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Robust stability of a class of uncertain fractional order
linear systems with pure delay

MIKOŁAJ BUSŁOWICZ

The paper considers the robust stability problem of uncertain continuous-time fractional
order linear systems with pure delay in the following two cases: a) the state matrix is a linear
convex combination of two known constant matrices, b) the state matrix is an interval matrix.
It is shown that the system is robustly stable if and only if all the eigenvalues of the state
matrix multiplied by delay in power equal to fractional order are located in the open stability
region in the complex plane. Parametric description of boundary of this region is derived. In the
case a) the necessary and sufficient computational condition for robust stability is established.
This condition is given in terms of eigenvalue-loci of the state matrix, fractional order and
time delay. In the case b) the method for determining the rectangle with sides parallel to the
axes of the complex plane in which all the eigenvalues of interval matrix are located is given
and the sufficient condition for robust stability is proposed. This condition is satisfied if the
rectangle multiplied by delay in power equal to fractional order lie in the stability region. The
considerations are illustrated by numerical examples.

Key words: linear system, fractional, continuous-time, pure delay, robust stability, interval
matrix.

1. Introduction

Dynamical systems described by fractional order differential or difference equations
have been investigated in several areas such as viscoelasticity, electrochemistry, diffusion
processes, automatic control, etc. The problem of analysis and synthesis of such systems
has been considered in many books and papers, see [7-10, 13, 15] for example, and
references therein.

The problem of stability of linear continuous-time fractional order systems has been
investigated in the papers [2, 3, 6, 11, 12, 14].
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The aim of the paper is to give the methods (graphical and analytical) for robust
stability checking of fractional order continuous-time linear systems with pure delay in
two cases:

• the state matrix of the system is a linear convex combination of two known con-
stant matrices,

• the state matrix is an interval matrix.

In the paper the following notations will be used: ℜn×m – the set of n×m real ma-
trices and ℜn = ℜn×1; I – the identity matrix.

2. Preliminaries and problem formulation

Consider an uncertain continuous-time linear system of fractional order with pure
delay described by the homogeneous state equation

Dα
t x(t) = Aux(t −h), 0 < α < 2, (1)

where x(t) ∈ ℜn, Au ∈ ℜn×n, h ∈ ℜ is a delay,

Dα
t x(t) =

1
Γ(p−α)

t∫
0

x(p)(τ)dτ
(t − τ)α+1−p , p−1¬ α¬ p, (2)

is the Caputo definition of the fractional α-order derivative, where x(p)(t) = dpx(t)/dt p

(p is a natural number) and Γ(α) is the Euler gamma function.
We consider the following uncertain matrices Au:

• Au is the convex combination of two known constant matrices B,C ∈ ℜn×n

Au = A(γ) = (1− γ)B+ γC, γ ∈ [0, 1], (3)

• Au is the interval matrix

Au = AI = [B, C] = {A = [ai j], bik ¬ aik ¬ cik, i,k = 1,2, ...,n}, (4)

where bik and cik are entries of matrices B and C, respectively.

Every element aik(γ) of the matrix (3) is the convex combination aik(γ)= (1−γ)bik+
γcik, γ ∈ [0,1] of the entries bik and cik of B and C. Assumption that bik ¬ cik, i,k =
1,2 . . . ,n is not necessary.

The fractional system (1) is robustly bounded-input bounded-output (BIBO) stable
(shortly robustly stable) if and only if characteristic quasi-polynomial

q(s) = det(Isα −Aue−sh) (5)
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has no poles with non-negative real parts, i.e. q(s) ̸= 0 for Res > 0. The above condition
can be written the form

det(Isα − [(1− γ)B+ γC]e−sh) ̸= 0, for Res > 0, ∀γ ∈ [0, 1], (6)

for the system (1) with the state matrix (3) and

det(Isα −Ae−sh) ̸= 0, for Res > 0, ∀A ∈ AI = [B, C] (7)

for the system (1) with the state matrix (4).
The conditions for robust stability checking of interval systems with pure delay of

natural order have been proposed in [1] for continuous-time systems and in [4], [16] for
fractional interval discrete-time linear systems.

The aim of the paper is to give the methods for robust stability checking of the system
(1) with uncertain matrix Au of the forms (3) and (4), i.e. checking the conditions (6) and
(7).

