
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 63, No. 3, 2015
DOI: 10.1515/bpasts-2015-0078

Control system architecture for the investigation of motion control

algorithms on an example of the mobile platform Rex

M. JANIAK1∗ and C. ZIELIŃSKI2

1 Chair of Cybernetics and Robotic, Faculty of Electronics, Wrocław University of Technology,
11/17 Z. Janiszewskiego St., 50-320 Wrocław, Poland

2 Institute of Control and Computation Engineering, Faculty of Electronics and Information Technology, Warsaw University of Technology,
15/19 Nowowiejska St., 00-665 Warsaw, Poland

Abstract. This paper presets the specification and implementation of the control system of the mobile platform Rex. The presented system
structure and the description of its functioning result from the application of a formal method of designing such systems. This formalism is
based on the concept of an embodied agent. The behaviours of its subsystems are specified in terms of transition functions that compute, out
of the variables contained in the internal memory and the input buffers, the values that are inserted into the output buffers and the internal
memory. The transition functions are the parameters of elementary actions, which in turn are used in behaviour patterns which are the
building blocks of the subsystems of the designed control system. Rex is a skid steering platform, with four independently actuated wheels.
It is represented by a single agent that implements the locomotion functionality. The agent consists of a control subsystem, a virtual effector
and a virtual receptor. Each of those subsystems is discussed in details. Both the data structures and the transition functions defining their
behaviours are described. The locomotion agent is a part of the control system of the autonomous exploration and rescue robot developed
within the RobREx project.

Key words: mobile robot control, robot control architecture, robot control system specification.

1. Introduction

Design of a complex systems requires both the design of con-
trollers for its subsystems and design of the overall system
controller. Both parts of the design are interrelated. The de-
sign can only be treated as adequate if the subsystems can be
integrated into the overall system in such a way that it exe-
cutes the allotted tasks satisfactorily. In the case of research
into control algorithms for a particular subsystem often the
future integration of such a controller into a larger system is
neglected. To enable the designer to concentrate on a subsys-
tem controller, yet to avoid problems in the integration phase,
an adequate system specification method should be chosen.
As robot control systems are inherently complex, this choice
is of paramount importance, thus when subsystems of a res-
cue and exploration robot had to be designed, a systematic
specification method, well embedded in the robotics domain,
was selected. It was assumed that the designed robot is to
consist of a mobile platform carrying a manipulator and di-
verse sensors. This paper focuses on the specification of a
skid steering mobile platform. By assuming that the mobile
platform is an embodied agent [1], it can readily be incor-
porated into a larger multi-agent system, where each of the
subsystems is represented as an agent.

Systematic design methods distinguish between the sys-
tem specification phase and its implementation. It is desirable
that the specification should be detailed enough to guide the
implementation in a straightforward manner. In the domain
of software engineering there is a plethora of different ap-

proaches to the design of software [2, 3]. Those methods can
be used for the design at hand as general guidelines, yet do-
main specific methods are generally easier to follow by the
designers having background specific to that domain. Here the
domain is robotics. A design method fulfilling the above men-
tioned requirements has been presented in [4–10]. It is based
on the assumption that the overall control system is com-
posed of multiple embodied agents, where each of the agents,
representing a specific system component, is decomposed in-
to: a control subsystem, real effectors, virtual effectors, real
receptors and virtual effectors. Moreover, as the agents can
communicate with each other through their control subsys-
tems a multi-agent system controlling the complex system
results.

The mentioned robot is being designed for research pur-
poses, i.e. to study diverse control algorithms implemented
for specific subsystems, yet tested within the whole system.
Here the specification of the embodied agent representing just
the mentioned mobile platform is described. The Rex platform
has four independently driven wheels with constant orienta-
tion with respect to the body – Fig. 1.

Generally, the Rex platform is a test platform for algo-
rithms concerning motion planning and real-time trajecto-
ry tracking. The motion planning methods that are currently
tested involve the Endogenous Configuration Space Approach
(ECSA) [11, 12] in constrained [13] and unconstrained [14]
versions. Competitively to ECSA the Optimal Control Method
(OPCM) is considered. A comparative study of those two

∗e-mail: mariusz.janiak@pwr.edu.pl

667

M. Janiak and C. Zieliński

planning methods has been presented in [15, 16]. In the field
of real-time trajectory tracking, two major approaches are con-
sidered: Nonlinear Model Predictive Control (NMPC) [17–19]
and an Artificial Force Method (AFM) [20,21]. Both methods
rely on the knowledge of the kinematics and dynamics models
of the considered mobile platform and its interaction with the
ground. An effective numerical algorithms implementing the
OPCM, NMPC are provided by the ACADO toolkit [17, 22].
Elaborated motion planning and trajectory tracking algorithms
require easily modifiable software running on the real model
of the platform. The injection of the required modification in-
to the control software is simple only when, on the one hand,
there exists a formal specification of this software pointing to
the exact places that those changes have to be done. On the
other hand, there are available tools accompanying the formal
specification, that enable fast prototyping and testing. Such a
specification of the controller structure and integration tools
selection is the subject of this paper. This paper presents the
outcome of utilizing the proposed design approach. Focus is
on disclosing those parts of the control structure which need
to be modified while testing diverse control algorithms.

Fig. 1. The mobile platform Rex

The selected hardware-software toolchain is a mixture
of the well integrated hardware components, supervised by
a real-time operating system, and well known, open-source
middleware frameworks supporting component-oriented pro-
gramming paradigm, providing ready to use application build-
ing blocks and standard interfaces. With these hardware-
software tools, the user is able to build a centralized real-
time control system based on powerful computational devices,
equipped with multifunctional I/O cards, as well as a dis-
tributed one utilizing many computers and embedded custom
devices that communicate with each other in real-time.

