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Hyperchaos, adaptive control and synchronization
of a novel 5-D hyperchaotic system with three positive
Lyapunov exponents and its SPICE implementation

SUNDARAPANDIAN VAIDYANATHAN, CHRISTOS VOLOS and VIET-THANH PHAM

In this research work, a twelve-term novel 5-D hyperchaotic Lorenz system with three
quadratic nonlinearities has been derived by adding a feedback control to a ten-term 4-D hy-
perchaotic Lorenz system (Jia, 2007) with three quadratic nonlinearities. The 4-D hyperchaotic
Lorenz system (Jia, 2007) has the Lyapunov exponents L; = 0.3684,L, = 0.2174,L3 = 0 and
Ly = —12.9513, and the Kaplan-Yorke dimension of this 4-D system is found as Dgy = 3.0452.
The 5-D novel hyperchaotic Lorenz system proposed in this work has the Lyapunov exponents
Ly =0.4195,L, = 0.2430,L3 = 0.0145,L4 = 0 and Ls = —13.0405, and the Kaplan-Yorke di-
mension of this 5-D system is found as Dgy =4.0159. Thus, the novel 5-D hyperchaotic Lorenz
system has a maximal Lyapunov exponent (MLE), which is greater than the maximal Lyapunov
exponent (MLE) of the 4-D hyperchaotic Lorenz system. The 5-D novel hyperchaotic Lorenz
system has a unique equilibrium point at the origin, which is a saddle-point and hence unstable.
Next, an adaptive controller is designed to stabilize the novel 5-D hyperchaotic Lorenz sys-
tem with unknown system parameters. Moreover, an adaptive controller is designed to achieve
global hyperchaos synchronization of the identical novel 5-D hyperchaotic Lorenz systems with
unknown system parameters. Finally, an electronic circuit realization of the novel 5-D hyper-
chaotic Lorenz system using SPICE is described in detail to confirm the feasibility of the theo-
retical model.
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1. Introduction

Nonlinear dynamics occurs widely in engineering, physics, biology and many other
scientific disciplines [1]. Poincaré was the first to observe the possibility of chaos, in
which a deterministic system exhibits aperiodic behavior that depends on the initial con-
ditions, thereby rendering long-term prediction impossible, since then it has received
much attention [2, 3]. Interest in nonlinear dynamics and in particular chaotic dynamics
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has grown rapidly since 1963, when Lorenz published his numerical work on a simplified
model of convection and discussed its implications for weather prediction [4].

Chaos theory describes the qualitative study of unstable aperiodic behavior in de-
terministic nonlinear dynamical systems. For the motion of a dynamical system to be
chaotic, the system variables should contain nonlinear terms and it must satisfy three
properties: boundedness, infinite recurrence and sensitive dependence on initial condi-
tions [5].

The Lyapunov exponent of a dynamical system is a quantity that characterizes the
rate of separation of infinitesimally close trajectories. The sensitive dependence on initial
conditions of a dynamical system is characterized by the presence of a positive Lyapunov
exponent. A positive Lyapunov exponent reflects a direction of stretching and folding
and along with phase-space compactness indicates the presence of chaos in a dynamical
system. An n-dimensional dynamical system has a spectrum of n Lyapunov exponents
and the maximal Lyapunov exponent (MLE) of a chaotic system is defined as the largest
positive Lyapunov exponent of the system.

Chaos has developed over time. For example, Ruelle and Takens [6] proposed a the-
ory for the onset of turbulence in fluids, based on abstract considerations about strange
attractors. Later, May [7] found examples of chaos in iterated mappings arising in popu-
lation biology. Feigenbaum [8] discovered that there are certain universal laws governing
the transition from regular to chaotic behaviours. That is, completely different systems
can go chaotic in the same way, thus, linking chaos and phase transitions.

The first famous chaotic system was accidentally discovered by Lorenz, when he
was designing a 3-D model for atmospheric convection in 1963 [9]. Subsequently,
Rossler discovered a 3-D chaotic system in 1976 [10], which is algebraically simpler
than the Lorenz system. Indeed, Lorenz’s system is a seven-term chaotic system with
two quadratic nonlinearities, while Rossler’s system is a seven-term chaotic system with
just one quadratic nonlinearity.

Some well-known paradigms of 3-D chaotic systems are Arneodo system [11],
Sprott systems [12], Chen system [13], Li-Chen system [14], Liu system [15], Cai
system [16], T-system [17], etc. Many new chaotic systems have been also discov-
ered like Li system [18], Sundarapandian systems [19, 20], Vaidyanathan systems
[21, 22, 23, 24, 25, 26, 27, 28], Pehlivan system [29], Jafari system [30], Pham sys-
tem [31], etc.

