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Gain scheduled controller design
for thermo-optical plant

VOJTECH VESELÝ, JAKUB OSUSKÝ and IVAN SEKAJ

This paper presents a gain scheduled controller design for MIMO and SISO systems in
the frequency domain using the genetic algorithms approach. The proposed method is derived
from the M-delta structure of closed loop MIMO (SISO) systems and the small gain theory
is exploited to obtain the stability condition. An example of real system illustrates the effec-
tiveness of the proposed output feedback gain scheduled controller design method and also the
possibility to improve its performance using the genetic algorithm.
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1. Introduction

Gain scheduling is a very popular approach to nonlinear control design and has been
widely and successfully applied to power systems, aerospace, etc. The gain scheduling
design typically employs such an approach that a nonlinear design task is decomposed
into a number of linear sub-tasks. These results fall into two main subclasses [9]. First,
stability results establishing a relationship between the stability of the nonlinear system
and an associated family of linear systems. Second, approximation results which estab-
lish a direct relationship between the solution of the nonlinear system and a family of
associated linear systems. Gain scheduling is based on a linear parameter varying plant
model. Many researchers have therefore tackled the design problem of gain scheduled
controllers for linear parameter varying systems using LMI (Linear Matrix Inequality)
and the Lyapunov function approach [1, 2, 3, 6, 8, 12, 13, 15, 18, 19, 20, 21, 22]. For the
gain scheduling controller design the following models are used [9]:

• Jacobian linearization approach and transform of the results to a linear parameter
varying (LPV) system.
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• Velocity based linearization approach and transform of the results to LPV systems.

• Linear parameter varying systems [15].

• Linear fractional transformation [2].

For all of the above models with a gain scheduled controller mainly the Lyapunov
function and LMI are used to guarantee the closed-loop stability of the family of linear
parameter varying systems [9, 14]. A gain scheduled controller design in the frequency
domain can be found rarely. The frequency domain is better understood in the control
engineering community because it gives invaluable insight into simple frequency depen-
dent plots and important concepts for feedback can be defined such as the bandwidth and
peaks of closed-loop transfer functions, and so on. Obviously, in the time domain, the
gain scheduled controller design procedure is obtained in the form of a bilinear matrix
inequality, which does not allow controller design for high order plants. This problem
does not occur in the frequency domain. The main motivation for our research is to
design a gain scheduled controller in the frequency domain.

In this paper in the frequency domain a new gain scheduled controller design proce-
dure for MIMO and SISO linear parameter-varying systems in combination with genetic
algorithms is proposed. Genetic algorithm (GA) is a powerful search/optimization ap-
proach [5, 7, 11]. It can be used in the controller design area for various purposes. A
survey of evolutionary-based control system designs can be found in [10] or [16]. Note
that also other types of evolutionary algorithms can be used instead of the GA [5]. In the
presented approach the GA procedure combines the analytical way, which is based on
stability conditions formulated in the frequency domain with the simulation-based way,
where a selected integral performance index is minimized.

The paper is organized as follows: Problem statement and preliminaries are in Sec-
tion 2, Section 3 contains the main results, control design on a real example is in Section
4, and conclusions are summarized in Section 5.

2. Problem statement and preliminaries

The linear parameter varying system is a linear time-varying plant in which the sys-
tem matrices are fixed functions of some vector of varying parameters θ(t) [14].

LPV systems have at least two interpretations:

• they can be viewed as linear time-invariant plants subject to time-varying vector
parameter θ(t),

• they can be models of linear time-varying plants or result from linearization of
nonlinear plants trajectories of the parameter θ(t).
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Consider a MIMO (SISO) system described by the square matrix G(s) ∈ ℜm×m with
m outputs and inputs, and a controller R(s) ∈ ℜm×m in the form:

G(s) = G0(s)+
p

∑
i=1

Gi(s)θi (1)

R(s) = R0(s)+
p

∑
i=1

Ri(s)θi (2)

where
θi ∈ Ω, i = 1,2, ..., p is a known and frozen (constant) parameter;
{G j(s),R j(s)}, j = 1,2, ..., p are known plant and controller transfer function
matrices with constant entries, for their calculation see example (27).

