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Lévy flights in binary optimization

MARTIN KLIMT, JAROMı́R KUKAL and MATEJ MOJZEŠ

There are many optimization heuristics which involves mutation operator. Reducing them
to binary optimization allows to study properties of binary mutation operator. Modern heuristics
yield from Lévy flights behavior, which is a bridge between local search and random shooting
in binary space. The paper is oriented to statistical analysis of binary mutation with Lévy flight
inside and Quantum Tunneling heuristics.
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1. Binary optimization

Let n ∈ N be dimension, D = {0,1}n be domain of objective function φ : D → R.
Binary optimization task is defined as finding of any xopt ∈ D satisfying

xopt ∈ argmin
x∈D

φ(x). (1)

There are many heuristics for solving the task (1). Genetic Optimization (GO) [1], Sim-
ulated Annealing (SA) [2], Fast Simulated Annealing (FSA) [3], Quantum Tunneling
(QT) [4], Discrete Cuckoo Search (DCS) [5], and Discrete Firefly Search (DFS) [6] are
frequently used in binary optimization. Basic operator of binary optimization is muta-
tion which avoids trap in local minima (SA, FSA, QT) or population degeneration (GO,
DCS, DFS).

2. Binary mutation

Binary mutation can be defined by stochastic function µ : D→D satisfying µ(x) ̸= x
for all ∈ D. New vector is generated by mutation as

xnew = µ(x) (2)
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which can be decomposed to

xnew = (x+y) mod 2 (3)

where
y = µ(0) ̸= 0. (4)

Therefore, any binary mutation can be studied as mutation from the origin 0. Any reason-
able binary mutation is invariant to x, xnew coordinate permutation. This is main reason
for why we use stochastic variable

k = ∥xnew −x∥H = ∥y∥H ∈ {1, ...,n} (5)

for representation of any binary mutation. Here, ∥...∥H means Hamming norm and

knowledge of k value enables generation of y as one of

(
n
k

)
vectors with just k unit

coordinates. Using Minkowski norm with p­ 1, we easily recognize that

∥y∥p = ∥y∥1/p
H (6)

which is monotonically increasing function of parameter p and then we does not obtain
alternative view to binary mutation description. Therefore, any binary mutation can be
characterized by probabilities

{pk}n
k=1 , pk ­ 0,

n

∑
k=1

pk = 1 (7)

which describes stochastic variable k in (5) and then any binary mutation.
Traditional Mutation (TRM) is based on Bernoulli trials [7] with event probability

pmut ∈ (0, 1/2), event number n, and excluded value k = 0. Resulting probabilities are

pk =

(
n
k

)
· pk

mut(1− pmut)
n−k

1− (1− pmut)
n (8)

When pmut → 1/2−, traditional mutation approaches Random Shooting Mutation (RSM)
to another point with probabilities

lim
pmut→1/2−

pk =

(
n
k

)
· (2n −1)−1. (9)

Second extreme, Nearest Neighbor Mutation (NNM) occurs when pmut → 0+, then

lim
pmut→0+

pk = δk,1 (10)

and stochastic variable degenerates to k = 1.
If TRM has pmut ¬ 2/(n+1), series { pk}n

k=1 is non-increasing one, having only one
maximum, and one minimum. When pmut > 2/(n+1), the series { pk}n

k=1 has two local
minima plus single maximum for k > 1. That is why TRM is only successful for small
pmut which is just useful for local searching.
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3. Continuous random variable as generator of binary mutation

Let ξ ∈ Rn be continuous random variable with density f : Rn → R+
0 satisfying∫

f (ξ)dξ = 1 and f (−ξ) = f (ξ) for all ξ ∈ Rn. Let T > 0 be parameter which is called
temperature. Binary mutation (4) can be generated by repeating

y = ⌊T ξ+ 1/2⌋ mod 2 (11)

until y ̸= 0. This special approach can bring new mutation class with better properties
than TRM.

4. Negative result for independent coordinates

Supposing independent coordinates of vector ξ we can decompose its density as

f (ξ) =
n

∏
k=1

g(ξk) (12)

and then generate individual binary coordinates as

yk = ⌊T ξk + 1/2⌋ mod 2. (13)

This independent approach brings unpleased result for any PDF g and its CDF G because

prob(yk = 1) = ∑
m∈Z

(
G
(

2m+ 3/2

T

)
−G

(
2m+ 1/2

T

))
(14)

does not depend on index k and then (13) only generates Bernoulli trials with

pmut = prob(yk = 1) = q(T ) (15)

where q(T ) is non-decreasing function of temperature T for any PDF g and its CDF G
according to (14). Therefore, distributions with independent coordinates are not useful
for realization of binary mutation which is different from TRM.

5. Lévy flight as source of mutation

Let β ∈ (0,2) be parameter of Lévy distribution [8], let d ∼ L(β) be stochastic vari-
able with Lévy distribution, and let z ∼ N (0,I) , z ∈ Rn be stochastic variable with
multivariate Gaussian distribution.

Lévy Flight from origin is then defined as generation of stochastic variable

ξ =
z

∥z∥2
·d. (16)
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Adequate PDF f (ξ) is radial symmetric but coordinates of ξ are fortunately dependent
and the PDF has heavy tails. Random variable with Lévy distribution can be generated
by Mantegna formula [9]

d =
u

|v |1/β (17)

where u ∼ N
(
0,σ2

)
, v ∼ N (0,1) and

σ =

(
Γ(1+β)sin(πβ/2)

Γ((1+β)/2) ·β ·2(β−1)/2

)1/β
. (18)

After binarization (11), we can generate Lévy Flight Mutation (LFM), study its stochastic
variable k, and influence of temperature T for fixed n, β.