The paper is organised in the following way. Section 2 in-
troduces the general concept of an embodied agent, describing
its structure and behaviour. Section 3 describes the REX ro-
bot control system specification. Section 4 presents the loco-
motion agent implementation details. Finally Sec. 5 provides
conclusions.

2. Embodied agent

An embodied agent aj , where j is the agent’s designator, phys-
ically interacts with its environment through its effectors Ej

and gathers information through its receptors Rj . As rarely
the physical devices Ej and Rj enable interaction by using
adequate level of abstraction, data used by those devices has
to be transformed into appropriate concepts, e.g. motor posi-
tions have to be transformed into the pose of the end-effector
represented in terms of a homogeneous transform, or a bitmap
obtained from the camera has to be transformed into the pose
of object detected in the image. Those transformations are per-
formed by the virtual effectors ej,n and virtual receptors rj,k

respectively, where n and k are the designators of a particular
virtual effector or receptor. The definition of the appropriate
abstraction level is one of the design tasks. This level is de-
fined by the set of concepts that are used in the design of the
control subsystem cj of the agent aj . The thus introduced sub-
systems communicate with each other using buffers (Fig. 2).
The agent itself can communicate with other agents through
its transmission buffers located in its control subsystem.

Fig. 2. General structure of an embodied agent

The systematic buffer naming convention is the following.
The central symbol refers to a subsystem: e, r, c, E or R. The
leading superscript designates the component that the buffer
is connected to. If it is a repetition of the central symbol it
implies internal memory of the subsystem. Leading subscript
x labels an input buffer, while y an output buffer. Lack of this
symbol implies the internal memory. The following super-
script designates a discrete time instant, while the following
subscript names: the agent and the instance of the considered
subsystem, so it usually is a compound index. Each of those
buffers has its internal structure, which has to be designed

668 Bull. Pol. Ac.: Tech. 63(3) 2015

Control system architecture for the investigation of motion control algorithms...

taking into account both the type of the controlled robot and
the task that it has to execute.

The mentioned buffers provide just the infrastructure. The
transition functions define how the subsystem containing those
buffers will behave. The input buffers and the internal memo-
ry are the input arguments of those function, while the output
buffers and the memory (once again) constitute the store for
the results of the computation of those transition functions.
Each of the subsystems is governed by its own transition func-
tions. The control subsystem cj uses cfj , a virtual receptor rj

employs rfj , while a virtual effector ej exploits efj . Each of
those transition functions must be further decomposed, as one
function would be usually too complex to exhibit all the nec-
essary behaviours of the considered subsystem. The canonic
form of decomposition is the division according to the buffer
in which the results of the function evaluation are placed. This
decomposition requires an extra index – in this case an addi-
tional leading superscript (c, e, r, E, R or T), located after
a coma, designates the target subsystem. Thus the transition
functions for the three types of subsystems are decomposed
in the following way.






c
yeι+1

j = e,cfj(
eeι

j ,
E
x eι

j ,
c
xeι

j),

eeι+1
j = e,efj(

eeι
j ,

E
x eι

j ,
c
xeι

j),

E
y eι+1

j = e,Efj(
eeι

j ,
E
x eι

j ,
c
xeι

j),

(1)





c
yrι+1

j = r,cfj(
rrι

j ,
R
x rι

j ,
c
xrι

j),

rrι+1
j = r,rfj(

rrι
j ,

R
x rι

j ,
c
xrι

j),

R
y rι+1

j = r,Rfj(
rrι

j ,
R
x rι

j ,
c
xrι

j),

(2)





cci+1
j = c,cfj(

cci
j ,

e
xci

j ,
r
xci

j,
T
x ci

j),

e
yc

i+1
j = c,efj(

cci
j ,

e
xci

j ,
r
xci

j ,
T
x ci

j),

r
yc

i+1
j = c,rfj(

cci
j ,

e
xci

j ,
r
xci

j ,
T
x ci

j),

T
y ci+1

j = c,T fj(
cci

j ,
e
xci

j ,
r
xci

j,
T
x ci

j),

(3)

where ι is a superscript signifying the discrete time instant
(the iteration number of subsystem activity). The ι super-
scripts are usually different for different virtual effectors and
receptors. This distinction is not made evident here, because
of its contextual obviousness. A superscript i in (3) signifies
the discrete time instance for the control subsystem.

Transition functions are just computational elements.
There must be a mechanism for reading in their arguments
and distributing the results of their computations, i.e. ani-
mating the subsystems using the communication middleware.
Elementary actions cAj , eAj or rAj are responsible for that.
Elementary actions are parameterised by transition functions.
One should note that the canonically decomposed transition
functions (1), (2) and (3), that define the computations that
need to be done by particular subsystems of the agent, tend to
be complex, thus further decomposition is necessary. To dis-
tinguish between those functions a following subscript after
a coma following the agent’s designator j is used (here m).
Algorithm 1 presents the general pattern of an elementary
action in the case of the control subsystem. In the case of

virtual effectors and receptors the pattern is similar, howev-
er the leading superscript c has to be substituted either by
e or r. The statement i → i + 1 models the elapse of cycle
time, while the symbol ֌ represents the inter-subsystem data
transmissions.

input : xci
j

output: yci+1

j

yci+1

j
← cfj,m (xci

j); // Compute the transition function;
e
yci+1

j ֌ xej ; r
yci+1

j ֌ xrj ; T
y ci+1

j ֌
T
x cj′ ; // Execute the

action;
i← i + 1; // Wait;
yej ֌

e
xci

j ; yrj ֌
r
xci

j ; T
y cj′ ֌

T
x ci

j ; // Read in the arguments;