We assume that in time domain θi(t), i= 1,2, ..., p is known and lower and upper bounds
are available. Specially, each parameter θi(t) ranges between known extreme values θi
and θi, that is θi(t) ∈ Ω, where

Ω = {θ ∈ ℜp : θi < θi(t)< θi, i = 1,2, ..., p}. (3)

For the rate of θi(t) change we have θ̇i(t) ∈ ⟨θ̇i, θ̇i⟩. In the frequency domain the
situation is different. From the stability point of view, for the closed-loop system for
all θi ∈ Ω, i = 1,2, ..., p when θi = −θi (symmetric case) it is sufficient to know θi in
extreme point (15) thus equation (1) and (2) are written for frozen θ in point θi = θi, i =
1,2, ..., p.

Note:

1. Simulation of the closed-loop system with (1) and (2) can be made only for frozen
θ.

2. For θi(t) ∈ Ω the simulation of closed loop system needs to be done only in the
time domain.

3. For the next development only frozen θ will be taken account.

Figure 1. Standard feedback configuration.
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The necessary and sufficient closed-loop stability condition for the system in Fig. 1
and frozen θ is formulated in the Generalized Nyquist Stability Theorem based upon the
concept of the system return difference.

F(s) = I +G(s)R(s). (4)

Theorem 8 The feedback system in Fig. 1 is stable if and only if

det(F(s)) ̸= 0 (5)

N [0,det(F(s))] = n0 (6)

where n0 is the number of unstable poles of the open loop system G(s)R(s) and
N [0,det(F(s))] denotes the number of anti clock-wise encirclements of the origin by
the Nyquist plot of det(F(s)).

In this paper we tackle the following problem. For a given plant described by transfer
function matrix (1) design a gain scheduled controller (2) which stabilizes the closed-
loop system (Fig. 1) for all θi ∈ Ω, i = 1,2, ..., p. The gain scheduled controller may be
structured, thus one can use a centralized, decentralized, PID or other controller.

3. Main results

3.1. Gain scheduling stability condition

Consider substitution of transfer function matrices (1) and (2) into Fig. 1. The ob-
tained structure is shown in Fig. 2 with the following notation:

R(s) = [R1...Rp],

Ri(s) = diag{Rik}m×m, i = 1,2, ...p;k = 1, ...,m
(7)

θT = [θd1, ...,θd p]

θdi = diag{θi}m×m, i = 1,2, ..., p
(8)

G(s) = [G1(s)...Gp(s)] ∈ ℜm×mp,Gi(s) ∈ ℜm×m, i = 1,2, ..., p (9)

y ∈ ℜm, yi ∈ ℜmp, ui ∈ ℜm, i = 1,2. (10)

A particularity of the frequency domain gain scheduling problem is that frozen pa-
rameters enter both the plant and the controller. To come round this problem with the
small gain theory we must first gather all parameters dependent components into a sin-
gle block. The gain scheduled feedback configuration (Fig. 2) can be rearranged into
M−θ structure in the following way.
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Figure 2. Gain scheduling configuration, closed-loop.

For w(s) = 0 and output y(s) one obtains for

y(s) = u2(s)+G0(s)(u1(s)−R0(s)y(s))⇒ y(s) =
= (I +G0(s)R0(s))

−1 (u2(s)+G0(s)u1(s)) .
(11)

Let us define the output vector yg
T = [y1

T , y2
T ] and input vector ug

T = [u1
T , u2

T ], Fig. 2.
After small manipulations one obtains the following matrix form.[

y1

y2

]
=

[
−RT (I +G0R0)

−1G0 −RT (I +G0R0)
−1

GT (I −R0(I +G0R0)
−1G0) −GT R0(I +G0R0)

−1

][
u1

u2

]
. (12)

Let us denote

Mg(s) =

[
−RT (I +G0R0)

−1G0 −RT (I +G0R0)
−1

GT (I −R0(I +G0R0)
−1G0) −GT R0(I +G0R0)

−1

]
(13)

θg =

[
θT 0
0 θT

]
∈ ℜ2mp×2mp (14)

then we obtain an M−θg structure in the form shown in Fig. 3.

Figure 3. Mg −θg structure of gain scheduling closed-loop system.