Chaos theory has applications in several fields of science and engineering such as
oscillators [32, 33, 34], lasers [35, 36, 37], chemical reactions [38, 39, 40], biology
[41, 42], ecology [43, 44, 45], neural networks [46, 47, 48, 49], robotics [50, 51, 52],
fuzzy logic [53, 54], electrical circuits [55, 56, 57], etc.

A hyperchaotic system is generally defined as a chaotic system with at least two
positive Lyapunov exponents [58]. Thus, the dynamics of a hyperchaotic system are
expended in several different directions simultaneously. Thus, the hyperchaotic sys-
tems have more complex dynamical behaviour and hence they have miscellaneous ap-
plications in engineering such as secure communications [59, 60, 61], cryptosystems
[62, 63, 64], encryption [65, 66, 67], electrical circuits [68, 69, 70, 71], etc.
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The minimum dimension for an autonomous, continuous-time, hyperchaotic system
is four. Since the discovery of a first 4-D hyperchaotic system by Rdossler in 1979 [72],
many 4-D hyperchaotic systems have been found in the literature such as hyperchaotic
Lorenz system [73], hyperchaotic Lii system [74], hyperchaotic Chen system [75], hy-
perchaotic Wang system [76], hyperchaotic Newton-Leipnik system [77], hyperchaotic
Vaidyanathan system [78], etc.

Recently, there is some considerable interest in finding novel 5-D hyperchaotic sys-
tems with three positive Lyapunov exponents and such 5-D hyperchaotic systems have
been found in the literature such as hyperchaotic Hu system [79], [80], etc.

In this research work, a twelve-term novel 5-D hyperchaotic Lorenz system with
three quadratic nonlinearities has been derived by adding a feedback control to a 4-D hy-
perchaotic Lorenz system with three quadratic nonlinearities [81]. The 4-D hyperchaotic
Lorenz system [81] has the Lyapunov exponents L; = 0.3684,L, = 0.2174,L3 =0
and L4y = —12.9513, and the Kaplan-Yorke dimension of this 4-D system is found as
Dgy =3.0452. The 5-D novel hyperchaotic Lorenz system proposed in this work has the
Lyapunov exponents L; =0.4195,L, =0.2430,L3 =0.0145,L4 = 0 and Ls = —13.0405.
The Kaplan-Yorke dimension of the 5-D novel hyperchaotic Lorenz system is found
as Dkgy = 4.0159. Thus, the novel 5-D novel hyperchaotic Lorenz system has a maxi-
mal Lyapunov exponent (MLE), which is greater than the maximal Lyapunov exponent
(MLE) of the 4-D hyperchaotic Lorenz system.

In this work, adaptive control and synchronization schemes have been also developed
for the novel 5-D hyperchaotic Lorenz system with three positive Lyapunov exponents.

The study of control of a chaotic system investigates methods for designing feedback
control laws that globally or locally asymptotically stabilize or regulate the outputs of a
chaotic system.

Many methods have been developed for the control and tracking of chaotic systems
such as active control [82, 83, 84, 85], adaptive control [86, 87, 88, 89, 90, 91, 92],
backstepping control [93, 94, 95], sliding mode control [96, 97], etc.

Chaos synchronization problem deals with the synchronization of a couple of sys-
tems called the master or drive system and the slave or response system. To solve this
problem, control laws are designed so that the output of the slave system tracks the out-
put of the master system asymptotically with time.

The study of chaos in the last decades had a tremendous impact on the foundations
of science and engineering and one of the most recent exciting developments in this
regard is the discovery of chaos synchronization, whose possibility was first reported by
Fujisaka and Yamada [98] and later by Pecora and Carroll [99].

Because of the butterfly effect, the synchronization of chaotic systems is a challeng-
ing problem in the chaos literature even when the initial conditions of the master and
slave systems are nearly identical because of the exponential divergence of the outputs
of the two systems in the absence of any control.

Different types of synchronization such as complete synchronization [99], anti-
synchronization [100, 101, 102], hybrid synchronization [103, 104], lag synchroniza-
tion [105], phase synchronization [105, 106], anti-phase synchronization [107], gener-
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alized synchronization [108], projective synchronization [109], generalized projective
synchronization [110, 111, 112], etc. have been studied in the chaos literature.

Since the discovery of chaos synchronization, different approaches have been pro-
posed to achieve it, such as PC method [99], active control method [113, 114, 115, 116],
adaptive control method [117, 118, 119, 120], backstepping control method [121, 122,
123, 124, 125, 126], sliding mode control method [127, 128, 129, 130, 131], etc.

