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A problem of optimal cylindricity profile matching
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Abstract. The bird-cage strategy used for measuring cylindricity is reported to be the most effective, as it provides the most detailed
information about an analyzed object. The average values of profiles measured with the cross-section and the generatrix strategies may differ
slightly, yet this may result from some design imperfections of the measurement instruments used. In this study, the problem of optimal
profile matching is formulated and solved. As a result, the differences between the values of the registered profiles at the points of intersection
of the scanning trajectories can be minimized.
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1. Introduction

Rotary components constitute a large and important group of
machine parts. They are common, for instance, in the automo-
tive, power, paper and shipbuilding industries; therefore, one
of the most significant metrological tasks today is to ensure
maximum accuracy of roundness and cylindricity measure-
ments [1–7].

Cylindrically shaped objects have generally been assessed
by measuring their roundness deviations at several cross-
sections. In practice however, the reliability of a product is
dependent on the whole area of the surface. It is desirable
that cylindrical components be evaluated by means of the pa-
rameters that refer to the whole surface area.

Cylindricity needs to be measured in such a way that the
representation of the measured surface is as precise as pos-
sible. It is important to ensure appropriate density of mea-
suring points. The basic criterion for selecting a measure-
ment strategy is to assume the predominant harmonic for
both roundness and straightness profiles. In practice, it is dif-
ficult to cover the entire surface with measuring points using
the theoretical minimum density of points defined in the ISO
12180 standard [8]. The standard describes the measurement
strategies that provide specific rather than general informa-
tion about cylindrically shaped objects. These are: the cross-
section strategy, the generatrix strategy, the bird-cage strategy
being a combination of the previous two, and the point strat-
egy (see Fig. 1).

Fig. 1. Cylindricity measurement strategies, according to the ISO 12180 standard (left to right): the cross-section strategy, the generatrix
strategy, the bird-cage strategy, the points strategy
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The cross-section and the generatrix strategies are im-
plemented in the majority of instruments applying the radi-
al method. The point strategy is frequently employed when
form deviations are assessed by means of coordinate measur-
ing machines. The ISO 12180 standard recommends using the
bird-cage strategy. Surprisingly, it is not commonly used to
measure cylindricity deviations even though it provides the
most detailed information about measured objects [9].

It appears that the average values of profiles measured with
the cross-section and the generatrix strategies differ slight-
ly. This may be due to certain design imperfections of the
measurement instruments used. In this study, the problem of
optimal profile matching is formulated and solved. As a con-
sequence, the differences between the values of the registered
profiles at the points of intersection of the scanning trajecto-
ries can be minimized.

2. The bird-cage cylindricity measurement

strategy

Let us consider an XYZ Cartesian coordinate system asso-
ciated with the measurement table of the instrument where
the Z-axis coincides with the spindle rotation axis. It is also
convenient to apply a cylindrical coordinate system because
the radial method of measurement of the macrogeometry of
cylindrical surfaces involves scanning the object surface dur-
ing the spindle rotation and the vertical shift of the sensor.
The coordinates of a point in the cylindrical system associ-
ated with the XYZ system are represented by three numbers
(ϕ, r, z), where ϕ is the angular coordinate of the point, r is
the radial coordinate (distance of the point from the Z-axis),
and z is the height-related coordinate. A cylindrical surface
can be written parametrically using a function:

rcyl(ϕ, z), 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ H. (1)

The bird-cage strategy applied to measure the cylindricity of
rotary objects combines the principles of the cross-section
and the generatrix strategies. It is assumed that the instru-
ment is equipped with high precision systems for measuring
the sensor height and the angle of table or spindle rotation.

