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Off-line robustification of Generalized Predictive
Control for uncertain systems

KHELIFA KHELIFI OTMANE, NORDINE BALI and LAZHARI NEZLI

An off-line methodology was proposed for enhancing the robustness of an initial Gener-
alized Predictive Control (GPC) by convex optimization of the Youla parameter. However, this
procedure of robustification is restricted with the case of the systems affected only by unstruc-
tured uncertainties. This paper proposes an extension of this method to the systems subjected
to both unstructured and structured polytopic uncertainties. The main idea consists in adding
supplementary constraints to the optimization problem which validates the Lipatov stability
condition at each vertex of the polytope. These polytopic uncertainties impose a set of non con-
vex quadratic constraints. The globally optimal solution is found by means of the GloptiPoly3
software. Therefore, this robustification provides stability robustness towards unstructured un-
certainties for the nominal system, while guaranteeing stability properties over a specified poly-
topic domain of uncertainties. Finally, an illustrative example is given.

Key words: Generalized Predictive Control, polytopic uncertainties, relaxation, robust
control, Youla parametrization

1. Introduction

Model Predictive Control (MPC) is an advanced method for systems control that has
been used in several process industries like chemical plants, oil refineries and in area of
robotics. When focusing on linear discrete time transfer function models and quadratic
cost functions, some of the best known approaches include the Generalized Predictive
Control (GPC) [3], its related algorithms with guaranteed nominal stability as presented
e.g. in [4], the inner loop stabilizing Stable Predictive Control [5] and the Cautious Stable
Predictive Control [6]. The presence of the plant model is a necessary element for the
development of the predictive control. Therefore the success of GPC depends on the
degree of precision of the plant model. Generally, there exist two typical descriptions
of model uncertainties, depending on how these uncertainties are described, structured
(parametric) or unstructured uncertainties.
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The GPC robustness issue in the presence of unstructured modeling errors is usu-
ally dealt with by enhancing the robustness of existing designs by introducing degrees
of freedom based on the Youla parametrization, also called as Q-parametrization. This
parametrization used in [5], [7], [8] and [9] where a robust optimization problem is
defined and the Youla parameter Q is derived. However, these methods present some
shortcomings. For example, the method proposed in [5] provides high robustness bounds
but penalizes the disturbance rejection performance. Also, the methods developed in [7]
and [8] defined a mixed sensitivity problem, but the trade-off between robustness and
nominal performance is difficult to adjust. This difficulty is surmounted by the method
proposed in [9] but the Youla parameter is searched for in a very restricted space.

Another sophisticated methodology has been developed recently in [1] to enhance
the robustness of the GPC controller towards unstructured uncertainties while respecting
time-domain constraints. This methodology starts with the design of an initial stabilizing
GPC controller; this controller is then robustified via the Youla parametrization which
permits to access all the stabilizing controllers. This parametrization allows formulating
frequency and time-domain constraints as convex optimization.

The last approach of robustification constitutes a paramount advantage for a good
regulation of a process subjected to unstructured uncertainties. This paper presents an ex-
tension of this methodology to the systems subjected to both unstructured and polytopic
structured uncertainties, while preserving the same formalism by Youla parametrization
adopted in [1].

This paper is organized as follows. Section 2 reminds the main steps leading to the
design of an initial GPC controller. Section 3 considers Youla parametrization of the
system with the initial controller. The robustification procedure, based on the Youla pa-
rameter, under unstructured uncertainties is reminded in Section 4. Section 5 provides
the main result, the elaboration of a robustified controller under both unstructured and
polytopic uncertainties. This control strategy is applied in Section 6 to the speed control
of an induction machine. Finally, some concluding remarks are presented in Section 7.

2. Design of the GPC law

The GPC control law uses the controlled auto-regressive integrated moving average
(CARIMA) model:

A
(
q−1)y(t) = B

(
q−1)u(t)+

ξ(t)
∆(q−1)

(1)

where u(t) and y(t) are the plant input and output for a SISO system. A and B are poly-
nomials in backward shift operator q−1 and ∆(q−1)) = 1− q−1. ξ(t) is an uncorrelated
random sequence. The j-step ahead prediction over the costing horizons N1 ¬ j ¬ N2 is
given by:
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y(t + j) = Fj
(
q−1)y(t)+H j

(
q−1)∆u(t −1)︸ ︷︷ ︸

freeresponse
(2)

+ G j
(
q−1)∆u(t + j−1)+ J j

(
q−1)ξ(t + j)︸ ︷︷ ︸

forcedresponse

.