All the main adaptive results in this paper are proved using Lyapunov stability the-
ory. MATLAB simulations are depicted to illustrate the phase portraits of the novel 5-D
hyperchaotic Lorenz system with three positive Lyapunov exponents, adaptive stabiliza-
tion and synchronization results for the novel 5-D hyperchaotic Lorenz system.

Finally, an electronic circuit realization of the novel 5-D hyperchaotic Lorenz system
using SPICE is presented to confirm the feasibility of the theoretical model.

2. A 5-D novel hyperchaotic Lorenz system

In [81], Jia (2007) obtained a 4-D hyperchaotic Lorenz system by adding a feedback
control to the famous Lorenz system [9], and this 4-D system is given by the dynamics

X = a(xz—x1)+)C4

X = CX]—X|X3—X)

. (1)
X3 = X1X2 —bX3

X4 = —Xx1x3+ pxy4

where x1,x;,x3,X4 are the system parameters and a, b, ¢, p are positive, constant, param-
eters.
In [81], it was shown that the 4-D system (1) is hyperchaotic when the parameter
values are taken as
a=10, b=38/3, ¢c=28, p=1.3 2)

Also, for these parameter values, the Lyapunov exponents of the 4-D hyperchaotic
Lorenz system (1) are calculated as

Ly =0.3684, L, =0.2174, L3 =0, Ly =—12.9513 3)

Thus, the maximal Lyapunov exponent (MLE) of the system (1) is obtained as L; =
4
0.3684. The system (1) is dissipative, because 'Z L; =—12.3655 < 0. Also, the Kaplan-

i=1
Yorke dimension of the 4-D hyperchaotic Lorenz system (1) is found as

Li+1Ly+ 13

Dgy =3
KY + \L4]

=3.0452 4)
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For numerical simulations, we take the initial state of the hyperchaotic system (1) as
x1(0) = 1.2,x,(0) = 0.8,x3(0) = 1.6 and x4(0) = 0.7.

Figs. 1-2 depict the 3-D phase portraits of the 4-D hyperchaotic system (1) in
(x1,x2,x3), and (x,x3,x4) spaces, respectively.

Figure 1: 3-D projection of the 4-D hyperchaotic Lorenz system on (x;,x»,x3) space.

In this research work, we derive a twelve-term novel 5-D hyperchaotic system with
three quadratic nonlinearities by adding a feedback control to the ten-term 4-D hyper-
chaotic Lorenz system (1) as follows:

X1 = alxa—x1)+xs+xs

X = CX]—X1X3—X2

X3 = x1x2—bxs &)
X4 = —X1x3 + px4

Xs = qx

where x1,x7,x3,Xx4,X5 are the system parameters and a,b,c, p,q are positive, constant,
parameters.
The 5-D system (5) is hyperchaotic when the parameter values are taken as

a=10, b=8/3, ¢c=28, p=13, ¢=25 (6)
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Figure 2: 3-D projection of the 4-D hyperchaotic Lorenz system on (x;,x3,x4) space.

Also, for these parameter values, the Lyapunov exponents of the 5-D novel hyper-
chaotic system (5) are calculated as

Li =0.4195, L, = 0.2430, Ly = 0.0145, Ly = 0, Ls = —13.0405 7)

Thus, the 5-D novel hyperchaotic system (5) has three positive Lyapunov expo-
nents. Also, the maximal Lyapunov exponent (MLE) of the system (5) is obtained as
L1 =0.4195, which is greater than the maximal Lyapunov exponent (MLE) of the 4-D
hyperchaotic Lorenz system (1). Since the sum of the Lyapunov exponents of the 5-D
novel hyperchaotic system (5) is negative, it follows that the system is dissipative.

Also, the Kaplan-Yorke dimension of the 5-D novel hyperchaotic Lorenz system (5)

is found as
Li+Ly+ 13+ 14

|Ls|

Since the 5-D hyperchaotic system (5) has three positive Lyapunov exponents, it has
a very complex dynamics and its trajectories can expand in three directions simultane-
ously.

For numerical simulations, we take the initial state of the 5-D novel hyperchaotic
system (5) as x1(0) = 1.2,x,(0) = 0.8,x3(0) = 1.6, x4(0) = 0.7 and x5(0) = 2.3.

Figs. 3-6 depict the 3-D phase portraits of the 5-D novel hyperchaotic system (5) in
(1,X2,x3), (x2,x3,%4), (x1,%2,x5) and (x3,x4,X5) spaces, respectively.