By inspection of (Fig. 3) we see that the original problem can be viewed as a classical
problem, where necessary and sufficient stability condition is provided by the small gain
theory. Next we introduce the following small gain theorem [23].
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Theorem 9 Suppose Mg(s) ∈ RH∞ and let γ > 0. Then the interconnected system shown
in Fig. 3 is well-posed and internally stable for all θg ∈ RH∞ with

||θg||¬ 1/γ if and only if ||Mg(s)||∞ < γ
||θg||< 1/γ if and only if ||Mg(s)||∞ ¬ γ.

(15)

Remark 4 RH∞ is a closed subspace with functions that are analytic and bounded in
the open right half-plane. For a stable real rational transfer function matrix G(s), the H∞
norm is defined in the usual way: ||G(s)||∞ = sup

ω∈R
σM(G( jω)), where σM(·) stands for

the largest singular value of matrix G(s).

Remark 5 It can be shown that the small gain stability condition is sufficient to guaran-
tee internal stability even if θi ∈ Ω, i = 1,2, ..., p is a nonlinear and time varying ‘stable’
operator with an appropriately defined stability notion [4].

Remark 6 Due to note 2, stability of the closed-loop system (Fig. 3) is guaranteed even
for the case when θ is nonlinear and time varying stable operator [23].

Remark 7 Let us recall that θi, i = 1,2, ..., p plays the role of a known scheduling vari-
able and gives the rule for controller and plant model updating in simulation or practical
realization of closed-loop systems with a gain scheduled controller.

From theorem 2 the following corollary follows.

Corollary 2 The gain scheduled closed-loop system in Fig. 2 or Fig. 3 is stable if and
only if

a) matrix Mg(s) is stable,

b) σM (Mg(s))<
1

max
θ∈Ω

σM(θg)
(16)

where the maximum is taken from all 2p polytopic vertices of the gain scheduled system
substituting for θi, i = 1,2, ..., p its minimal and maximal values. If (16) holds, the
closed-loop system (Fig. 3) is internally stable for all θi ∈ Ω.

Rewrite (13) in the following form:

Mg(s) = Mrg(s)Mpg(s) (17)

where

Mrg(s) =

[
RT 0
0 I

]
(18)
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Mpg(s) =

[
−(I +G0R0)

−1G0 −(I +G0R0)
−1

GT (I −R0(I +G0R0)
−1G0) −GT R0(I +G0R0)

−1

]
(19)

then for the left side of (16) it holds:

σM (Mg(s)) = σM (Mrg(s))σM (Mpg(s)) . (20)

After some manipulations for σM(Mrg(s)) one obtains

σM(Mrg(s)) = max

1,

(
p

∑
i=1

R2
i1(s)

) 1
2

...

(
p

∑
i=1

R2
im(s)

) 1
2
 . (21)

By inspection of (19), (21) we see that the structure and parameters of controller R0(s),
(Fig. 2) manipulate with σM (Mpg(s)) and other parts of the gain scheduled controller
R1(s)...Rp(s) affect the value of σM (Mpg(s)). When σM (θg) is known, that is

max
θ∈Ω

σM (θg)¬
1
γ
. (22)

Equations (16), (20) and (22) imply that condition of corollary 1 holds if

σM (Mpg(s))< γ2 (23)

σM (Mrg(s))< γ1 (24)

provided that γ = γ1γ2.
Condition a) of corollary 1 holds if the Nyquist plot of (25)

det(I +G0(s)R0(s)) (25)

is stable and matrices Gi(s),Ri(s), i = 1,2, ..., p are stable as well. Using the Nyquist
stability conditions theorem, the necessary and sufficient conditions of (25) can be de-
termined as follows:

Corollary 3 [17] System (25) will be internally stable and well-posed if and only if

N[0,det(I +G0(s)R0(s))] = nq (26)

where nq is the number of unstable poles of R0(s)G0(s).

Inequalities (22-24) give one of the ways how one can design the gain scheduled
controller. In the next section, another interesting way of designing a gain scheduled
controller will be presented on an example.
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3.2. Gain scheduling controller parameters searching by genetic algorithm

The essential part of the optimized problem is the cost function definition. It repre-
sents the kernel of the solved problem and it is a performance measure of each individual
of the population, which has to be maximized or minimized. Cost function may have the
form of a function, which is simple to evaluate, but it also may contain complex proce-
dures of modeling, simulation and performance measure evaluation.