Fj, G j, H j are polynomials obtained by solving Diophantine equations. To achieve opti-
mal command values, the GPC uses a quadratic cost function defined as:

J(N1,N2) =
N2

∑
j=N1

[ŷ(t + j)−w(t + j)]2 +λ
Nu

∑
j=1

∆[u(t + j−1)]2 (3)

where ∆u(t + j) = 0 for j ­ Nu. N1 and N2 define the output prediction horizons, and Nu
the control horizon. λ is the control weighting factor, w is the reference value, ŷ is the
predicted output value. The receding horizon principle assumes that only the first value
of the optimal control sequence resulting from the minimization of (3) is applied, so that
at the next sampling period the same procedure is repeated. This control strategy leads
to a 2-DOF RST controller implemented through a difference equation:

S(q−1)∆(q−1)u(t) =−R(q−1)y(t)+T (q)w(t) (4)

Assuming the design has been performed with R0, S0, T0 and N1, N2, Nu, λ adjusted
to satisfy certain closed loop performance. The resulting 2-DOF RST controller will be
denoted R0, S0, T0 (Fig. 1).

Figure 1: GPC Equivalent polynomial RST controller.
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3. Youla parametrization

As given in [1], the Youla parametrization of the previous initial Generalized Predic-
tive Controller (R0,S0,T0) leads to the following stabilizing polynomials:

T
(
q−1

)
= T0

(
q−1

)
−A0

(
q−1

)
Q2

(
q−1

)
R
(
q−1

)
= R0

(
q−1

)
+∆A

(
q−1

)
Q1

(
q−1

)
S
(
q−1

)
= S0

(
q−1

)
−q−1B(q−1)Q1

(
q−1

) (5)

where Q1 and Q2 are free stable transfer functions. And P0 = A0Ac = ∆AS0 +q−1BR0 is
the characteristic polynomial of the closed loop obtained with the initial controller where
Ac and A0 represent, respectively, a control polynomial and an observer polynomial.

The corresponding block diagram of the controller (5) is shown in Fig. 2. So, two
remarks can be done: Q2 modifies only the tracking behavior, and, if the model is exact,
the characteristic equation is not modified by the parametrization:

∆AS0 +q−1BR0 = ∆AS+q−1BR (6)

whereas parameter Q1 modifies the closed loop features keeping the input-output transfer
unchanged.

Figure 2: RST controller with Youla parametrization.

In the next developments, Q2 will be set to zero assuming that the tracking perfor-
mance is ensured by the initial GPC controller design and Q1 will be used to robustify
this initial controller. As a result, the closed-loop transfer between w and y becomes

y
w
=

T0q−1B
P0

(7)
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4. Robust stability under unstructured uncertainties

Without loss of generality, and for simplification purposes, the particular case of
the maximization of the robust stability under additive direct unstructured uncertainties
is considered below. This uncertainty is shown in Fig. 3. P(q−1) represents the system
connected to the uncertainty block.

P =
v
z
=−R0A

P0
− A2∆

P0
Q1 (8)

Figure 3: Unstructured additive direct uncertainty.

According to the small gain theorem [9], robustness under unstructured uncertainties
is maximized formulating a H∞ norm minimization:

min
Q1∈R H∞

P(q−1)W (q−1)∞ (9)

where the weighting W reflects the frequency range in which model uncertainties are
more significant, and R H∞ is the space of all proper and stable transfer functions. The
Youla parametrization allows linear dependency between P and the Youla parameter Q1
as shown in equation (8). So, the specifications defined by equation (9) are convex in
Q1. This convex optimization problem leads to a Q1 parameter varying in an infinite di-
mensional space [1]. To the author’s knowledge, there is no solution to this optimization
problem, and a sub-optimal solution can be obtained by considering a finite dimensional
sub-space generated by an orthonormal base of discrete stable transfer functions such as
a polynomial or FIR (Finite Impulse Response) filter:

Q1 =
nq

∑
i=0

αiQ1i (10)

Then, the H∞ norm minimization can be approximated by a minimization under linear
inequality constraints, such as the equation (9) can be written as

min
Q1∈R H∞

T1 +T2Q1∞ = min
Q1R H∞

max
w,0¬w¬π

∣∣T1(e− jw)+T2(e− jw)Q1(e− jw)
∣∣ (11)
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with the definition of Q1 given in (9), and replacing half of the unit disk by a finite grid,
this relation becomes∣∣∣∣∣∣∣∣∣∣∣∣

T1

(
e−θk

)
︸ ︷︷ ︸

T1k

+T2

(
e−θk

)[
Q10

(
e−θk

)
. . . Q1nq

(
e−θk

) ]
︸ ︷︷ ︸

T2k

×


α0
...