Dy =4+

—4.0159 (8)
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Figure 3: 3-D projection of the 5-D novel hyperchaotic Lorenz system on (xj,x2,x3)

space.

3. Analysis of the 5-D novel hyperchaotic Lorenz system

3.1. Dissipativity

In vector notation, the novel 5-D hyperchaotic Lorenz system (5) can be expressed

as

where

=

I
=
o)

I
“

Si1(x1,x2,x3,x4,X5

)

X1,X2,X3,X4,X5

ey

Jfa

f5 X1,X2,X3,X4,X5

X1,X2,X3,X4,X5

( )
( xs)
(x1,X2,x3,X4,X5)
( Xs)
( )

fl X1,X2,X3,X4,X5

f:

X1,X2,X3,X4,X5

[

S5(x1,X2,X3,X4,X5

X1,X2,X3,X4,X5

)
Xs)
X1,X2,X3,X4,X5) |, 9)
Xs)
)

a(x; —x1) + x4 + x5

CX| — X1X3 — X2

x1x2 — bx3 (10)
—X1X3 + PX4
gxi
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Figure 4: 3-D projection of the 5-D novel hyperchaotic Lorenz system on (x;,x3,x4)
space.

Let Q be any region in R> with a smooth boundary and also, Q(¢) = ®;(Q), where
®d;, is the flow of f. Furthermore, let V (¢) denote the volume of Q(z).
By Liouville’s theorem, we know that

V()= / (V- f)dx) dxpdx3 dxy dxs (11)
Q(r)

The divergence of the novel 5-D system (5) is found as:

_9dfi dfr Ofs [ Ofi A Ofi _ _
Vo = et o T an Ty Taw = 1 h = w (12)

where u is defined as
u=a+1+b—p (13)

For the choice of parameter values given in (6), we find that u = 12.3667 > 0.
Inserting the value of V- f from (12) into (11), we get
V() = / (—p1) dx: doxa docs dxa des = —uV/ (1) (14)
Q(1)

Integrating the first order linear differential equation (14), we get

V(1) = exp(—ut)V (0) (15)
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Figure 5: 3-D projection of the 5-D novel hyperchaotic Lorenz system on (xj,x2,xs)
space.

Since p > 0, it follows from (15) that V() — 0 exponentially as ¢ — co. This shows
that the 5-D novel hyperchaotic Lorenz system (5) is dissipative. Hence, the system limit
sets are ultimately confined into a specific limit set of zero volume, and the asymptotic
motion of the 5-D novel hyperchaotic Lorenz system (5) settles onto a strange attractor
of the system.

3.2. Equilibrium Points

The equilibrium points of the 5-D novel hyperchaotic system (5) are obtained by
solving the equations

Sfi(x1,22,x3,x4,%5) = alxa—x1)+x4+xs = 0
fr(x1,X%0,X3,X4,X5) = €X] —X1X3—X2 =0
f3(x1,x2,X3,x4,x5) = x1X2 — bx3 = 0 (16)
fa(x1,%2,%3,X4,X5) = —X1X3+ px4 =0
fs(x1,%2,%3,%4,%5) = qx| =0

We take the parameter values as in the equation (6).
Since x* = 0 is the unique solution of the system of equations (16), it is immediate
that x* = 0 is the unique equilibrium of the 5-D novel hyperchaotic Lorenz system (5).
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Figure 6: 3-D projection of the 5-D novel hyperchaotic Lorenz system on (x3,x4,Xs)

space.

The Jacobian matrix of the 5-D hyperchaotic Lorenz system (5) at the equilibrium
point x* = 0 is given by

The eigenvalues of the matrix J (x*) are numerically obtained as

A = 1.3, Ay = 11.9057, A3 = —0.0092, Ay = —2.6667, As = —22.8966

C

0
0
q

o o o =

S O O O =

[ —10

28
0
0

2.5

10

-1
0
0
0

0

0
—8/3

0

0

1
0
0
1.3
0

S o O o =

Thus, the equilibrium point x* = 0 is a saddle-point, which is unstable.

(7)

(18)
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3.3. Rotation symmetry about the x3-axis

We define a new set of coordinates as

& = —x
& = —x
& = x (19)
& = —x
& = —xs
We find that
& = —aln—x1)—xs—xs=a(E—&)+E+Es
& = xig—cox+x=-8&+cE &
b = s —bra — E1Es — bEs @0)
&y = xix3—pxy=—E &+ pty
& = —an=d&

This shows that the 5-D novel hyperchaotic Lorenz system (5) is invariant under the
change of coordinates

(x1,%2,X3,%4,X5) — (—X1, —X2,X3, —X4, —X5) (21)

Since the transformation (21) persists for all values of the system parameters, it fol-
lows that the 5-D novel hyperchaotic Lorenz system (5) has rotation symmetry about the
x3-axis and that any non-trivial trajectory must have a twin trajectory.