3. The main result

If Au ≡ A (i.e. Au is a constant known matrix) then the system (1) has the form

Dα
t x(t) = Ax(t −h), 0 < α < 2. (8)

In [3] the following condition for stability of (8) has been proved.

Lemma 6 The fractional system (8) with pure delay is stable if and only if all the eigen-
values λi = ui + jvi, (i = 1, . . . ,n) of the matrix A multiplied by hα (i.e. λ̃i = ũi + jṽi
with ũi = hαui, ṽi = hαvi) lie in the complex (ũi, ṽi)-plane in the stability region S(α).
Boundary of this region has parametric description

( jω)αe jω = ũi(ω)+ jṽi(ω), ω ∈ [−ωb, ωb] (9)

where ωb = π−απ/2.

The boundary (9) crosses negative real axis of the complex (ũi, ṽi)-plane in point
−[π(1−α/2)]α for ω =±ωb.

Boundaries of stability region S(α) for few values of fractional order α ∈ (0,2) are
shown in Fig. 1. For α­ 2 the stability region S(α) is empty.

For 0 < α < 1 a part of the stability region S(α) lies in right half-plane whereas for
1¬ α < 2 the stability region entirely lies in the open left-half plane.

For any point λ̃i = ũi + jṽi in the stability region S(α) the following condition holds
[3]

|arg λ̃i|> απ/2, (10)
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Figure 1: Boundaries of stability region S(α) for α = 0.3 (boundary 1); α = 1 (boundary
2) and for α = 1.6 (boundary 3).

where arg λ̃i ∈ (−π, π] denotes the main argument of complex number λ̃i.
The main argument of complex number λi = ui + jvi can be computed from the

formula
argλi = sgn(vi) · arccos(ui/|λi|) (11)

The condition (10) for i= 1, ...,n is the necessary and sufficient condition for stability
of the system (8) without delay, that is of the system Dα

t x(t) = Ax(t), 0 < α < 2 (here
λ̃i ≡ λi = ui + jvi is the ith eigenvalue of A).

The condition of Lemma 1 can be written in the analytic form as follows [3].

Lemma 7 The fractional system (8) is stable if and only if for all the eigenvalues λi =
ui + jvi, (i = 1,2, . . . ,n) of the matrix A the following two conditions hold

|argλi|> απ/2, (12)

hα|λi|< |ω0i|α, (13)

where
ω0i = argλi − sgn(vi) ·απ/2. (14)
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Lemma 8 If the fractional system (8) is stable for h = 0 then it is stable for all h ∈
[0, h0), h0 = mini{hi}, where

hi = exp
(

ln(|ω0i|α/|λi|)
α

)
, i = 1,2, . . . ,n. (15)

Complex eigenvalues of A are pair-wise conjugate and stability region S(α) is sym-
metric with respect to real axis. Therefore it is sufficient to check the conditions given
in Lemmas 1, 2 and 3 only for real eigenvalues of A and for complex eigenvalues with
positive imaginary parts.

Remark 1 If the fractional system (8) is stable then all the real eigenvalues of A are
negative and greater than −[π(1−α/2)]α/hα.

3.1. Robust stability of the system with the state matrix (3)

The fractional system (1) with the state matrix (3) is robustly stable if and only if
all the eigenvalues of this matrix multiplied by hα lie in the stability region S(α) for all
γ ∈ [0, 1]. This holds if and only if all the systems (8), corresponding to all γ ∈ [0, 1] in
(3), are stable.

Remark 2 Since stability of fractional system (8) without delay is necessary for stability
of this system with delay [3], robust stability of the system (1), (3) (and also (1), (4)) for
h = 0 is necessary for robust stability of this system for h > 0.

It easy to see that stability of the system (8) with the matrices A = B, A = C and
Ac = (B+C)/2, for example, is necessary for robust stability of the system (1), (3).
Hence we have the following simple necessary condition.

Lemma 9 If all the eigenvalues of B or C or Ac = (B+C)/2 multiplied by hα do not lie
in the open region S(α) (the eigenvalues do not satisfy the conditions of Lemma 2) then
the system (1), (3) is not robust stable.

It is easy to see that the condition of Lemma 4 holds if at least one real eigenvalue
of B or C or Ac is not negative.