αnq


︸ ︷︷ ︸

α

∣∣∣∣∣∣∣∣∣∣∣∣
¬ γ (12)

with γ which is the upper bound of the left-hand side of the equation (11), and θk =
π(k−1)/(N −1) for k = 1, . . . ,N, leading to the relation

|T1k +T2k|¬ γ for k = 1, . . . ,N. (13)

This matrix inequality under the form |u| ¬ γ, is approximated by a set of four linear
inequalities

Re(u)+ Im(u)¬ γ, Re(u)− Im(u)¬ γ
−Re(u)+ Im(u)¬ γ, −Re(u)− Im(u)¬ γ

(14)

As given in [1], these inequalities lead to the cost minimization under inequality con-
straints. Hence, the stability robustness problem towards additive unstructured uncer-
tainties can be written as follows

min
AX−B¬0

CX (15)

with

A =


−1 Re(T21)+ Im(T21)

...
...

−1 −Re(T2N)− Im(T2N)

−1 0 · · · · · · · · ·0


(4N+1)×(nq+2)

B =


−Re(T11)− Im(T11)

...
−Re(T1N)− Im(T1N)

0


(4N+1)×1

C =
[

1 0 · · · 0
]

1×(nq+2)
,X =


γ

α0

· · ·
αnq


(nq+2)×1

(16)
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5. Robust stability under polytopic uncertainties

This section formulates the main result of the paper which consists into guaranteeing
the robust stability under polytopic uncertainties. The procedure is the following: firstly
an initial stabilizing controller is designed for the nominal plant, which is then robustified
under unstructured uncertainties based on the Q1 parameter as given in section 4. Since
the initial stabilizing controller or the robustified nominal controller can be unstable
for some regions of the polytopic uncertain domain, a suitable method that guarantees
stability on the entire polytopic domain is further investigated.

Consider a polytopic system with l vertices such that the ith vertex constitutes the
transfer function of a model Gi such that:

Gi
(
q−1)= q−1 Bi

(
q−1

)
Ai (q−1)

(17)

Thus, the whole polytope (Fig. 4) can be denoted by:

Ω = Co
{[

A1 B1

]
,
[

A2 B2

]
, · · · ,

[
Al Bl

]}
(18)

with ‘Co’ standing for the convex hull defined by l vertices [Ai Bi], i = 1, . . . , l.
As Ω is a polytope, thus a convex set, guaranteeing stability of (16) for the entire

space Ω is equivalent to guarantee the stability for all the vertices of the uncertain poly-
topic domain [10].

Figure 4: Polytopic uncertainty representation with l = 6.

In this multi-model case, the closed-loop transfer from the input w to the output y
(Fig. 2) is derived as

y
w
=

T0q−1Bi

Pi
(19)

where Pi represents the closed loop characteristic polynomial of the ith vertex of the
domain Ω given by

Pi = ∆AiS0 +q−1BiR0 +q−1∆Q1 (BiA−AiB) (20)
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Hence, the problem of checking the stability of the polytopic system reduces to the de-
termination of whether or not the roots of each characteristic polynomial Pi lie inside the
unit circle or not. At this step, the difficulty appears due to the presence of Q1 parameter
in (19). It can be noticed easily that if the model is exact (i.e. if A = Ai and B = Bi), then
the closed-loop transfer (18) is reduced to (7). So, let us rewrite the expression (19) as

Pi = T̃1i + T̃2iQ1. (21)

Also, we can write

Pi =
n

∑
j=0

pi jq− j, T̃1i =
n1

∑
j=0

t1i jq− j, and T̃2i =
n2

∑
j=0

t2i jq− j

with out loss of generality, let us assume that n2 +nq ­ n1. This means that n = n2 +nq.
Now, for Q1 expressed as in (10), it is possible to formulate the characteristic poly-

nomial coefficients pi j in terms of αi parameters. This relation is given in matrix form
as

PPPi = LLLi +HHH iααα (22)

with

PPPi =


pi0

pi1
...

pin


(n+1)×1

, LLLi =



t1i0
...

t1in1

0
...
0


(n+1)×1

HHH i =



t2i0 0 . . . 0
t2i1 t2i0 . . . 0

... t2i1 . . .
...

t2in2

... . . . t2i0

0 t2in2 . . . t2i1

0 0 . . .
...

