui)

]

= Pf(Qxi, ui). (7c)

Note that if 0 < α < 1 then

cj = (−1)j+1

(

α

j

)

> 0 for j = 1, 2, ..., i + 1. (8)

To simplify the notation it is assumed that the nilpotent

matrix contains only one block, i.e.

N =

















0 1 0 ... 0

0 0 1 ... 0
...

...
...

. . .
...

0 0 0 ... 1

0 0 0 ... 0

















∈ ℜn2×n2 . (9)

In this case the solution to the equation (1) for given initial

conditions x0 ∈ ℜn and input ui ∈ ℜm for i = 0,1,. . . can be

computed iteratively as follows.

From (7b) and (9) for i = 0 we have

x22,1 = x21,0 − f21(x0, u0)

x23,1 = x22,0 − f22(x0, u0)
...

x2n2,1 = x2n2−1,0 − f2n2−1(x0, u0)

(10a)

x2n2,0 = f2n2
(x0, u0) (10b)

where

x2,i = [ x21,i x22,i ... x2n2,i ]T (10c)

f2(x0, u0)=[ f21(x0, u0) f22(x0, u0) ... f2n2
(x0, u0) ]T .

(10d)

From (10a) and (10c) it follows that x21,1 can be chosen ar-

bitrary and x2n2,0 should satisfy the condition (10b).

Next using (7a) for i = 0 we have

x1,1 =













x11,1

x12,1

...

x1n1,1













= A1αx1,0 + f1(x0, u0). (11)

Knowing x1 we can compute from (7b)

x22,2 = x21,1 + c2x22,0 − f21(x1, u1)

x23,2 = x22,1 + c2x23,0 − f22(x1, u1)
...

x2n2,2 = x2n2−1,1 + c2x2n2,0 − f2n2−1(x1, u1)

(12)

x2n2,1 = −f2n2
(x1, u1) (13)

and next from (7a)

x1,2 =













x11,1

x12,1

...

x1n1,1













= A1αx1,1 + c2x1,0 + f1(x1, u1), (14)

where c2 = α(1−α)
2 .

Repeating the procedure we may compute the state vector

xi for i = 1,2,. . . and next from the equality

xi = Qxi (15)

the desired solution xi of the equation (1a).

3. Positive fractional descriptor

nonlinear systems

Consider the descriptor discrete-time nonlinear system (1).

Definition 1. The fractional descriptor discrete-time nonlinear

system (1) is called positive if xi ∈ ℜn
+, yi ∈ ℜp

+, i ∈ Z+

for any consistent initial conditions x0 ∈ X0 ∈ ℜn
+ and all

admissible inputs ui ∈ Ua ∈ ℜm
+ .
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Note that for positive systems (1) xi = Q−1xi ∈ ℜn
+ if

and only if the matrix Q ∈ ℜn×n
+ is monomial. In this case

Q−1 ∈ ℜn×n
+ .

Note that for fractional positive systems (7a) xi =
Q−1xi ∈ ℜn

+ for i ∈ Z+ if and only if

A1α ∈ ℜn1×n1

+ and f1(xi, ui) ∈ ℜn1

+

for all xi ∈ ℜn
+ and ui ∈ ℜm

+ , i ∈ Z+.
(16)

From the structure of the matrix (9) and the equation (7b)

it follows that x2,i ∈ ℜn2

+ , i ∈ Z+ if and only if

−f2n(xi, ui) ∈ ℜn2

+

for all xi ∈ ℜn
+ and ui ∈ ℜm

+ , i ∈ Z+.
(17)

The solution of the equations (7) xi ∈ ℜn
+ if and only if the

conditions (13) and (14) are satisfied.

Therefore, the following theorem of the positivity of the

system (1) has been proved.

Theorem 1. The fractional descriptor nonlinear system (1) is

positive if and only if the conditions (16) and (17) are satis-

fied, the matrix Q ∈ ℜn×n
+ is monomial and

g(xi, ui) ∈ ℜp
+ for xi ∈ ℜn

+ and ui ∈ ℜm
+ , i ∈ Z+.

Remark 1. If the nilpotent matrix N consist of q block then

the condition (10b) should be substituted by suitable q condi-

tions of each for the blocks.

Remark 2. If the nilpotent matrix N consists of q blocks

then for each of the blocks one state variable can be chosen

arbitrarily.