3.4. Invariance

It is easy to see that the x3-axis and x4-axis are invariant under the flow of the 5-D
novel hyperchaotic Lorenz system (5). The invariant motion along the x3-axis is charac-
terized by the scalar dynamics

X3=—bxz, (b>0) (22)

which is globally exponentially stable. The invariant motion along the xs-axis is charac-
terized by the scalar dynamics

X4 =pxs, (p>0) (23)

which is unstable.
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3.5. Lyapunov exponents and Kaplan-Yorke dimension

For the parameter values given in the equation (6), the Lyapunov exponents of the
5-D novel hyperchaotic Lorenz system (5) are calculated as

Ly =0.4195, L, =0.2430, L3y =0.0145, Ly =0, Ls= —13.0405  (24)

Thus, the 5-D novel hyperchaotic Lorenz system (5) has three positive Lyapunov
exponents. Also, the maximal Lyapunov exponent (MLE) of the system (5) is obtained
as L; =0.4195.

Also, the Kaplan-Yorke dimension of the novel hyperchaotic system (5) is obtained

as
Li+Ly+ L3+ 1Ly

|Ls|

Dgy =4+ =4.0159 (25)
which is fractional.

Since the 5-D hyperchaotic Lorenz system (5) has three positive Lyapunov expo-
nents, it has a very complex dynamics and the system trajectories can expand in three
different directions.

4. Adaptive control of the 5-D novel hyperchaotic Lorenz system with unknown
parameters

In this section, we use adaptive control method to derive an adaptive feedback control
law for globally stabilizing the 5-D novel hyperchaotic Lorenz system with unknown
parameters.

Thus, we consider the 5-D novel hyperchaotic Lorenz system given by

X1 = alx—x))+xa+xs5+u

Xo = X1 —X1x3—Xx2+un

X3 = Xx1x2—bxz+us (26)
Xy = —Xx1x3+pxg+ug

Xs = qxi+us

In (26), x;, (i =1,...,5) are the states and u;, (i = 1,...,5) are the adaptive controls
to be determined using estimates d(z),b(z),é(t), p(t),4(t) for the unknown parameters
a,b,c,p,q, respectively.
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We consider the adaptive feedback control law

;

up = —at)(xp—x1)—x4—xs5 —kix
up = —é(t)x1+x1x3+x2—koxo
u = —xix2-+ I;(Z)X3 —k3x3 27)
ugy = x1x3— p(t)xq — kaxy
us = —q(t)x; —ksxs
where k;, (i = 1,...,5) are positive gain constants.

Substituting (27) into (26), we get the closed-loop plant dynamics as

x1 = [a—a(t)](x—x1)—kix

X = [c—&(t)]x1 —kaxy

B3 = —[b—b(t)lxs —kax3 (28)
Xo = [p—p(t)]rs —kaxy

Xs = [g—q(t)lx1 —ksxs

\

(

eq.(t) = a—a(r)
ep(t) = b—b(r)
e(t) = c—é(t) (29)
ep(t) = p—p)
eq(t) = q—q(t)

In view of (29), we can simplify the plant dynamics (28) as

Xl = ea(X2—X1) —k1x1

X2 = ex1—koxp

X3 = —epx3—k3x3 (30)
X4 = epxs—kaxy

Xs = €gX] — k5X5
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Differentiating (29) with respect to ¢, we obtain

e(t) = —dlr)
alt) = —br)
éc(t) = —¢t) 31)
ep(t) = —pt)
e(1) = —4(1)

We use adaptive control theory to find an update law for the parameter estimates.
We consider the quadratic candidate Lyapunov function defined by

1 1
V(x,eq,ep,€c,ep,eq) = 3 Z X7+ 3 (e§+e%+ef+ef,+e$) (32)
i=1

Differentiating V along the trajectories of (30) and (31), we obtain

vV = —klx% — kzx% — k3x§ — k4xﬁ — k5x§
+e, [xl (xp —x1) — é] +ep [—x% - B] +e. [xlxz — 6] (33)
vep [ -] +ey s — ]

In view of (33), we take the parameter update law as

(4(t) = x1(x—x1)

b(t) = —x?

&) = xxo (34)
pit) = x

g(t) = xixs

Next, we state and prove the main result of this section.