When a profile is to be measured at a selected cross-
section, the vertical shift of the sensor is switched off. The
sensor needs to be shifted to a desired height and the table or
spindle rotation switched on. The moment the control system
receives a signal of the zero angular position, the measure-
ment starts. It is assumed that the height coordinates of the
consecutive cross-sections are:

zn, n = 1, 2, ..., N, (2)

where N denotes the number of cross-sections. Then, without
loss of generality, we assume that the height coordinates of
the consecutive sections are arranged in ascending order and

0 = z1 < z2 < ... < zN = H. (3)

In order to simplify the notation and to avoid troublesome
indexing over samples of the profile we assume that the mea-
sured profiles are continuous functions of the variables z

and ϕ. Thus the values of the profile observed in the subse-
quent cross-sections are denoted by rc

n(ϕ). Obviously, mea-
surements performed with the radial method are relative in
character, thus

rc
n(ϕ) ∼= ρ + rcyl(ϕ, zn), n = 1, 2, ..., N (4)

for an unknown value of ρ. The approximation symbol ∼=
emphasize that the measurements of the profile radius con-
tain errors resulting from the measurement noise and the in-
strument design imperfections. If the coordinates zn of the
cross-sections are uniformly distributed over the range [0, H ],
then zn = H · (n − 1)/(N − 1), n = 1, 2, ..., N .

Profile measurements at longitudinal sections are per-
formed with the table (spindle) at standstill. A measurement
commences after the table is turned to a desired angular po-
sition and the vertical sensor shift is switched on. The sensor
position can be stabilized by applying an additional run-up
section several millimeters in length. Therefore, it is essential
that the height of the sensor after switching on the shift be
smaller than the initial height of the analyzed cylindricity pro-
file. Assume that the angular coordinates of the longitudinal
sections are:

ϕm, m = 1, 2, ..., M, (5)

where M denotes the number of sections. The values of the
profile at the consecutive longitudinal sections are denoted by:

rg
m(z) ∼= ρ + rcyl(ϕm, z), m = 1, 2, ..., M. (6)

Additionally, if we assume that the angular coordinates ϕm

of the longitudinal sections are uniformly distributed in the
range [0, 2π], then ϕm = 2π(m − 1)/M , m = 1, 2, ..., M .

The points of intersection of the scanning trajectories will
play an important role in this study. These coordinates are
(ϕm, zn), m = 1, ..., M , n = 1, ..., N , while the values of
the profile radius are rc

n(ϕm) and rg
m(zn) respectively.

3. The problem of optimal profile matching

When a cylindricity measurement conducted by means of the
bird-cage strategy is completed, one can observe that the val-
ues of the profile radius at the points of intersection of the
scanning trajectories in the cross and longitudinal sections are
slightly different. The difference may be due to some imper-
fections of the sensor system design. Note that the measure-
ment conditions for the cross-section strategy are different
from those for the generatrix strategy. This causes different
distribution of forces acting on the sensor tip. Imperfections
of the hydrostatic bearing used in the table spindle are another
possibility. The position of the table may differ if measure-
ments are performed with the table in a rotary motion (cross-
sections) or with the table at stand still (longitudinal sections).
As a result, the profile observed with the cross-section strat-
egy can be slightly shifted in relation to the profile observed
with the generatrix strategy.

3.1. Comparing the measurement results obtained by the

cross-section and the generatrix strategies. A profile shift
can be best observed in a spatial diagram of measuring points
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in a cylindrical coordinate system (ϕ, z, r). Figure 2 illustrates
the results of a series of cylindricity measurements performed
on a radial cylindricity measurement instrument. The points
obtained by means of the cross-section and the generatrix
strategies are drawn in dark and light gray, respectively (blue
and green when printed in color). The first three measure-
ments were conducted for rollers with a diameter of 52 mm
and a height of 100 mm, each. The surface preparation in-

volved polishing (the first two specimens) or grounding (the
third specimen). Note that there is a clear difference in the
waviness level between the polished and the grounded cylin-
ders. The last three measurements were carried out for rollers
with a diameter of 38 mm and a height of 62 mm, each. Such
rollers are used in bearings. In all the cases considered, the
measurements were taken in the central part of the cylindrical
workpieces 10 mm away from the bases.

a) b)

c) d)

e) f)

Fig. 2. Examples of 3D plots of the measuring points in the cylindrical coordinate system
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As can be seen, there is a clear positive shift in value of
straightness profiles in relation to roundness ones. The calcu-
lations were performed separately for the cross-section strat-
egy and the generatrix strategy. The values are presented in
Table 1. As can be seen, the differences in the mean profile
radius range from 0.2 to more than 1.0 µm.