Algorithm 1. Elementary action of the control subsystem c
Aj,m

Elementary actions, and thus transition functions associ-
ated with them are executed cyclically. Cyclic execution of
a particular elementary action is termed a behaviour. Further
decomposition of transition functions multiplies the number
of elementary actions and thus behaviours. This multiplicity
implies the necessity of selection of the behaviour that should
be active in each instant of time and a method of choosing
the discrete instant when the particular behaviour should ter-
minate its repetitive actions. Both choices are made by pred-
icates, i.e. Boolean valued functions, one of which is termed
the initial condition and the other the terminal condition. In
the case of the control subsystem those will be: cfσ

j,m and
cf τ

j,m respectively. If the terminal condition associated with a
certain behaviour is fulfilled its cyclic execution is terminat-
ed and a new behaviour has to be picked for execution. This
is done by taking into account the initial conditions associ-
ated with the behaviours. Thus a finite state machine (FSM)
structure results. The nodes of its graph are labeled by the be-
haviours, e.g. in the case of the control subsystem those will
be: cBj,m(cfj,m, cf τ

j,m), and the initial conditions are used to
form the labels of the arcs.

Now two forms of behaviour can be defined. One is
the while type behaviour and the other is the repeat type
behaviour. In the case of the control subsystem those are:
c
∗
Bj,m(cfj,m, cf τ

j,m) (Algorithm 2), which tests the termi-
nal condition before executing an iteration of the loop, and
c
+Bj,m(cfj,m, cf τ

j,m) (Algorithm 3), which performs the test
after the execution of the loop.

input : cfj,m, cfτ
j,m

output:

while cfτ
j,m(xci

j) = false do
cAj,m (cfj,m);

end

Algorithm 2. Control subsystem behaviour c
∗
Bj,m(cfj,m, cfτ

j,m)

input : cfj,m, cfτ
j,m

output:

repeat
cAj,m (cfj,m);

until cfτ
j,m(xci

j) = true;

Algorithm 3. Control subsystem behaviour C
+Bj,m(cfj,m, cfτ

j,m)

Bull. Pol. Ac.: Tech. 63(3) 2015 669

M. Janiak and C. Zieliński

The behaviour patterns c
∗
Bj,m(cfj,m, cf τ

j,m) and
c
+Bj,m(cfj,m, cf τ

j,m) label the nodes of the FSM governing
the control subsystem. They are parameterised by transition
functions cfj,m, and terminal conditions cf τ

j,m that must be
provided by the designer. The designer is also responsible for
providing the graph of the FSM, thus the initial conditions
must be defined by him/her too. The behaviours of the virtual
effectors and receptors are defined likewise, but the leading
superscript c should be substituted by e or r respectively.

In the following text the internal structure of the subsystem
buffers and their transition functions as well as the terminal
and initial conditions will be defined for the REX robot. The
thus defined functions are used as arguments of elementary
actions and behaviours as defined by Algorithms 1, 2 and 3.
Moreover the FSMs will be created, thus producing the spec-
ification of the whole control system.

3. Locomotion agent

The general description of the designed system structure and
its functioning are as follows. The mobile platform Rex is
represented by the agent that performs the locomotion task.
This is an embodied agent that directly interacts with the en-
vironment, and is able to read its state. Figure 3 illustrates
the location of this agent in the control system of an au-
tonomous service robot. The ontology agent a2 generates the
tasks for the locomotion agent a1 in the form of a plan. The
plan consists of a series of points corresponding to the posi-
tions specified on the map. Those points have to be traversed
in a fixed order. The agent a1 reports the completion of the
task by sending the acknowledge signal ack to the agent a2.
The locomotion agent exchanges information also with the
map agent a3, which possesses the information about the po-
sition of the robot on the map. The map agent obtains this
information from a motion capture system during indoor ex-
periment phase or a navigation system in the case of outdoor
operation. The locomotion agent a1 receives the current robot
position estimates from the map agent. Optionally it can send
back the state estimates worked out by itself.

Fig. 3. A fragment of the autonomous service robot system

The structure of the locomotion agent a1 is presented in
Fig. 4. The locomotion agent a1 consists of a control sub-
system c1, a virtual effector e1,1 and a virtual receptor r1,1.
The control subsystem c1 coordinates the agent’s actions con-
sisting in the realization of the high level control goals. This
involves supervision of the plan execution, trajectory planning
and communication with the other agents. The virtual effector
e1,1 directly controls the mobile platform movements – cur-
rently it implements the model based control algorithm and
the real-time state estimator. The mobile platform E1 consist
of four torque driven electric motors xE1 and propriocep-
tors: inertial measurement unit yE1,1, a set of force sensors
yE1,2 mounted between body frame and each wheel actua-
tion unit that measure wheels load, and four rotary encoders
associated with platform wheels yE1,3 . . . yE1,6. The visual
odometry utilizing information from the stereo camera R1 is
represented by a virtual receptor r1,1. Further, each subsys-
tem of the locomotion agent will be discussed in more detail.
The presentation follows a top-down fashion, which facilitates
understanding of the functioning of the system, but does not
necessarily imply that the system as a whole was designed in
this fashion. Usually top-down and bottom-up approaches are
mixed and applied iteratively. This was the case here, but in
the following description this fact is not evident, for obvious
reasons.

Fig. 4. The locomotion agent

670 Bull. Pol. Ac.: Tech. 63(3) 2015

Control system architecture for the investigation of motion control algorithms...