Theorem 1 The novel 5-D hyperchaotic Lorenz system (26) with unknown system pa-
rameters is globally and exponentially stabilized for all initial conditions by the adaptive
control law (27) and the parameter update law (34), where ki, ky,k3,kq,ks are positive
gain constants.

Proof We prove this result by applying Lyapunov stability theory.
We consider the quadratic Lyapunov function defined by (32), which is clearly a
positive definite function on R1°.
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By substituting the parameter update law (34) into (33), we obtain the time-derivative
of V as
V = —klx% — kzX% — k3x§ — k4x421 — k5x§ (35)

From (35), it is clear that V is a negative semi-definite function on RO
Thus, we can conclude that the state vector x(z) and the parameter estimation error
are globally bounded, i.e.

[x1(1) - x5(0) ealt) en(t) eclt) ep(r) eg(0)]" € L

We define k = min{k;,kp,k3,ka,ks}.
Then it follows from (35) that

V < —k[lx()]? (36)

Thus, we have
kllx(@)|* < =V (37)

Integrating the inequality (37) from O to 7, we get
t
k/ lx(0)|2 dT < V(0) — V(1) (38)
0

From (38), it follows that x € £5.

Using (30), we can conclude that x € Le..

Using Barbalat’s lemma, we conclude that x(f) — 0 exponentially as t — oo for all
initial conditions x(0) € R°.

This completes the proof. 0

For the numerical simulations, the classical fourth-order Runge-Kutta method with
step size h = 10~8 is used to solve the systems (26) and (34), when the adaptive control
law (27) is applied.

The parameter values of the novel 5-D hyperchaotic Lorenz system (26) are taken as
in the hyperchaotic case, viz. a = 10,b = 8/3,c = 28, p = 1.3 and g = 2.5. We take the
positive gain constants as k; =5 fori=1,...,5.

Furthermore, as initial conditions of the novel 5-D hyperchaotic Lorenz system (26),
we take x1(0) =5.2,x2(0) = 3.8,x3(0) = —11.2,x4(0) = —4.5 and x5(0) = 3.5.

Also, as initial conditions of the parameter estimates a(r),b(t),é(t), p(t),4(t), we
take 4(0) = 4.2,b(0) = 6.8,6(0) = —3.5, p(0) = 8.2 and §(0) = 7.4.

In Fig. 7, the exponential convergence of the controlled states of the novel 5-D hy-
perchaotic Lorenz system (26) is depicted.
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Figure 7: Time-history of the controlled states x; (¢),x2(2),x3(¢),xa(t),xs5(2).

5. Adaptive synchronization of the 5-D novel hyperchaotic Lorenz systems with
unknown parameters

In this section, we use adaptive control method to derive an adaptive feedback control
law for globally synchronizing identical 5-D novel hyperchaotic Lorenz systems with
unknown parameters.

As the master system, we consider the 5-D novel hyperchaotic Lorenz system given
by

X1 = alxa—x1)+xs+xs

Xy = CX]—X|1X3—X2

X3 = x1x2—bxz (39)
X4 = —X1X3+ pPX4

Xs = gx

In (39), x1,x2,x3,x4, x5 are the states and a, b, ¢, p,q are unknown system parameters.
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As the slave system, we consider the 5-D novel hyperchaotic Lorenz system given

by
(31 = al2—y1)+yatys+u
Y2 = oyr—yiy3—y2tun
y3 = yin—bys+tus (40)
V4 = —Y1y3+pystus
Vs = qyi+tus

In (40), y1,y2,y3,y4,ys5 are the states and uy,uy,us3,us,us are the adaptive controls
to be determined using estimates d(t),b(t),é(t), p(t),4(t) for the unknown parameters
a,b,c,p,q, respectively.

The synchronization error between the novel 5-D hyperchaotic systems (39) and (40)
is defined by

e =Yy —Xi, (i:1,2,...,5) (41)

Then the synchronization error dynamics is obtained as

ér = alex—ey)+es+es+u

€ = cep—y1y3t+xix3—ex+u

€3 = yiy2—Xxi1x2—bes+us (42)
4 = —y1y3txix3+ pes+uy

és = qe1+us

\

We consider the adaptive feedback control law

up = —at)(ep—ey)—es—es—kje

uy = —¢é(t)er+y1yz —x1x3+ex—kaen

us = —yy2-+xx+b(t)es —kses (43)
sy = y1y3—xix3—p(t)es —ksey

us = —q(t)e; —kses

where k;, (i = 1,...,5) are positive gain constants.
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Substituting (43) into (42), we get the closed-loop error dynamics as