When T is small, pk of LFM monotonically decreases and then local search is pre-
ferred as in TRM. When T is large, pk of LFM is also similar to TRM and near to
RSM. But for medium temperature T , pk of LFM has two maxima, which is a kind of
hybridization between local and global search. LFM behavior was studied using Monte
Carlo technique [10] for n = 20, β = 3/2 106 trials, and various temperatures. Resulting
probabilities are depicted in Figs. 1-3.

6. Mutation with parasitism

Let w ∈ (0,1) be probability of parasitism, yT RM be result of traditional mutation,
and yRSM be result of random shooting. Mutation with parasitism (PAM) is defined here
as

y =

{
yRSM with probability w
yT RM with probability 1−w.

(19)

Despite of PAM triviality, this type of binary mutation has similar properties as LFM.
PAM behavior was studied using Monte Carlo technique for n = 20, pmut = 0.05, 106

trials, and various parasitism probabilities and the results were depicted in Figs. 4-6. The
main question is not about similarity of LFM and PAM distributions, but about LFM and
PAM applicability in the case of difficult binary optimization tasks.

7. Experimental study: Quantum Tunneling for prime number problem

Quantum Tunneling (QT) [4] is physically motivated heuristics based on LFM. Be-
ginning with k = 0, Tk > 0, and

x0 ∼U(D) (20)

we perform LFM with temperature Tk to obtain

yk = LFM (xk,Tk,β) (21)
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and move to the better state according to rule

xk+1 =

{
yk, f (yk)< f (xk)

xk, f (yk)­ f (xk)
(22)

until termination condition holds. The cooling strategy is represented by non-increasing
sequence of positive temperatures Tk. We used constant temperature Tk = T0 and termi-
nation condition

f (xk)¬ f ∗ or k ­ maxeval. (23)

Respectively, we can use PAM instead of LFM in (21) as

yk = PAM (xk, pmut ,w) (24)

and compare time complexity of QT with LFM or alternative PAM inside.
There are many possibilities how to design difficult but reasonable binary optimiza-

tion task with many local extremes. Prime Number Problem (PNP) can be defined in this
paper as finding maximum prime number not exceeding N in binary representation of
course, which can be formulated as constrained optimization task

q = max (25)

q =
n

∑
k=1

2k−1xk (26)

x ∈ {0,1}n (27)
q ∈ P (28)
q¬ N (29)

where P is set of prime numbers. Using penalty technique, we transformed PNP to n-
dimensional binary optimization task with multimodal objective function

Φ(x) = N −q+2n · (max(0,q−N)+1− (q ∈ P)) (30)

which was subject of minimization. When N = 106, n = 20, then global minimum has
the value Φ(x∗) = 17. It corresponds to prime number 999983 and will be used for
optimization experiments.

Numerical testing of QT with LFM/PAM inside on PNP task was performed with
various mutation parameters. Every parameter setting was investigated via 100 indepen-
dent runs with maximum number of evaluations per run set to 100000. According to
tradition, we evaluate ene as mean number evaluations in the case of successful opti-
mization, rel as reliability of optimum searching [%], and FEO = ene/rel as Feoktistov
criterion [11] as widely recommended complexity measure. Results of computer exper-
iments for QT with LFM inside are collected in Tab. 1. Time complexity FEO is rela-
tively independent on parameter β. Optimum temperature is T0 = 2 in this case. Results
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Table 11. Time complexity of QT with LFM in the case of PNP

β 0.5 1 1.5

T0 ene rel FEO ene rel FEO ene rel FEO

0.5 54644 43 127080 46843 43 108938 55871 29 192659

1 46842 43 108935 47343 49 96619 40160 33 121697

2 51342 44 116687 51835 54 95991 52866 54 97900

5 52794 36 146650 52249 45 116109 55156 48 114913

10 48402 40 121005 54887 36 152464 46128 35 131790

Table 12. Time complexity of QT with PAM in the case of PNP

β 0.05 0.1 0.2

T0 ene rel FEO ene rel FEO ene rel FEO

0.3 46069 23 200300 48120 30 160400 48848 45 108552
0.4 49792 27 184415 41265 27 152834 49252 58 84918
0.5 56621 24 235921 50742 29 174973 50795 56 90642
0.8 50865 20 254325 44198 38 116311 60187 60 100312
0.9 49578 29 170959 52311 25 209244 60102 37 162438

of computer experiments for QT with PAM inside are collected in Tab. 2, where lower
values of mutation probability have to be compensated by higher values of parasitism.
Time complexity FEO has optimum for pmut = 0.2, w = 0.5. As seen, parasite mutation
achieved lower time complexity criterion FEO than mutation with Lévy flights in this
case, which motivates us to substitute LFM by PAM in binary optimization heuristics.

8. Conclusions

Binary mutation operator as investigated both theoretically and numerically. Tradi-
tional mutation with Bernoulli trials is ineffective in general, but binary mutation in-
spired by Lévy flights helps to realize trade off between local and global searches. Simi-
lar properties were detected also in the case of binary mutation with parasitism, which is
a statistical mixture of Bernoulli trials and random shooting. As demonstrated on twenty-
dimensional Prime Number Problem, Quantum Tunneling heuristics offered relative low
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Figure 1. LFM for T = 0.5. Figure 2. LFM for T = 2.

Figure 3. LFM for T = 5. Figure 4. PAM for w = 0.05.

Figure 5. PAM for w = 0.5. Figure 6. PAM for w = 0.9.
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time complexity value for both Lévy flights and parasitic mutation, which is a very good
inspiration for the other tasks and heuristics of binary optimization.
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