3.1. Control subsystem c1. In general the control subsystem
c1 of the embodied agent a1 acts in the following way. It is
responsible for the execution of the agent’s task as well as the
coordination of functioning of the subsystems that this agent
is built of. Here the goal of the locomotion agent is to execute
the plan commissioned by the ontology agent. The plan is de-
fined as a series of points on the map, through which the robot
has to pass in a specified order. It is assumed that the ontology
agent will provide a sufficiently dense list of points to avoid
collisions with obstacles. The control subsystem adds to each
point the information about the desired platform orientation,
then transforms the thus modified series of points into the
mobile platform trajectory and finally passes it to the virtual
effector which will try to execute it. The trajectory is generat-
ed by the Trajectory Planner module that operates within the
control subsystem. The planner implements the endogenous
configuration space approach [11]. The performance of this
method in a similar application has been presented in [15].
Due to the high computational complexity of this method and
a relatively long time needed for trajectory planning, a plan-
ning task and a trajectory execution task have been split into
two concurrent processes running within the Trajectory Plan-

ner module. The planner generates, as fast as possible, the
consecutive fragments of the trajectory, that connect respec-
tive points forming the plan. These fragments are assembled
into a dedicated list. Independently, the trajectory execution
process supervises the progress of the trajectory realization.
It takes a trajectory fragment from the list and passes it to the
virtual effector adding information about the number of the
steps (step) needed for trajectory execution and number of the
step (notify) after which the virtual effector should report its
ready state. This method of interaction of the virtual effec-
tor and the control subsystem was used by all systems based
on the MRROC++ robot programming framework [10, 23].
Keeping notify smaller than step prevents the platform from
unintended stops. The control subsystem assumes that the plan
has been completed when the entire trajectory has been gen-
erated and sent to the virtual effector for execution. This fact
is reported to ontological agent a2 by an acknowledge signal
ack. In fact, transfer by the control subsystem of the last frag-
ment of the trajectory to the virtual effector is not equivalent
to reaching the end of the trajectory by the mobile platform.
Usually in such a case, the virtual effector will be somewhere
in the middle of the trajectory fragment execution. The ad-
vantage of early reporting of the plan accomplishment is to
avoid the situation when the robot holds up the task execution
due the lack of a new plan, assuming that ontological agent
needs some time for the preparation of a new plan.

As mentioned earlier, besides the task execution, the con-
trol subsystem c1 also coordinates the data flow inside the
agent. It transfers the information from the external world
through the virtual receptor r1,1 to the virtual effector e1,1.
Moreover, it retrieves the platform state estimates computed
by the virtual effector e1,1.

The control system activities have been decomposed into
three behaviors: waiting for the ontological agent a2 to send
the plan c

+B1,1(cf1,1, cf τ
1,1), plan execution c

∗
B1,2(cf1,2, cf τ

1,2)
and notification by an acknowledge signal ack that the plan

has been executed c
+B1,3(cf1,3, cf τ

1,3). These behaviors are se-
lected by the finite state machine presented in Fig. 5. The data
flow diagrams of the transition functions implementing each
behavior have been shown in Fig. 6. The function c,ef1 is used
by behaviors 1 and 3, while functions c,cf1,3 and c,rf1 are not
necessary. As mentioned earlier, the transition functions take
as arguments the contents of the input buffers and internal
memory and they produce the contents of the output buffers
and the same memory. The contents of the control subsystem
memory and buffers is the following.

• The internal memory contains:

• cc1[plan] – the plan containing the list of positions
and orientations of the mobile platform with respect
to the map,

• cc1[traj] – the list of trajectory fragments generated
by the planner,

• cc1[trajgen] – the structure containing information rel-
evant for the trajectory planner,

• cc1[new] – new plan flag.

• The input buffer consist of:

• c
xc1,1[q̃, ˙̃q] – the mobile platform state estimate
worked out by the virtual effector,

• e
xc1,1[ready] – the virtual effector ready flag,

• r
xc1,1[A4×4] – a transform matrix provided by the vir-
tual receptor,

• T
c c1,2[desired plan] – the plan generated by the on-
tology agent,

• T
x c1,3[x̂, ŷ, ϕ̂] – the position and orientation of the
robot with respect to the map provided by the map
agent.

• The output buffer includes:

• e
yc1,1[x̂, ŷ, ϕ̂] – the position and the orientation of
the robot with respect to the map,

• e
yc1[A4×4] – a transform matrix,

• e
yc1[traj] – the trajectory fragment transferred for ex-
ecution,

• e
yc1[steps] – number of steps that are needed to exe-
cute the trajectory fragment,

• e
yc1[notify] – step number in which the virtual effector
should report the ready state (notify < steps),

• T
y c1,2[ack] – the acknowledge flag reporting that the
agent is ready for a new plan,

• T
y c1,3[q̃, ˙̃q] – state estimate.

Fig. 5. The finite state machine of the control subsystem c1

Bull. Pol. Ac.: Tech. 63(3) 2015 671

M. Janiak and C. Zieliński

Fig. 6. The data flow diagrams for the transition functions of the control subsystem c1

The trajectory planner has been decomposed into a set of
transition subfunctions described by the Algorithms 4–8. The
following auxiliary functions have been defined:

• isnew(buf) checks whether buffer buf contains new data,
• proc(desired plan) appends to the desired plan the infor-

mation about consecutive platform orientations,
• trajgenInit(trajgen, state) initializes the trajectory

planner structure trajgen using the current platform state,
• trajgenStart(trajgen, point) starts the planning

process of the trajectory that links the last processed posi-
tion with the given point,

• trajgenStop(trajgen) finalizes the trajectory planning
process,

• trajgenIsReady(trajgen) checks whether the trajectory
planning process has been completed,

• trajgenStat(trajgen) gets the current state of the tra-
jectory planner,

• listIsEmpty(list) checks whether the list is empty,
• listAddLast(list, data) adds a new element containing

data at the end of the list,
• listDelFirst(list) removes the first element from the

list,
• listAddLastDelFirst(list, data) adds a new element

containing data at the end of the list, and simultaneous-
ly removes the first element from the list,

• listGetData(list) gets the data from the first element of
the list,

• trajToSteps(traj) calculates the number of steps re-
quired for the trajectory traj execution,

• trajToSteps(traj) calculates the number of the step after
which the virtual effector should send the ready signal.