Table 1
Average values of the profiles obtained by means of the cross-section Rc

o

and the generatrix R
g

o strategies – comparison of cross and longitudinal
sections

Sample Rc
o [µm]

cross sections
R

g

o [µm]
longitudinal sections

Difference
R

g

o − Rc
o

[µm]

a −34.7 −33.3 1.38

b −0.166 0.279 0.446

c 1.74 2.05 0.309

d −7.22 −6.92 0.300

e 15.4 15.9 0.417

f 8.04 8.43 0.391

3.2. Formulation and solution of the problem of optimal

profile matching. Let us first consider an ideal measuring
instrument with error-free representation of the cylindricity
profile rcyl(ϕ, z). If apply the bird-cage strategy, we obtain
then the following set of values of the profile radius:

rc
n(ϕ) = ρ + rcyl(ϕ, zn), n = 1, 2, ..., N, (7)

rg
m(z) = ρ + rcyl(ϕm, z), m = 1, 2, ..., M, (8)

for an unknown value of ρ. In this case, at the points of in-
tersection of profile scanning paths, the condition

rc
n(ϕm) = rg

m(zn) (9)

is fulfilled. Due to measurement errors, the above condition
is fulfilled only approximately. At the first step, we could
assume that due to the instrument imperfections, the differ-
ence between the observed radii rc

n(ϕm) − rg
m(zn) at points

(ϕm, zn) is constant. Let us consider, however, a more gen-
eral case. Assume that the difference between the actual and
the observed profiles is different for each cross-section. Thus,

rc
n(ϕ) ∼= ρc

n + rcyl(ϕ, zn), n = 1, 2, ..., N, (10)

rg
m(z) ∼= ρg

m + rcyl(ϕm, z), m = 1, 2, ..., M (11)

for unknown values of ρc
m and ρg

n. Now, it is essential to
calculate the values of ρc

m and ρg
n so that the difference

rc
n(ϕm) − rg

m(zn) is the smallest possible. Taking into ac-
count the above relationships, we obtain:

rc
n(ϕ) − ρc

n
∼= rg

m(zn) − ρg
m,

n = 1, 2, ..., N, m = 1, 2, ..., M.
(12)

The number of equations N ·M is much bigger than the num-
ber of unknown parameters. Furthermore, it should be noted
that each measurement signal contains a noise. It is thus rea-
sonable to introduce an appropriate index of profile matching.
Let us define the corrected profiles

r̂c
n(ϕ) = rc

n(ϕ) − ρc
n, n = 1, 2, ..., N, (13)

r̂g
m(z) = rg

m(z) − ρg
m, m = 1, 2, ..., M (14)

and the quadratic profile matching error

J(ρc
1, ..., ρ

c
N , ρg

1, ..., ρ
g

M )

=
1

2

N∑

n=1

M∑

m=1

(r̂c
n(ϕm) − r̂g

m(zn))
2
.

(15)

The values of ρc
1, ..., ρ

c
N , ρg

1, ..., ρ
g
M minimizing the index J

are calculated by equating the partial derivatives ∂J/∂ρc
n and

∂J/∂ρg
m to zero. Thus, we obtain a system of equations that

can be written in the matrix form

Aρ = b, (16)

where

ρ = [ ρc
1 . . . ρc

N ρg
1 . . . ρg

M
]T , (17)

A =





M −1 · · · −1
. . .

...
. . .

...

M −1 · · · −1

−1 · · · −1 N
...

. . .
...

. . .

−1 · · · −1 N





N






M






,

b =





M∑

m=1

(rc
1(ϕm) − rg

m(z1))

...
M∑

m=1

(rc
N (ϕm) − rg

m(zN ))

−

N∑

n=1

(rc
n(ϕ1) − rg

1(zn))

...