...
... . . .

...
0 0 . . . t2in3



ααα =


α0

α1
...

αnq


(nq+1)×1

, and n3 =

{
nq −n2 if n2 < nq

nq if n2 ­ nq
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Stability condition

In 1978, Lipatov and Sokolov [11] developed the improved sufficient conditions for
stability and instability of continuous linear stationary systems through Hurwitz stability
and instability conditions. It turns out that the results are in terms of coefficients of
characteristic polynomials of the systems. In the following, we state a result of theirs.

Let

F (s) =
n

∑
k=0

aksk, ak > 0 for k = 0,1, . . . ,n (23)

be a polynomial with real coefficients. A sufficient condition for the above polynomial
to be Hurwitz stable (roots in the open left-half plane) is [11]

a j−1a j+2 ¬ 0.4655a ja j+1, j = 0,1, . . . ,n−2. (24)

In order to apply the above condition to our procedure, the characteristic polynomial
(21) must be converted to the continuous form. For that purpose, the bilinear transform
is used. The bilinear transform is also known as Tustin’s rule as well as the more familiar
Trapezoidal rule used in numerical integration [12]. Here, the backward shift operator
q−1 is replaced by

q−1 =
1− (T/2)s
1+(T/2)s

(25)

where T is the sample time. Then, the equivalent characteristic polynomial in continuous
time is obtained. It is denoted by asterisk.

P∗
i (s) =

(
1+

T
2

s
)n

Pi

(
1− (T/2)s
1+(T/2)s

)
=

n

∑
j=0

p∗i js
j (26)

The relationship between the elements pi j and p∗i j is given by the following matrix equa-
tion [13], [14]:

PPP∗
i = QQQnPPPi (27)

The transformation matrix QQQn is derived as follows:

QQQn =


(T/2)0q0,0 . . . (T/2)0q0,n

...
. . .

...
(T/2)nqn,0 . . . (T/2)nqn,n

 (28)

with
q0, j = 1, j = 0,1, . . . ,n
qi,0 = n!/ [(n− i)!i!] , i = 0,1, . . . ,n
qi, j = qi, j−1 −qi−1, j−1 −qi−1, j, i, j = 1, . . . ,n.
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From (21), the relation (26) becomes

PPP∗
i = LLL∗

i +HHH∗
i ααα (29)

such that
LLL∗

i = QQQnLLLi and HHH∗
i = QQQnHHH i.

Hence, after some developments, the Lipatov stability condition (23) has been trans-
formed into the following quadratic constraints, generally, this set of constraints is non
convex

αααTWWW i jααα+VVV T
i jααα+UUU i j ¬ 0 for j = 1, . . . ,(n−2) (30)

where, for j = 1, . . . ,(n−2), WWW i j is known real symmetric (nq+1)×(nq+1) matrix, VVV i j
is known real (nq +1) vector, and UUU i j is known real scalar. Therefore, guaranteeing the
stability for all the vertices of the uncertain polytopic domain is equivalent to satisfying
the (n− 2) inequalities defined by (29) for each vertex i of the domain, it means (n−
2)l inequalities for all vertices. In conclusion, guaranteeing robust stability under both
unstructured and polytopic uncertainties is globally achieved by adding the constraints
(29) to the optimization problem (15).

In order to find the optimal solution of this problem, the latest version of the global
polynomial optimization software GloptiPoly 3 developed in [2] has been used. Indeed,
with the help of the solver SeDuMi [16], GloptiPoly 3 builds and solves a hierarchy of
successive semidefinite programming (SDP), or convex linear matrix inequality (LMI)
relaxations of increasing order, whose optima are guaranteed to converge monotonically
to the global optimum. The main feature of this solver is that it can transcend the difficul-
ties normally associated with non-convex optimization. Moreover, the optimal solution
is reached at a relatively low computational cost.