input : desired plani, trajgeni, (eq, ėq)i

output: plani+1, traji+1, trajgeni+1, newi+1

if isnew(desired plani) then

plani+1 ← proc(desired plani);
traji+1 ← {};
trajgeni+1 ← trajgenInit(trajgeni , (eq, ėq)i);
newi+1 ← true;

end

Algorithm 4. The control subsystem transition subfunction
c,cf1,1,tp(cci

1, xci
1) associated with the trajectory planer

input : desired plani

output: acki+1

if isnew(desired plani) then

acki+1 ← false;
end

Algorithm 5. The control subsystem transition subfunction
c,T f1,1,tp(cci

1, xci
1) associated with the trajectory planer

672 Bull. Pol. Ac.: Tech. 63(3) 2015

Control system architecture for the investigation of motion control algorithms...

input : traji, trajgeni, plani, newi, readyi

output: traji+1, trajgeni+1, plani+1, newi+1

if readyi & ∼listIsEmpty(traji) then

if trajgenIsReady(trajgeni) then

traji+1 ← listAddLastDelFirst(traji ,

trajgenGetTraj(trajgeni))
else

traji+1 ← listDelFirst(traji)
end

else if trajgenIsReady(trajgeni) then

traji+1 ← listAddLast(traji ,

trajgenGetTraj(trajgeni));
end

if newi then

newi+1 ← false;
trajgeni+1 ← trajgenStart(trajgeni ,

listGetData(plani));
plani+1 ← listDelFirst(plani);

else if trajgenIsReady(trajgeni) then

if listIsEmpty(plani) then

trajgeni+1 ← trajgenStop(trajgeni)
else

trajgeni+1 ← trajgenStart(trajgeni ,

listGetData(plani));
plani+1 ← listDelFirst(plani);

end

else

trajgeni+1 ← trajgenGetStat(trajgeni)
end

Algorithm 6. The control subsystem transition subfunction
c,cf1,2,tp(cci

1, xci
1) associated with the trajectory planer

input : readyi, traji

output: traji+1, stepsi+1, notifyi+1

if readyi & ∼listIsEmpty(traji) then

traji+1 ← listGetData(traji);
stepsi+1 ← trajToSteps(listGetData(traji));
notifyi+1 ← trajToNotify(listGetData(traji));

end

Algorithm 7. The control subsystem transition subfunction
c,ef1,2,tp(cci

1, xci
1) associated with the trajectory planer

output: acki+1

acki+1 ← true;

Algorithm 8. The control subsystem transition subfunction
c,T f1,3,tp(cci

1, xci
1) associated with the trajectory planer

3.2. Virtual effector e1,1. The virtual effector implements
only one behavior defined by the transition functions e,ef1,1,
e,Ef1,1 and e,cf1,1. The data flow diagrams of those functions
are presented in Fig. 7. The virtual effector translates the high
level motion command provided by the control subsystem c1

in the form of trajectories into torque signals driving wheels
of the mobile platform E1. The translation process is handled
by the model-based controller that implements predictive tra-
jectory tracking algorithm [24] adopted to skid-steering plat-
form. When a new trajectory fragment is received from the
control subsystem, the virtual effector executes a behaviour
in step number of iterations. The ready signal is sent back to
the control subsystem after the execution of the notify itera-

tions of the behaviour. When the platform reaches the end of
the trajectory, and a new trajectory fragment is not delivered,
the virtual effector will stabilize the last point of the trajecto-
ry being executed. The values of step and notify parameters
are set for each trajectory fragment by the control subsystem
separately.

In order to solve a trajectory tracking problem the fol-
lowing optimal control problem has been formulated: find an
admissible control u(·) ∈ U that minimizes the objective func-
tion

J (u(·)) =

T∫

0

(
(q(t) − qd(t))

T P (q(t) − qd(t))

+ u(t)T Ru(t)
)
dt,

conforming to the system equation q̇ = f(q, u, p), as well as
control and state constraints in the form

s(q(t), u(t)) ≤ 0 (permanent constraints)

s(q(T), u(T)) ≤ 0 (boundary constraints),

where P and R are positive defined matrices, q =
(x, y, φ, θ1, θ2, θ3, θ4) are the natural generalized coordinates
of the mobile platform [15] (q(t) is the computed trajectory
and qd(t) is the desired trajectory), u = (τ1, τ2, τ3, τ4) repre-
sent the actuation torques and p represents the model parame-
ters which correspond to the slip coefficients that characterize
the friction of the wheels against the ground [15]. After dis-
cretization, the optimal control problem can be re-formulated
as a constrained optimization problem, and solved using se-
quential quadratic programming and direct multiple shooting
approach [22]. A predictive version of such constrained op-
timization algorithm provided by the ACADO Toolkit [17] is
utilized by the model based controller.

The trajectory tracking algorithm during each iteration
requires the information about the current platform state q̃

and the values of the wheels slip coefficients p̃. This infor-
mation is provided by the state estimator that implements
a MHE (Moving Horizon Estimation) algorithm [25,26]. This
algorithm makes use of the platform motion model and sen-
sor data provided by: the wheel rotary incremental encoders
(θ1...4, θ̇1...4), the inertial measurement unit (α, α̇), force sen-
sors (Fij,k), the visual odometry (A4×4), and the map agent
(x̂, ŷ, φ̂). The MHE problem is formulated as follows

min
q(·),p

T∫

0

||Y (t) − h (q(t), u(t), p) ||2dt

subject to the system equation q̇ = f(q, u, p), and constraints
s(q(t), p) ≤ 0, where q, u and p represent state, control and
model parameters respectively, as in the case of the trajecto-
ry tracking problem. The h (q(t), u(t), p) is the measurement
function, while Y (t) represents the current observations of
θ1...4, θ̇1...4, α, α̇, Fij,k , A4×4, x̂, ŷ and φ̂. Due to the fact, that
the MHE problem is formulated as an optimization problem,
it can be solved effectively with the methods implemented in
the ACADO Toolkit as well.