−

N∑

n=1

(rc
n(ϕM ) − rg

M (zn))





.

(18)

It is easy to check that this system of Eqs. (16) has infinite-
ly many solutions. Indeed, if ρc

n and ρg
m constitute a certain

solution to the system of equations, then the values of ρc
n + ε

and ρg
m + ε for a certain value of ε are also a solution to

this system. Without loss of generality, we can reject the first
equation from the system (16) and assume that the signal shift
for the first roundness profile ρc

1 is equal to zero. Alternatively,
the minimization problem (15) can be supplemented with one
additional equality constraint. For example, we can demand
that the average value of all profiles after profile matching be
equal to zero, that is

1

2πN

N∑

n=1

2π∫

0

r̂c
n(ϕ)dϕ +

1

HM

M∑

m=1

H∫

0

r̂g
m(z)dz = 0. (19)
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In this way, we obtain an additional equation:

1

N

N∑

n=1

ρc
n +

1

M

M∑

m=1

ρg
m

=
1

2πN

N∑

n=1

2π∫

0

rc
n(ϕ)dϕ +

1

HM

M∑

m=1

H∫

0

rg
m(z)dz.

(20)

After calculating the values of the parameters ρc
n and ρg

m, we
modify the value of the observed profile in accordance with
the formulae (13) and (14).

4. The generalized problem of optimal profile

matching

The approach presented in the previous section can be gener-
alized. The axis of rotation in the instruments with a rotary
table may be dependent to a certain degree on the rotational
velocity of the table.. The position of the axis of rotation may
differ if measurements are performed by means of the cross-
section strategy (with the table in rotary motion) and the gen-
eratrix strategy (with the table at standstill). The change in the
position of the table rotation axis can be compensated for by
modifying the measured profiles according to the following
relationship:

r̂c
n(ϕ) = rc

n(ϕ) − ρc
n, n = 1, ..., N, (21)

r̂g
m(z) = rg

m(z) − ρg
m − (cg

x + dg
xz) cosϕm

−(cg
y + dg

yz) sinϕm,

m = 1, 2, ..., M,

(22)

where cg
x, dg

x, cg
y , dg

y are additional parameters defining the
reciprocal position of the table axes. Note that the relative
eccentricity cg

x and cg
y can be compensated for by select-

ing freely the parameters ρg
m. We can, therefore, assume

that cg
x = cg

y = 0. Finally, the parameters responsible for
the profile matching are calculated by minimizing the index
(15), which is now dependent on the parameters ρc

1, ..., ρ
c
N ,

ρg
1, ..., ρ

g
M , dg

x, dg
y . From the necessary conditions for opti-

mality we obtain
[

A L
T

L K

][
ρ

d

]
=

[
b

e

]
, (23)

where

L
T =





−z1

M∑

m=1

cosϕm −z1

M∑

m=1

sin ϕm

...
...

−zN

M∑

m=1

cosϕm −zN

M∑

m=1

sin ϕm

cosϕ1

N∑

n=1

zn sin ϕ1

N∑

n=1

zn

...
...

cosϕM

N∑

n=1

zn sin ϕM

N∑

n=1

zn





, (24)

K =

(
N∑

n=1

z2
n

)

·





M∑

m=1

cos2 ϕm

M∑

m=1

cosϕm sin ϕm

M∑

m=1

cosϕm sin ϕm

M∑

m=1

sin2 ϕm




,

(25)

d = [ dg
x dg

y ]T (26)

and

e =





N∑

n=1

M∑

m=1

zn sinϕm (rc
n(ϕm) − rg

m(zn))2

N∑

n=1

M∑

m=1

zn sinϕm (rc
n(ϕm) − rg

m(zn))2




. (27)