Eigenvalues of (3) depend on uncertain parameter γ ∈ [0, 1]. Therefore, this matrix
has an infinite number of eigenvalues, which form the eigenvalue-loci in the complex
plane as parameter γ grows from 0 to 1.

From the above and Lemmas 1 and 2 we obtain the following theorem.

Theorem 5 The fractional system (1), (3) is robustly stable if and only if the eigenvalue-
loci of the matrix (3) multiplied by hα lie in the stability region S(α) or equivalently, they
satisfy the conditions of Lemma 2.
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The conditions of Theorem 1 can be checked by graphical or analytical verification
if all the eigenvalues of (3) (calculated with a sufficiently small step ∆γ) multiplied by
hα lie in the stability region S(α).

Example 1 Consider the fractional system (1), (3) with h = 1 and the matrices

B =

 0 −2 −0.1
0.1 0.2 4
0 −0.1 −0.9

 , C =

 −0.5 −1 0
0 0 1

0.1 −1 −1.9

 . (16)

Eigenvalues of the matrices B and C are as follows:

λ1,2(B) =−0.0811± j0.5712; λ3(B) =−0.5379

λ1,2(C) =−0.6125± j0.3681; λ3(C) =−1.1750

For h = 1 and α = 0.1 boundary of stability region S(α) crosses negative real axis of
the complex (ũi, ṽi)-plane in point −[π(1−α/2)]α =−1.1155 > λ3(C). From Remark 1
it follows that the system (8) with A =C is unstable. This means, according to Lemma 4
that the uncertain system (1), (3) with the matrices (16) is not robustly stable for α= 0.1.

Eigenvalues of B (denoted by ’�’), C (denoted by ’∆’), the eigenvalue-loci of (3),
(16) determined with the step ∆γ = 0.025 (denoted by ’.’) and stability regions S(α) for
few values of α are shown in Fig. 2.

From Fig. 2 and Theorem 1 it follows that the system is robustly stable for α =
0.2 and α = 0.6 but it is not robustly stable for α = 0.7. Moreover, from the above
considerations and Fig. 2 we conclude that the system is not robustly stable for α = 0.1,
is robustly stable for α ∈ [0.2, 0.6] and again is not robustly stable for α ∈ [0.7, 2].

From Fig. 2 for α = 0.7 it also follows that stability of the system (1) for Au = B and
Au =C is not sufficient for robust stability of the system (1), (3).

3.2. Robust stability of the system with the state matrix (4)

The necessary conditions for robust stability given in Remarks 1 and 2 and in Lemma
4 are also true for the system (1), (4).

Robust stability of the system (1), (4) is equivalent to location of all the eigenvalues
multiplied by hα of the interval matrix (4) in the stability region S(α). Each entry of
the interval matrix is an uncertain independent parameter, in general. Therefore, it is
impossible to check the above condition exhaustively.

To robust stability checking we apply the method based on determination of the
region in the complex plane in which the eigenvalues of the interval matrix are located.
This region can be determined by generalization of the Gershgorin’s theorem to the
interval matrix case or applying the method based on the matrix measure. These methods
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Figure 2: Eigenvalues of B (’�’), C (’∆’), the eigenvalue-loci of (3), (16) (’.’) and stabil-
ity regions for few values of α: α = 0.2 (boundary 1); α = 0.6 (boundary 2) and α = 0.7
(boundary 3).

have been proposed in the paper [1]. The method based on the matrix measure is recalled
in the Appendix.

Let RI denotes the rectangle with sides parallel to the axes of the complex plane
determined by the method described in Appendix. In this rectangle the eigenvalues of
the interval matrix (4) are located.

Theorem 6 If the rectangle RI multiplied by hα lies in the open region S(α), then the
interval system (1), (4) is robustly stable.

The rectangle RI with the vertices V1 = ul + jv, V2 = ur + jv, V3 = ur − jv, V4 = ul − jv
(ul , ur and v are computed from (A.4)–(A.6)) is symmetric with respect to the real axis.

If ur < 0 then RI entirely lies in open left half-plane and the fractional system (1), (4)
with the given value of delay h and fractional order α is robustly stable if the vertices V1
and V2 multiplied by hα are in the region S(α). To check this we can apply the conditions
(12) and (13) of Lemma 2 for λi =V1 and λi =V2.