4. Example

Consider the fractional descriptor nonlinear system (1) with

α = 0.5 and

E =











0 0 0.5 −0.5

0.4 0 0 0

0 0 0.5 0.5

0.2 0 0 0











,

A =











0.5 −0.5 −0.25 0.25

0.6 0 0.4 −0.2

0.5 0.5 −0.25 −0.25

0.3 0 0.2 0.4











,

f(xi, ui) =

















0.5x2
3,i − x2

2,i + e−i − 0.5

0.2x2
1,i + 0.2e−i + 0.4(1 + i2)

x2
2,i + 0.5x2

3,i + 0.5

0.2(1 + i2) − 0.4x2
1,i − 0.4e−i

















,

(18a)

with the initial conditions

x0 =











x1,0

x2,0

x3,0

x4,0











=











1

0

1

2











. (18b)

The assumption (2) is satisfied since

detE =

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0.5 −0.5

0.4 0 0 0

0 0 0.5 0.5

0.2 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (19)

and

det[Ez − A]=

∣

∣

∣

∣

∣

∣

∣

∣

∣

−0.5 0.5 0.5z −0.5z

0.4z − 0.8 0 −0.4 0.2

−0.5 −0.5 0.5z 0.5z

0.2z − 0.4 0 −0.2 −0.4

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.1z2 − 0.2z − 0.1 6= 0.

(20)

In this case

P =











1 0 1 0

0 2 0 1

−1 0 1 0

0 −1 0 2











, Q =











0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1











.

(21)

Using (4), (7) and (21) we obtain

P [Ez − Aα]Q =

[

In1
z − A1α 0

0 Nz − In2

]

,

A1α =

[

0 1

1 2

]

, N =

[

0 1

0 0

]

,

n1 = n2 = 2,

(22)

xi =











x1,i

x2,i

x3,i

x4,i











= Q−1xi

=











0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1





















x1,i

x2,i

x3,i

x4,i











=











x3,i

x1,i

x2,i

x4,i











,

(23)

Pf(xi, ui) =

[

f1(xi, ui)

f2(xi, ui)

]

=











x2
1,i + e−i

1 + i2

2x2
3,i − e−i + 1

−x2
2,i − e−i











(24)

and
[

x1,i+1

x2,i+1

]

=

[

0 1

1 2

][

x1,i

x2,i

]

+

i+1
∑

j=2

cj

[

x1,i−j+1

x2,i−j+1

]

+

[

x2
1,i + e−i

1 + i2

]

,

(25)
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[

0 1

0 0

][

x3,i+1

x4,i+1

]

=

[

x3,i

x4,i

]

+

i+1
∑

j=2

cj

[

0 1

0 0

] [

x3,i−j+1

x4,i−j+1

]

+

[

2x2
3,i − e−i + 1

−x2
2,i − e−i

]

(26)

with the initial conditions

x0 = Q−1x0 =











1

1

0

2











. (27)

The fractional descriptor system (1) with (15) is a positive

since the conditions (16) and (17) are satisfied and the matrix

Q defined by (21) is monomial.

Using the procedure presented in Sec. 3 we obtain the

following:

From (26) for i = 0 we have

x4,1 = x3,0 + 2x2
3,0 − e0 + 1 = 0, (28a)

and the condition (17) is satisfied since

x4,0 = x2
2,0 + 1 = 2. (28b)

Using (25) for i = 0 and (27) we obtain

x1,1 = x2,0 + x2
1,0 + e0 = 3,

x2,1 = x1,0 + 2x2,0 + 1 = 4
(29)

and from (26) for i = 1

x4,2 = x3,1 + 0.125x4,1 + 2x2
3,1 − e−1 + 1,

x4,1 = x2
2,1 + e−1

(30)

for arbitrary x3,1 ≥ 0.

From (25) for i = 1 we have

x1,2 = x2,1 + 0.125x1,0 + x2
1,1 + e−1,

x2,2 = x1,1 + 2x2,1 + 0.125x2,0 + 2
(31)

and from (26) for i = 2

x4,3 =x3,2+0.125x4,1+0.0625x4,0+2x2
3,2−e−2 + 1,

x4,2 = x2
2,2 + e−2

(32)

for arbitrary x3,2 ≥ 0.

Continuing the procedure we may compute the solution

xi of the equations (26) and (27) and next the solution

xi = Qxi =











x2,i

x3,i

x1,i

x4,i











(33)

of the equation (1) with (18).

5. Concluding remarks

A method of analysis of the fractional descriptor nonlinear

discrete-time systems described by the equation (1) with regu-

lar pencils (2) based on the Weierstrass-Kronecker decomposi-

tion of the pencil has been proposed. Necessary and sufficient

conditions for the positivity of the nonlinear systems have

been established (Theorem 1). A procedure for computing

the solution to the equation (1) with given initial conditions

and input sequences has been proposed. The procedure has

been illustrated by numerical example. The proposed method

can be applied for example to analysis of descriptor nonlinear

discrete-time electrical circuits. The considerations can be ex-

tended to fractional descriptor nonlinear discrete-time systems

with delays.
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