In gain scheduling controller design procedure the cost function evaluation consists
of the following steps:

1. Calculation of F1 = max(σM (Mg(s))).

2. Penalty calculation according to:

γ =
1

max
θ∈Ω

σM(θg)

µ = γ−F1

if µ < 0 penalty = 10
(
1+µ2) , elsepenalty = 0.

3. Simulation of the closed-loop with actual controller parameters and the controlled
system.

4. Evaluation of the performance index in the form of the ‘Absolute control error’

F2 =
∫

(|e|)dt (27)

where e is the of control error obtained by simulation.

5. Stability evaluation of the following polynomial (25) det(I +G0R0):

if det(I +G0R0)is stable polynomial − q = 0
if det(I +G0R0)is unstable polynomial − q = 1000.

6. Cost function evaluation in the form

Cost = F1 + penalty+αF2 +q
α = 0.001

(28)

That means that the cost function, which is to be minimized using the genetic algorithm
considers concurrently three independent aspects:

a) the value of σM (Mg(s)) – which represents a stability measure in the frequency
domain,
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b) an integral form of the performance index – which represents the simulation-based
control performance measure and

c) stability of polynomial det(I+G0R0) – which represents nominal closed-loop sys-
tem.

Note: alternatively to performance index (27) other indices can be used. The evolu-
tionary algorithm based controller design is described in more detail in [16].

4. Control design, example

The gain scheduled approach was applied to a real thermo-optical plant. The aim of
the control design was to control the light intensity in the whole range, using the bulb
voltage [0-5V] as a manipulated input. As a measured disturbance, the led voltage was
used for increasing the light intensity. At first, two static characteristics were measured
for the whole bulb voltage range and led voltages 0 and 2V, Fig. 4.

Figure 4. Static characteristics of plant and identified linear models.
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4.1. Gain scheduling control – standard design

According to static characteristics the system was identified in three operating points
defined by the led and bulb voltages [L; B] and described by linear transfer functions.

Operating point 1: [0;1.3] V

G1(s) =
−0.03156s+1

0.1307s2 +4.288s+0.196

Operating point 2: [0;4] V

G2(s) =
−0.03608s+1

0.04315s2 +2.621s+0.1286

Operating point 3: [2;3.5] V

G3(s) =
−0.03203s+1

0.04036s2 +2.537s+0.1311
(29)

According to the number of operating points, two θ parameters ( θ1, θ2 ) were defined
with working range θ1,2 ∈ ⟨θ,θ⟩, in this case θ1,2 ∈ ⟨−1,1⟩.

Bulb voltage u in interval u ∈ ⟨1.7;2.3⟩ is recalculated to θ1 ∈ ⟨−1,1⟩. Out of this
interval θ1 reaches marginal values.

Led voltage d in interval d ∈ ⟨0;2⟩ is recalculated to θ2 ∈ ⟨−1,1⟩. Out of this interval
θ2 reaches marginal values.

Transfer functions G0(s) and Gi(s), i = 1,2 were calculated from identified transfer
functions G1(s), G2(s), G3(s) according to (1).

G0(s) =
−0.3722s2+0.3919s+646.1
s3+95.62s2+2063s+106.4

G1(s) =
−0.2973s2+1.391s+147.5
s3+93.51s2+1993s+102.8

G2(s) =
0.167s2+0.361s−−0.0497
s3+60.79s2+5.92s+0.144

. (30)

For each identified transfer function Gk(s), k = 1,2,3 a local PI controller Rk(s), k =
1,2,3 ensuring a phase margin PM = 60◦ was designed. The aim of the local controllers
design was to keep overshoot less than 20%. Parts of gain scheduled controller R0(s) and
Ri(s), i = 1,2 were calculated in the same way as G0(s) and Gi(s), i = 1,2.