Moreover, using Lemma 3 we find that the vertices V1 andV2 multiplied by hα are in
the region S(α) for all h ∈ [0,h0), where h0 = min{h1,h2} and h1 and h2 are computed
from (15) for λi =V1 and λi =V2, respectively.
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Example 2 Consider the fractional system (1), (4) with α = 0.8, h = 0.5 and the matri-
ces

B =

 −1.5 −0.3 0
−0.2 −1.2 −0.3
0.3 −0.1 −1.2

 , C =

 −1 0.2 0.5
0.2 −1 0.3
0.5 0.1 −1

 . (17)

From (A.4)–(A.6) one obtains: ul =−2.2, ur =−0.2, v = 0.8.
Using Lemma 3 we find that the vertices V1 = ul + jv and V2 = ur + jv multiplied by

hα lie in the open region S(α) for all h ∈ [0,h1 = 0.5305) and h ∈ [0,h2 = 0.7115), re-
spectively. Hence, h0 = min{h1,h2}= 0.5305 and the uncertain fractional order system
(1), (4) with the matrices (17) is robustly stable for all h ∈ [0,h0), h0 = 0.5305.

The region S(α) for α = 0.8 and the rectangle RI multiplied by hα for few values
of delay h are shown in Fig. 3. From this figure it follows that all the rectangles lie
in the stability region and, according to Theorem 2, the system is robustly stable for
h ∈ [0, 0.5305).

Figure 3: Boundary of S(α) for α = 0.8 and rectangle RI for few values of h: h = h0 =
0.5305 (rectangle 1); h = 0.3 (rectangle 2); α = 0.1 (rectangle 3).

From the above considerations and Example 2 it follows that the sufficient condition
given in Theorem 2 may be satisfied in the case of diagonally dominant matrices B and
C with negative diagonal entries.
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Recall that a matrix is diagonally dominant if for every row (or column), the mag-
nitude of the diagonal entry in a row (column) is larger than or equal to the sum of the
magnitudes of all the other (non-diagonal) entries in that row (column).

4. Concluding remarks

The robust stability problem of uncertain continuous-time linear fractional order sys-
tems (1) with pure delay with an uncertain state matrix of the form (3) (linear convex
combination of two known constant matrices) and (4) (interval matrix) has been consid-
ered. It has been shown that the system is robustly stable if and only if all the eigenvalues
of uncertain state matrix multiplied by delay in power equal to fractional order are lo-
cated in the open stability region S(α) in the complex plane.

In the case of state matrix (3) the necessary and sufficient condition for robust stabil-
ity has been established in Theorem 1 and in the case of the state matrix (4) the sufficient
condition for robust stability has been given in Theorem 2.

Appendix. Determination of the eigenvalue-region of the interval matrix (4) by the
method based on the matrix measure

Using the method based on the matrix measure we find the rectangle RI with sides
parallel to the axes of the complex plane in which are located all the eigenvalues of
interval matrix (4) [1].

Let L = [lip] and R = [rip], i, p = 1,2, . . . ,n be constant matrices defined by: lii = bii,
rii = cii for i = 1,2, . . . ,n and

lip = rip = max{|bip|, |cip|}, i, p = 1,2, . . . ,n, i ̸= p, (A.1)

where bip and cip are the entries of the matrices B and C of the interval matrix (4).

Lemma 10 All the eigenvalues λi(AI) of the interval matrix (4) are located in the rect-
angle RI determined by the following inequalities

ul ¬ Reλi(AI)¬ ur, (A.2)

−v¬ Imλi(AI)¬ v, (A.3)

where
ul =−min{µ1(−L),µ∞(−L)} , (A.4)

ur = min{µ1(R),µ∞(R)} , (A.5)

v = min{µ1( jR),µ∞( jR)} . (A.6)
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µ1(X) and µ∞(X) denote the measures of the complex matrix X defined by [5]

µ1(X) = max
j

[
Re(x j j)+

n

∑
i=1,i ̸= j

∣∣xi j
∣∣] , (A.7)

µ∞(X) = max
i

[
Re(xii)+

n

∑
j=1, j ̸=i

∣∣xi j
∣∣] . (A.8)
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