Bull. Pol. Ac.: Tech. 63(3) 2015 673

M. Janiak and C. Zieliński

Fig. 7. The data flow diagrams of the transition functions of the virtual effector e1,1

The contents of the virtual effector buffers are the follow-
ing.

• The internal memory contains:

• ee1,1[track] – the structure containing information rel-
evant to the trajectory tracking algorithm

• ee1,1[estym] – the structure containing information
relevant to the state estimator algorithm,

• ee1,1[step] – the number of steps which remain to the
end of the trajectory execution,

• ee1,1[notify] – the number of steps which remain to
report the ready state,

• ee1,1[τ] – control signals.

• The input buffer consists of:

• c
xe1,1[x̂, ŷ, ϕ̂] – position and orientation of the robot
on the map,

• c
xe1,1[A4×4] – the visual odometry transform matrix,

• c
xe1,1[traj] – trajectory fragment to be executed,

• c
xe1,1[steps] – number of steps needed for the trajec-
tory fragment execution,

• c
xe1,1[notify] – number of steps after which the virtual
effector should report the ready state,

• E
x e1,1[α, α̇] – orientation and angular velocity of the
platform measured by the inertial measurement unit,

• E
x e1,1[Fij,k] – measured contact forces,

• E
x e1,1[θ1...4, θ̇1...4] – position and angular velocity of
each wheel measured by the associated rotary incre-
mental encoder.

• The output buffer is composed of:

• c
ye1,1[q̃, ˙̃q] – state estimate,

• c
ye1,1[ready] – virtual effector ready flag,

• E
y e1,1[τ] – control signals,

• E
y e1,1[cmdE1,1] – the reset signal for the inertial mea-
surement unit.

3.3. Virtual receptor r1,1. The virtual receptor r1,1 im-
plements the real-time visual odometry algorithm presented
in [27]. Although the algorithm is well optimized, it is compu-
tationally complex and thus runs with much lower frequency
than the state estimator provided by the virtual effector. For
this reason, during the decomposition process, it has been sep-
arated from state estimator and moved to a distinct subsystem.
In order to increase the frequency of the visual odometry al-
gorithm, it can be ported to GPU [28]. The virtual receptor
defines only one behavior, its transition functions are present-
ed in Fig. 8. Taking the stream of the stereo images captured
by the stereo camera R1 as input, the visual odometry esti-
mates the motion of the cameras in 6DOF. The cameras are
fixed to the mobile platform, therefore motion of the cameras

674 Bull. Pol. Ac.: Tech. 63(3) 2015

Control system architecture for the investigation of motion control algorithms...

Fig. 8. The data flow diagrams of the transition functions of the virtual receptor r1,1

unambiguously determines the motion of the platform. As the
result of computations, visual odometry provides a transform
matrix A4×4 that determines the motion of the platform that
took place between the two last measurements. The frequency
of image acquisition is controlled by the video capture block.
It sends the acquisition command to the stereo camera R1

every k steps of the virtual receptor behaviour. The updated
stereo images will be available in the next behaviour iteration
at the earliest. To minimize the time between image acquisi-
tion and image processing, a frequency of the virtual receptor
behaviour is higher than the image acquisition frequency. As
soon as the stereo image will be available, usually in the step
k + 1, the visual odometry starts the estimation process and
sends the resulting transform matrix A4×4 to the agent con-
trol subsystem. It is paramount that the delay introduced into
transferring this data to the control subsystem be low, thus the
frequency of the virtual agent functioning is much higher than
the frequency of image acquisition. After that transfer the vir-
tual receptor waits till the next stereo image will be captured.

The contents of the virtual receptor buffers are the follow-
ing.

• The internal memory contains:

• rr1,1[k] – the number of steps which remain to the
next image acquisition,

• rr1,1[odom] – the structure containing information
relevant for the visual odometry algorithm,

• The input buffer is composed of:

• R
x r1,1,1[imglr] – the stereo images.

• The output buffer holds:

• c
yr1,1[A4×4] – the current transformation matrix,

• R
y r1,1[cmdR1,1] – the acquisition command for the
stereo camera.

4. Implementation

The general concept of the distributed architecture implement-
ing the specification described in Sec. 3 has been presented
in Fig. 9. As the computational load of the investigated al-
gorithms cannot be judged a priori the architecture of the
implemented system has to be extensible – thus the antici-
pated multitude of PC computers. The hardware can consist
of several computational devices such as PCs or ARM based
computers and a number of custom embedded controllers.

The number of computational devices and custom controllers
is not limited. The absolute minimum is one computational
device. The intention is that the computers should perform
high level control tasks that require high computational pow-
er and many resources. However this is not obligatory, so
low level control algorithms can be hosted as well. Comput-
ers can be equipped with any number of internal or external
devices that extend their functions and communication abili-
ties, e.g. cameras, range finders, multifunctional I/O cards and
WiFi network cards. Computers are supervised by real-time
Linux with Xenomai [29] extension. Xenomai provides hard
real-time support to the user-space applications. It is well in-
tegrated with the GNU/Linux environment and implements
many programming interfaces including the native one and
POSIX. The software stack is based on two well known robot-
ics frameworks: ROS [30] and OROCOS [31]. No time critical
components should be implemented as ROS nodes, while time
critical as OROCOS components. This distinction is due to the
fact that OROCOS is fully integrated with Xenomai. ORO-
COS components are associated with real-time threads and
utilize Xenomai infrastructure. ROS has not been designed as
a real-time framework, however it provides a rich set of tools,
services and ready to use application building blocks. ORO-
COS and ROS frameworks are well integrated, each frame-
work provides common interfaces and transport layer for com-
munication between components located within one machine
as well as when they are spread over several machines.