(e1 = [a—a(n)](e2—e1) —kiey

ey = [c—¢é(t)]er —kaer

é3 = —[b—b(t)] es—kses (44)
és = [p—p(t)]es—kaes

és = [q—q(t)]er —kses

\

;

e(t) = a—a@)
ep(t) = b—b(t)
ec(t) = c—¢) (45)
ep(t) = p—p(t)
eq(t) = q—q(t)

In view of (45), we can simplify the plant dynamics (44) as

é1 = eqler—er)—kie

éz = é.€1— k2€2

é3 = —eépé3 — k3€3 (46)
€4 = epeq— kaeq

és = ege1— kses

Differentiating (45) with respect to z, we obtain

(eu(t) = —a()
afr) = —b()
éc(t) = —c(r) (47)
ept) = —plt)
ey(t) = —4(1)

We use adaptive control theory to find an update law for the parameter estimates.
We consider the quadratic candidate Lyapunov function defined by

V(e,eq,ep,ec,ep,eq) = e +eb+e +é2 +e) (48)

l\)\>—‘
HMm
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Differentiating V along the trajectories of (46) and (47), we obtain

V = —k e% — kze% — k3€% — k4€42‘ — k5e§
+e, [61(62 —e1)— ﬁ] +ep [—e% - l;} (49)
+e. [elez —é] +ep [ei —ﬁ] +ey [eles — c}]

In view of (49), we take the parameter update law as

alt) = ei(ex—ey)

b(t) = —é

t) = erer (50)
pir) = &

q(t) = eyes

Next, we state and prove the main result of this section.

Theorem 2 The novel 5-D hyperchaotic Lorenz systems (39) and (40) with unknown
system parameters are globally and exponentially synchronized for all initial condi-
tions by the adaptive control law (43) and the parameter update law (50), where
ki,ko, k3, ke, ks are positive gain constants.

Proof We prove this result by applying Lyapunov stability theory.
We consider the quadratic Lyapunov function defined by (48), which is clearly a
positive definite function on R!°.
By substituting the parameter update law (50) into (49), we obtain the time-derivative
of V as
V = —kiel —koe3 — ksl — kyef —kse? (51)

From (51), it is clear that V is a negative semi-definite function on R'°.
Thus, we can conclude that the state vector e(z) and the parameter estimation error
are globally bounded, i.e.

[er(t) - es(t) ealt) enlt) eclr) ept) eg(r)]” € L.

We define k = min{ky, ko, k3,ka,ks}.
Then it follows from (51) that

V< —k|le(t)? (52)

Thus, we have
klle(®)||* <=V (53)
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Integrating the inequality (53) from O to 7, we get
t
k/ le(x)|? dz < V(0) — V(1) (54)
0

From (54), it follows that e € £,.

Using (46), we can conclude that é € L.

Using Barbalat’s lemma, we conclude that e(7) — 0 exponentially as ¢ — oo for all
initial conditions e(0) € R>.

This completes the proof. 0

For the numerical simulations, the classical fourth-order Runge-Kutta method with
step size h = 1073 is used to solve the systems (39), (40) and (50), when the adaptive
control law (43) is applied.

The parameter values of the novel 5-D hyperchaotic systems are taken as in the
hyperchaotic case, viz. a =10,b =8/3,¢ =28, p = 1.3 and g = 2.5. We take the positive
gain constants as k; =5fori=1,...,5.

Furthermore, as initial conditions of the master system (39), we take

x1(0) =3.1, x(0) =—-5.8, x3(0) =7.3, x4(0) =9.1, x5(0) =—2.6
As initial conditions of the slave system (40), we take
y1(0) =—8.4, y:(0)=3.5, y3(0) =4.2, y4(0)=—5.4, y5(0)=10.3
Also, as initial conditions of the parameter estimates, we take
a0)=3.1, 13(0) =124, ¢(0)=4.7, p(0)=-5.8, 4(0)=3.2

Figs. 8-12 describe the complete synchronization of the 5-D novel hyperchaotic
Lorenz systems (39) and (40), while Fig. 13 describes the time-history of the synchro-
nization errors ei, ez, €3, €4, €s.
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Figure 8: Synchronization of the states x; and y; of the 5-D novel hyperchaotic Lorenz
systems.
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Figure 9: Synchronization of the states x, and y;, of the 5-D novel hyperchaotic Lorenz
systems.
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Figure 10: Synchronization of the states x3 and y3 of the 5-D novel hyperchaotic Lorenz
systems.
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Figure 11: Synchronization of the states x4 and y4 of the 5-D novel hyperchaotic Lorenz
systems.
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Figure 12: Synchronization of the states x5 and ys of the 5-D novel hyperchaotic Lorenz
systems.
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Figure 13: Time-history of the synchronization errors e}, ez, e3,e4,es.