Like in the previous case, we can assume that ρc
1 = 0 and then

reject the first equation in the system (23). However, we can
apply a different approach. In the algorithm described above,
measurements of the profiles of the cylinder generatrices can
be properly modified so that the axis of the mean cylinder of
these profiles will coincide with the axis of the mean cylin-
der of the profiles measured in the cross-sections. It is also
possible to introduce additional parameters; as a result, after
profile matching, we immediately obtain profiles for which the
mean axis coincides with the Z-axis and the average value of
the profile is equal to zero. Thus, after profile matching, we
immediately obtain a deviation of the profiles from the mean
cylinder. Now let us assume that the corrected profiles are
described with the following equations

r̂c
n(ϕ) = rc

n(ϕ) − ρc
n − (cc

x + dc
xzn) cosϕ

−(cc
y + dc

yzn) sin ϕ,

n = 1, ..., N,

(28)

r̂g
m(z) = rg

m(z) − ρg
m − dg

xz cosϕm − dg
yz sin ϕm,

m = 1, 2, ..., M.
(29)

Like in the previous case, we assume that cg
x = cg

y = 0.
Now, the profile matching index is dependent on the para-
meters ρc

1, ..., ρ
c
N , cc

x, cc
y , dc

x, dc
y , ρg

1, ..., ρ
g

M , dg
x, dg

y , among
which there are five free parameters ρc

1, cc
x, cc

y, dc
x, dc

y . To
solve the index minimization problem, we introduce five ad-
ditional equality conditions. Let us define the parameters of
the mean cylinder of all the observed profiles ρa, ca

x, da
x, ca

y ,
da

y , where the parameter ρa defines the radius of the mean
cylinder, while the other parameters refer to the cylinder axis
coordinates.

The term ‘mean cylinder’ is clearly defined for the whole
surface area of the cylinder (1). It is assumed that the para-
meters of this cylinder minimize the index

Ja(ρa
n, ca

x, da
x, ca

y, da
y)

=
1

2πH

2π∫

0

H∫

0

(rcyl(ϕ, z) − ρa
n − (ca

x + da
xz) cosϕ

−(ca
y + da

yz) sinϕ
)2

dϕdz.

(30)
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We assume the following equivalent of the definition of the
mean cylinder for the bird-cage strategy

Ja(ρa, ca
x, da

x, ca
y, da

y)

=
1

2πN

N∑

n=1

2π∫

0

(r̂c
n(ϕ) − ρa

− (ca
x + da

xzn) cosϕ

−(ca
y + da

yzn) sin ϕ
)

dϕ

+
1

HM

M∑

m=1

H∫

0

(r̂g
m(z) − ρa

− (ca
x + da

xz) cosϕm

−(ca
y + da

yz) sinϕm

)
dz.

(31)

We obtain the additional five equality constraints by calculat-
ing the partial derivatives of the index (31) with respect the
mean cylinder parameters; we compare these derivatives to
zero and finally assume that

ρa = ca
x = da

x = ca
y = da

y = 0. (32)

The calculation details are omitted here.

5. Experiments

The effects of the application of the profile matching algo-
rithms will be analyzed basing on the measurements of two
rollers with a diameter of 52 mm and a height of 100 mm,
each. One specimen was polished and the other was ground.
The measurements were conducted for the following parame-
ters of the bird-cage strategy:

N = 11; M = 8. (33)

The cross and longitudinal sections are distributed uniformly
over the ranges of angle and height changeability, [0, 2π] and
[0, H ], respectively. Two measures of profile matching quality
are considered: the root-mean-square and the arithmetic mean
of the difference in the radii at the points of intersection of
the cross and longitudinal section paths

∆rnm

df
= rg

m(zn) − rc
n(ϕm), (34)

i.e.

∆RQM
df
=

√√√√ 1

NM

N∑

n=1

M∑

m=1

(∆rnm)
2
, (35)

∆RAM
df
=

1

NM

N∑

n=1

M∑

m=1

∆rnm. (36)

Hereafter, the expression ∆rnm will be called the difference

in the radii at the points of intersection or briefly difference

in the radii.