Custom devices with embedded microcontrollers can be
easily adopted to any specific requirements regarding func-
tionality, resources and dimensions. Such devices are dedi-
cated to performing low level control tasks such as: motor
control, signal conditioning and sensor fusion. Usually this
kind of tasks require specialized resources, real-time re-
sponse and high stability. For this reason custom embedded
controllers, are managed by FreeRTOS [32], a tinny footprint,
hard real-time operating system dedicated to small embedded
devices. FreeRTOS has very portable source code structure.
It is predominantly written in C – typically its kernel bina-
ry image is in the range of 4k to 9k bytes, and it support
34 different architectures including the very popular ARM
Cortex-M. Applications hosted by custom controllers are im-
plemented mainly as RTOS tasks. Critical application parts
can be implemented as bare metal procedures running directly
on hardware. Number of applications running on each device
is limited only by its resources.

Bull. Pol. Ac.: Tech. 63(3) 2015 675

M. Janiak and C. Zieliński

Fig. 9. RobREx general implementation architecture

The communication between components running on dif-
ferent machines is made possible with a ROS publish-
subscribe message passing mechanism and also with an ORO-
COS CORBA framework. Those transport layers are based
on standard Ethernet IPv4 protocol and can be used for non-
time-critical communication. Time critical communication be-
tween computational devices, as well as custom embedded

controllers, is possible with the RTnet [33] framework, a hard
real-time network protocol stack for the Xenomai and recently
also for the FreeRTOS. The RTnet operates on standard Eth-
ernet hardware, implements common Ethernet protocols in a
deterministic way, and provides a standard POSIX socket API.
In the future, it is planned to implement a publish-subscribe
protocol over the RTnet.

Fig. 10. Implementation of the locomotion agent

676 Bull. Pol. Ac.: Tech. 63(3) 2015

Control system architecture for the investigation of motion control algorithms...

With the presented toolchain, an implementation of the
locomotion agent on real hardware is straightforward. The fi-
nal structure of the Rex platform control system, is presented
in Fig. 10. This distributed control system consists of two
computational devices PC1 and PC2 as well as six custom em-
bedded devices uC1...6. PC1 is an industrial grade mini-ITX PC
with Intel Core i7 processor and 8GB RAM operational mem-
ory, running Linux with Xenomai, ROS and OROCOS. The
control subsystem c1 and the virtual effector e1,1 of the agent
a1 are hosted by this machine. The trajectory planner is im-
plemented as a ROS node, while model-based controller and
state estimator as OROCOS components. The virtual recep-
tor r1,1 is hosted by the second computational device the PC2.
This is an industrial grade small PC/104 embedded PC with
Intel Atom processor, 2GB RAM and IEEE 1394 FireWire
interface. This machine is supervised by the standard Linux
with ROS, thus the visual odometry is implemented as a ROS
node. Communication between the two machines as well as
between the agents is realized by the ROS transport layer.

The real effector E1 of the locomotion agent is realized
by six custom embedded controllers uC1...6, all supervised by
the FreeRTOS operating system. Devices uC1...4, associated
with the respective platform wheels, provide motor control
and encoder measurements. The device uC5 handles the com-
munication with the IMU, and the device uC6 provides support
for the force sensors. Real-time communication between com-
puters and custom devices is handled by the RTnet interface.

5. Conclusions

The paper describes the specification and the resulting ar-
chitecture of the Rex mobile platform control system. The
methodology relying on the decomposition of an embodied
agent into several standard subsystems, employing transition
functions for the description of their behaviours, has been
used for the designed system specification. The internal data
structures of each of the subsystems have been defined. Fi-
nally implementation architecture has been proposed relaying
on a set of well integrated hardware and software tools.

Within resulting control system architecture, motion plan-
ning and trajectory tracking tasks have been isolated and
closed into separate components with well defined interfaces.
This allows for independent development and testing of vari-
ous algorithms, without disturbing other system components.
Replacing one system element does not enforce changes in
the others. Through the use of proposed integration tools,
time needed for prototyping algorithms has been significantly
reduced. The Trajectory planner and Model-based controller

components will be a subject of further exchange. A trajecto-
ry planner implementing ECSA and OPCM motion planning
algorithms, as well as a model-based controller implement-
ing NMPC and AFM trajectory tracking algorithms will be
investigated in the future. Other system components remain
unchanged, unless the control paradigm is entirely changed.

Acknowledgements. This work has been done in the
framework of the RobREx project funded by the Pol-

ish National Center For Research and Development grant
PBS1/A3/8/2012.

REFERENCES

[1] C. Zieliński, “Specification of behavioural embodied agents”,
Fourth Int. Workshop on Robot Motion and Control (RoMo-

Co’04) 1, 79–84 (2004).
[2] S.H. Kaisler, Software Paradigms, Wiley Interscience, London,

2005.
[3] K. Sacha, Software Engineering, PWN, Warszawa, 2010, (in

Polish).
[4] C. Zieliński, T. Kornuta, and M. Boryń, “Specification of ro-

botic systems on an example of visual servoing”, 10th Int. IFAC

Symp. on Robot Control (SYROCO 2012) 10, 45–50 (2012).
[5] T. Kornuta and C. Zieliński, “Robot control system design ex-

emplified by multi-camera visual servoing”, J. Intelligent &

Robotic Systems 1, 1–25 (2013).
[6] C. Zieliński and T. Kornuta, “Diagnostic requirements in multi-

robot systems”, Intelligent Systems in Technical and Medical

Diagnostics, pp. 345–356, Springer, Berlin, 2014.
[7] C. Zieliński, T. Kornuta, and T. Winiarski, “A systematic

method of designing control systems for service and field ro-
bots”, 19-th IEEE Int. Conf. Methods and Models in Automa-

tion and Robotics, MMAR’2014 1, 1–14 (2014).
[8] C. Zieliński, “Transition-function based approach to structur-

ing robot control software”, Robot Motion and Control, Lec-

ture Notes in Control and Information Sciences 335, 265–286
(2006).