www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

432 S. VAIDYANATHAN, CH. VOLOS, V.-T. PHAM

6. Circuit realization of novel 5-D hyperchaotic Lorenz system

In order to illustrate the correction and feasibility of novel hyperchaotic system
(5), an electronic circuit modeling new system (5) is designed. Due to the fact that
the electronic circuit is designed following an approach based in operational ampli-
fiers [19, 29, 31], the state variables of system (5) are scaled down to obtain attractors in
the dynamical range of operational amplifiers. As a result, the new hyperchaotic system
(5) can be rewritten as

Xi = —aX; +aXo +4X, + X5

Xy = X1 —20X1X3 — X»

X3 = 20X, X2 — bX; (55)
X4 = =5X1 X3+ pXy
[ X5 =¢X,
in which X; = ;%, X, = ;%, X5 = %, X, = ;%, and X5 = ;% The schematic of the

designed circuit is presented in Fig. 14.
By applying Kirchhoff’s laws to the electronic circuit in Fig. 14, its circuital equa-
tions are derived in the following form

dve, LS S SR
= — Vi A% \% \%
dt RiCi T RCL T RCy T RaCy
dVC2 1 1 1
= V, — Ve, Vi — —V
dt  RsC» &' 10RsC> " RiC, ©
dVC3 1 1
_ _ 56
di  10RsC; ©'¢ T RoG; ' © (56)
dve, 1
dt - 10RoCy4 Vave + R1Cy Ve
dVC5 1
= Y
dt R1,2C5 G

where v¢,, ve,, Ve, Ve, Ve are the voltages across the capacitors Cy, Gz, C3, C4 and Cs,
respectively. It is noting that there are five operational amplifiers (U;, U, Us, Uy and Us),
which are connected as integrators in Fig. 14. Hence the state variables Xi, X5, X3, X4,
Xs of system (55) are the voltages v¢,, vc,, Ve, Ve, Ves, Tespectively.

The values of the electronic components in Fig. 14 are chosen to match known pa-
rameters of system (5):

Ry = Ry = 20kQ, R; = 50kQ, Ry =R; =R =200kQ, Rs=7.14kQ, Rs=Rs = 1kQ,

Ry = 75kQ, Ryo=4kQ, Rij = 153.85kQ, Ry =80kQ, C; =Cy=Cs=Cy=Cs= InF
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Figure 14: Circuital schematic for realizing novel 5-D hyperchaotic Lorenz system.

The power supplies of all active devices are +15Vpc.

The proposed circuit is implemented by using the electronic simulation package
Cadence OrCAD. Figs. 15-18 show the obtained phase portraits in (v¢,,vc, )-plane,
(ve,,ve;)-plane, (ve,,ve,)-plane, and (v, ,ve, )-plane, respectively.
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Figure 15: Phase portrait of the designed electronic circuit in (v¢,,vc, )-plane obtained
from Cadence OrCAD.
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Figure 16: Phase portrait of the designed electronic circuit in (v, ,vc,)-plane obtained
from Cadence OrCAD.
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Figure 17: Phase portrait of the designed electronic circuit in (v¢,,v¢, )-plane obtained
from Cadence OrCAD.
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Figure 18: Phase portrait of the designed electronic circuit in (v, ,ve;)-plane obtained
from Cadence OrCAD.
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7. Conclusion

In the literature, 3-D chaotic systems and 4-D hyperchaotic systems as well as their
control and synchronization problems were mainly investigated. However, a 5D system
which can generate hyperchaos, especially with three positive Lyapunov exponents, is
often rarely reported. In this paper, a twelve-term novel 5-D hyperchaotic Lorenz system
with three quadratic nonlinearities has been proposed and its dynamics has been discov-
ered. It is shown that the 5-D hyperchaotic system exhibits three positive Lyapunov
exponents and possesses complex dynamical behaviour. In addition, global control and
global hyperchaos synchronization of such identical novel 5-D hyperchaotic Lorenz sys-
tems with unknown system parameters can be achieved by using an adaptive controller.
Moreover, SPICE results obtained from the electronic circuit realization of this novel 5-
D system show the feasibility of the theoretical introduced model. It is well-known that
hyperchaos is better than conventional chaos in a variety of applications. For example,
hyperchaos increases the security of chaotic-based communication systems significantly,
and in this context, the proposed 5-D hyperchaotic system will be very useful for secure
communication systems and other applications as well.
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