6. Example

This part focuses on the results obtained while applying the previous robustification
methodology to the velocity control of an induction machine. Starting from the identified
transfer function between the torque Γm and the velocity Ωm for a sampling period T =
5ms:

Ωm

Γm
=

aq−1 +bq−2

1+ cq−1 +dq−2 (31)

with
a = 1.344, b = 3.024, c =−0.98, and d =−0.02.

With this model, an initial GPC controller (called GPC0) has been first designed for
C(q−1) = 1, and the following tuning parameters, selected according to the rules given
in [17], N1 = 1, N2 = 8 and λ= 200. Afterwards, it is considered that the nominal system
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is affected by high frequency neglected dynamics, represented as additive unstructured
uncertainties. Thus, the following weighting W (q−1) is considered:

W (q−1) =
1−0.8q−1

0.2
(32)

Solving the optimization problem (15) provides a Youla parameter as a polynomial of a
chosen order nq = 6. Fig. 5 shows measurement noise/control transfer function for the
nominal system before robustification (GPC0) and after robustification under additive
unstructured uncertainties (RGPC0). It can be noticed that the H∞ norm has been reduced
using RGPC0. Therefore the robust stability for the nominal system with respect to high-
frequency additive unstructured uncertainties is improved.

The next part refers to the robustification under polytopic uncertainties. Let us con-
sider that the parameters a, b, c and d in (30), are uncertain up to ±30% of their nominal
values. This leads to a four-dimensional hypercube with 24 = 16 vertices.

From Fig. 6 and 7, it can be noticed that the closed-loop of the polytopic uncertain
system with both the initial controller GPC0 and RGPC0 are unstable for some vertices.
Also we noticed that the RGPC0 destabilizes some vertices, which are initially stable
with the GPC0. This difficulty justifies the design of other robustified controllers that will
guarantee the stability under polytopic uncertainties. For that purpose, the robustified
controller RGPC1 is designed by adding a set of quadratic constraints defined by (29) to
the optimization problem. To solve this problem, we applied GloptiPoly 3 [2] solver. In
order to obtain an accurate solution, we chose a relaxation order equal to 2 and we let
SeDuMi minimize the duality gap as much as possible. The optimal value γ = 0.1685 is
obtained with the following Q1 parameter:

Q1
(
q−1)=−0.0543−0.0214q−1 −0.0052q−2 +0.0042q−3 +0.0087q−4

+0.0102q−5 +0.0139q−6

The closed-loop poles of all the vertices of the polytopic system with RGPC1 are shown
in Fig. 8. As can be observed, the controlled system is stable for the entire polytopic
domain. But the robust stability for the nominal system is decreased in comparison with
the result obtained with RGPC0 for the nominal system (Fig. 5). It can be easily stated
that a compromise has been achieved: with RGPC1 the robustness under unstructured
uncertainties is less improved compared to RGPC0, but the robustness under polytopic
uncertainties is satisfied. On the other hand, we noticed that with an increase of the
degree of the Youla parameter, performances can still be improved to the detriment of
the computational time.

7. Conclusion

This paper has presented an extending off-line methodology which enables robusti-
fying an initial GPC controller using Youla parametrization and Lipatov stability crite-
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Figure 5: Measurement noise/control (with the nominal system) before and after robus-
tification.

Figure 6: Closed-loop poles of all vertices of the polytopic system with the GPC0 con-
troller.

rion. The major advantage consists in managing the compromise between robust stabil-
ity under unstructured uncertainties for a nominal system and the robust stability under
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Figure 7: Closed-loop poles of all vertices of the polytopic system with the RGPC0
controller.

Figure 8: Closed-loop poles of all vertices of the polytopic system with the RGPC1
controller.

polytopic uncertainties for an entire variation domain, leading to an additional set of non
convex quadratic constraints. An existing solver GloptiPoly 3 has been used to solve this
optimization problem.
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The main contribution of this work consists in imposing the Lipatov stability condi-
tion to stabilize the controlled system for the entire polytopic domain, giving robustness
properties, even if the system coupled with the initial controller is unstable in some
points of the polytopic domain. This means that the proposed method offers a way to
increase the polytopic domain for which the stability is guaranteed. Indeed, this robusti-
fication method can be also applied to any RST controller, not necessarily predictive.
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