[9] C. Zieliński and T. Winiarski, “General specification of multi-
robot control system structures”, Bull. Pol. Ac.: Tech. 58 (1),
15–28 (2010).

[10] C. Zieliński and T. Winiarski, “Motion generation in the MR-
ROC++ robot programming framework”, Int. J. Robotics Re-

search, 29 (4), 386–413 (2010).
[11] K. Tchoń and J. Jakubiak, “Endogenous configuration space

approach to mobile manipulators: a derivation and performance
assessment of Jacobian inverse kinematics algorithms”, Int.

J. Contr. 76 (14), 1387–1419 (2003).
[12] D. Paszuk, K. Tchoń, and Z. Pietrowska, “Motion planning of

the trident snake robot equipped with passive or active wheels”,
Bull. Pol. Ac.: Tech. 60 (3), 547–555 (2012).

[13] M. Janiak and K. Tchon, “Constrained motion planning of non-
holonomic systems”, Syst. Contr. Lett. 60 (8), 625–631 (2011).

[14] A. Ratajczak and K. Tchoń, “Multiple-task motion planning of
non-holonomic systems with dynamics”, Mechanical Sciences

4 (1), 153–166 (2013).
[15] K. Tchoń, M. Janiak, K. Arent, and Ł. Juszkiewicz, ‘Mo-

tion planning for the mobile platform Rex”, in R. Szewczyk,
C. Zieliński, and M. Kaliczyńska, eds., Recent Advances in Au-

tomation, Robotics and Measuring Techniques, pp. 497–506,
Springer, Berlin, 2014.

[16] M. Janiak and K. Tchoń, “Constrained robot motion planning:
Imbalanced jacobian algorithm vs. optimal control approach”,
Methods and Models in Automation and Robotics (MMAR),

15th Int. Conf. 1, 25–30 (2010).
[17] B. Houska, H.J. Ferreau, and M. Diehl, “ACADO toolkit – an

open-source framework for automatic control and dynamic op-
timization”, Optim. Control Appl. Meth. 32, 298–312 (2011).

[18] M. Diehl, H.J. Ferreau, and N. Haverbeke, “Efficient numerical
methods for nonlinear MPC and moving horizon estimation”,

Bull. Pol. Ac.: Tech. 63(3) 2015 677

M. Janiak and C. Zieliński

Nonlinear Model Predictive Control, Lecture Notes in Control

and Information Sciences 384, 391–417 (2009).
[19] G.V. Raffo, G.K. Gomes, J.E. Normey-Rico, C.R. Kelber, and

L.B. Becker, “A predictive controller for autonomous vehicle
path tracking”, Intelligent Transportation Systems, IEEE Trans.

10 (1), 92–102 (2009).
[20] M. Cholewiński, K. Arent, and A. Mazur, “Towards practical

implementation of an artificial force method for control of the
mobile platform Rex”, Recent Advances in Automation, Ro-

botics and Measuring Techniques, of Advances in Intelligent

Systems and Computing 267, 353–363 (2014).
[21] A. Mazur and M. Cholewiński, “Robust control of differen-

tially driven mobile platforms”, Robot Motion and Control, in

Control and Information Sciences 2011, 53–64 (2012).
[22] M. Diehl, H.G. Bock, H. Diedam, and P.-B. Wieber, “Fast di-

rect multiple shooting algorithms for optimal robot control”,
Fast Motions in Biomechanics and Robotics, Lecture Notes in

Control and Information Sciences 340, 65–93 (2006).
[23] C. Zieliński, A. Rydzewski, and W. Szynkiewicz, “Multi-robot

system controllers”, Proc. 5th Int. Symp. Methods and Models

in Automation and Robotics 3, 795–800 (1998).
[24] J.V. Frasch, T. Kraus, W. Saeys, and M. Diehl, “Moving hori-

zon observation for autonomous operation of agricultural ve-
hicles”, Control Conf. (ECC), Eur. 3, 4148–4153 (2013).

[25] M. Zanon, J.V. Frasch, and M. Diehl, “Nonlinear moving hori-
zon estimation for combined state and friction coefficient esti-
mation in autonomous driving”, Control Conf. (ECC), Eur. 3,
4130–4135 (2013).

[26] H.J. Ferreau, T. Kraus, M. Vukov, W. Saeys, and M. Diehl,
“High-speed moving horizon estimation based on automatic
code generation”, Decision and Control (CDC), IEEE 51st

Ann. Conf. 2, 687–692 (2012).
[27] A. Geiger, J. Ziegler, and C. Stiller, “StereoScan: Dense 3d

reconstruction in real-time”, Intelligent Vehicles Symp. (IV),

IEEE 1, 963–968 (2011).
[28] S.A. Mahmoudi, M. Kierzynka, P. Manneback, and K. Kurows-

ki, “Real-time motion tracking using optical flow on multiple
GPUs”, Bull. Pol. Ac.: Tech. 62 (1), 139–150 (2014).

[29] Xenomai, Real-Time Framework for Linux,
http://www.xenomai.org.

[30] ROS, Robot Operating System, http://www.ros.org.
[31] OROCOS, Open Robot Control Software,

http://www.orocos.org.
[32] Real Time Engineers Ltd., FreeRTOS, http://www.freertos.org.
[33] RTnet, Hard Real-Time Networking for Real-Time Linux,

http://www.rtnet.org.

678 Bull. Pol. Ac.: Tech. 63(3) 2015