5.1. The roller with polished surface. Figure 3a shows a
plot of measuring points in the cylindrical coordinate system.
As can be seen, there is a clear positive shift of profiles at the
longitudinal sections in relation to those at the cross-sections.
The difference is more visible in the bar plot of difference
in the radii at the points of intersection in Fig. 3b. The root-
mean-square and the arithmetic mean of the difference in the
radii before matching were:

∆RQM = 0.632 µm, ∆RAM = 0.465 µm

respectively. As we can see, the profile shift reaches almost
half a µm. After the application of the profile matching al-
gorithm described in previous Section the root-mean-square
and the arithmetic mean of the difference in the radii were:

∆RQM = 0.109 µm, ∆RAM = 0

respectively.
The results of the optimal matching algorithm are very

satisfactory. The root-mean-square of the difference in the
radii decreased approximately sixfold. The zero value of the
arithmetic mean is obvious and results from the least squares
principle. The next figures show plots of the profile and dif-
ference in the radii after matching.

a) b)

Fig. 3. a) 3D plot of the measuring points in the cylindrical coordinate system b) a bar plot of difference in the radii at the points of
intersection: surface after polishing
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a) b)

Fig. 4. The measuring points and the difference in the radii after profile matching: surface after polishing

5.2. The roller with ground surface. The tests were repeat-
ed for the roller with ground surface, see Fig. 5, 6. The root-
mean-square and the arithmetic mean of the difference in the
radii before matching were:

∆RQM = 0.480 µm, ∆RAM = 0.277 µm

respectively. The profile shift is considerably smaller than that
in the previous case. This testifies to large randomness of the
shift phenomenon. The root-mean-square of the difference in
the radii after profile matching is

∆RQM = 0.235 µm.

a) b)

Fig. 5. The measuring points and the difference in the radii: surface after grinding

a) b)

Fig. 6. The measuring points and the difference in the radii after profile matching: surface after grinding
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a) b)

Fig. 7. The measuring points and the difference in the radii after profile filtering: surface after grinding

a) b)

Fig. 8. The measuring points and the difference in the radii after profile filtering and matching: surface after grinding

As can be seen, the average difference in the radii de-
creases only twofold. This is due to the occurrence of a large
profile waviness component. The influence of the waviness
on the value of the profile for given coordinates (ϕ, z) is
rather accidental, as was shown in Ref. [10]. The influence of
the waviness is more significant when the number of cross-
sections in the bird-cage strategy is smaller. It seems justi-
fiable that in the case of occurrence of a strong waviness
component on the measured surface, the measured profiles
are filtered using an appropriate low-pass filter, which rejects
waviness components. In the case considered here, a spline
filter [11, 12] with cutoff wavelength λc = 8 mm was used.
After profile filtration, the mean values of the difference in
the radii are

∆RQM = 0.442 µm, ∆RAM = 0.301 µm

and, as we can see, these values are close to those calculated
for the primary profiles. After applying the profile matching
algorithm, the value of the root-mean-square is

∆RQM = 0.154 µm.

As can be seen, now the value of the profile matching
error decreases threefold. Figures 7 and 8 show diagrams of
filtered profiles and a diagram of difference in the radii before
and after profile matching.

6. Conclusions

The results of the measurements conducted by means of the
bird-cage strategy for various cylindrically shaped objects
show a shift in the average values of the profile measured
with the cross-section and the generatrix strategies. The shift
may be up to tenths of the micrometer, and, in extreme cas-
es, more than a micrometer. The shift is probably due to a
different distribution of forces acting on the sensor tip dur-
ing measurements with the cross-section and the generatrix
strategies. To eliminate the errors, it was necessary to for-
mulate and solve the problem of optimal profile matching,
which involved shifting the profile values at the consecutive
cross-sections in such a way that the difference in the radii at
the points of intersection of the scanning trajectories was the
smallest possible. The results of the experiment show that due
to the optimal profile matching, the root-mean-square of the
difference in the radii at the points of intersection of the scan-
ning trajectories may decrease from several to several dozen
times depending on the level of the waviness component.
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