R0(s) =
1.668s+0.685

s
, R1(s) =

0.1445s+0.227
s

, R2(s) =
0.0125s+0.0425

s
. (31)
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Condition a) of corollary 1 holds if G0, G1, G2 are stable and det(I +G0R0) is a stable
polynomial. Controllers R0, R1, R2 according to PI structure are considered as stable.
The following roots proof the stability of the mentioned transfer functions:

Λ(G0(s)) = {−62.79;−32.77;−0.052}

Λ(G1(s)) = {−60.71;−32.75;−0.052}
Λ(G2(s)) = {−60.69;−0.052;−0.046}

Λ(det(I +G0(s)R0(s))) = {−62.07;−32.35;−0.29±0.37 j}. (32)

Condition b) (equation (16)) of corollary 1 is depicted in Fig. 5. The right side of in-
equality γ is a scalar number equal to γ = 1/

√
2 according to symmetric maximum and

minimal values of θ1, θ2.

Figure 5. Stability condition of system with gain scheduled controller (Mg < 0.707).

For identified transfer functions (29) one robust PI controller was designed for com-
parison with the gain scheduled control. The parameters of the robust PI controller are
following:

Rrobust(s) =
1.754s+0.765

s
. (33)

The robust PI controller and gain scheduled controller were applied to the real system
in the whole operating range, Fig. 6. Graphical results from Fig. 6 were quantified using
IAE criterion (34) and compared in Tab. 1. (Ts = 0.1 is the sample time)

IAE = Ts

6200

∑
i=1

(yi(s)−wi(s))
2 (34)
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Figure 6. Gain scheduling and robust control comparison in experiment on thermo-optical plant.

Table 6. Numerical comparison of gain scheduling and robust control

IAE criterion

Gain scheduling control 1068.11

Robust control 1068.43

4.2. Gain scheduling control – genetic algorithm

The GA searches for the six parameters of the gain scheduling controller (two pa-
rameters of each controller R0, R1, R2). A part of cost function (28) calculating absolute
control error (27) due to possibility measure process values only in sample time, was
modified as follows:

F2 = Ts

(
N

∑
t=0

|e(t)|

)
(35)

where N is number of samples in real experiment, what in this example is 6200.
The GA searches directly for the parameters of the gain scheduling controller so the

recalculation as in the previous controller design can be omitted. Cost function behavior



GAIN SCHEDULED CONTROLLER DESIGN FOR THERMO-OPTICAL PLANT 345

is depicted with stability condition (16) in graphical form in Fig. 7

R0 gen(s) =
2.689s+1.313

s
,

(36)

R1 gen(s) =
−−0.19s−−0.118

s
, R2 gen(s) =

0.532s+0.245
s

.

Figure 7. Cost function behavior by optimization process (left) and stability condition (right).

Stability was verified also according to (25) roots of det(I +G0R0)
−1 has following

values:

Λ(det(I +G0(s)R0(s))−1) = {−42.35±13.71 j;−0.45±0.47 j}. (37)

The gain scheduled controller, with parameters designed using the genetic algorithm,
was verified on a real plant and the measured values were compared with a previously
designed gain scheduling controller. Graphical results are depicted in Fig. 8, (more detail
in Fig. 9) and numerical results are written in Tab. 2.

Experimental results confirmed that closed-loop system is stable even for the case
when θi ∈ Ω is a function of time.

Table 7. Numerical comparison of gain scheduling and gain scheduling control – genetic

IAE criterion

Gain scheduling control 1068.11

Gain scheduling control - genetic 1056.87
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Figure 8. Comparison of gain scheduling and gain scheduling control designed by genetic algorithm on
thermo-optical plant.

Figure 9. Comparison of gain scheduling and gain scheduling control designed by genetic algorithm on
thermo-optical plant - detail.
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5. Conclusions

In this paper a new gain scheduled controller design procedure for MIMO and SISO
linear parameter-varying systems is proposed. The proposed design procedure is based
on the M −∆ structure and the small gain theory. The possibility to improve the per-
formance using genetic algorithm was included. The controller design procedure was
demonstrated in detail on a real example and compared with a classical robust control.
The comparison with the classical control approach shows that the gain scheduling con-
trol structure gives a better performance also for slightly nonlinear systems. Using the
genetic algorithm the parameters of the gain scheduled controller were changed and the
performance was improved. The proposed design procedure in the frequency domain
brings new results for the stability conditions of gain scheduled closed-loop systems.
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